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IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 130

EEP

The Evolution and Ecology Program at IIASA fosters the devel-
opment of new mathematical and conceptual techniques for un-
derstanding the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Evolution and Ecology Program
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.
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Abstract:

Cross-immunity among related strains can account for the selection producing the slen-

der phylogenetic tree of influenza A and B in humans. Using a model of seasonal influenza

epidemics with drift (J. Math. Biol. 46: 504 (2003)), and assuming that two mutants

arrive in the host population sequentially, we determine the threshold condition for the

establishment of the second mutant in the presence of partial cross-protection caused by

the first mutant and their common ancestors. For fixed levels of cross-protection, the

chance that the second mutant establishes increases with ρ the basic reproduction ratio

and some temporary immunity may be necessary to explain the slenderness of flu’s phy-

logenetic tree. In the presence of moderate levels of temporary immunity, an asymmetric

situation can arise in the season after the two mutants were introduced and established: If

the offspring of the new mutant arrives before the off-spring of the resident type, then the

mutant-line may produce a massive epidemic suppressing the original lineage. However

if the original lineage arrives first then both strains may establish and the phylogenetic

tree may bifurcate.
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1 Introduction

The phylogenetic trees of influenza genes are long and narrow with short side branches

and rare bifurcations where two trunks coexist over several years (Buonagurio et al., 1986;

Cox and Subbarao, 2000; Fitch et al., 1991, 1997; Hay et al., 2001). We here show how

cross-immunity among genetically related viral variants can allow one mutant to establish

while suppressing other equally viable mutants of the same ancestor, a mechanism that

will give rise to a narrow tree with short side branches.

The slender phylogenetic tree of influenza A contrasts with the phylogenetic trees

that have been observed for influenza in birds and for genes of other infectious diseases

(Kawaoka et al., 1998; Frey et al., 1998; Rambaut et al., 2001). From a theoretical

view-point a virus species can be seen as a quasi species, i.e. as a cloud of viral types

kept together in a balance between mutation and selection (Eigen and Schuster, 1979;

Eigen, 1993; Abu-Raddad and Ferguson, 2004). For such a system we would expect a

constant rate of divergence in non-structural genes suggesting a more branched structure

of the phylogenetic tree than that observed for the flu. The mechanism thought to be

responsible for the shape of the flu tree is natural selection induced by the cross-immunity

among related viral strains. Such cross-immunity constantly inhibits branching by natural

selection against mutants that are related to previously successful variants allowing only

one lineage to spread in the population (Buonagurio et al., 1986).

Influenza A is an example of a virus undergoing antigenic change at an intermediate

time scale, longer than the duration of an infection event, yet shorter than host life

span. Thus during an infection, a single antigenic strain of the pathogen colonizes a

host, but through its life the same host may be infected several times by antigenically

different variants. The selection processes in the viral population giving rise to antigenic

change and to the exclusion of multiple lineages are therefore determined by the immunity
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structure of the host population (Grenfell et al., 2004).

The most important antigen of influenza A and B is the hemagglutinin surface-

molecule (HA), although antibodies are formed in response to many other sites, most

noticeably the neuraminidase antigen (NA). Due to its configuration, antibodies are not

formed to the functionally active part of the HA-molecule, in stead antibodies are formed

to 5 non-functional epitopes allowing for significant diversity in flu antigens. The anti-

genic variation in influenza virus is caused by two distinct processes. In a process known

as virus drift, point mutations in the gene coding for HA give rise to new virus variants

(strains) with gradually changing antigenic properties. Immunity obtained from infection

with a specific strain of influenza confers permanent immunity to that particular strain

and a partial protection against related strains. In general the level of cross-protection

decreases with the number of amino acids by which the HA-gene of the two strains differ

and hence with the distance between the two strains in Hamming space. Smith et al.

(2002) suggest that 3-4 amino-acid substitutions must occur in the virus before there is

an appreciable chance of reinfection of the same host and in general cross-immunity seems

to protect against the mutations that accumulate over a few years (Smith et al., 2002;

Cox and Subbarao, 2000; Potter et al., 1977; Larson et al., 1978). Recently Smith et al.

(2004) have found that the antigenic variation in influenza A/H3N2 can be represented

in a two dimensional space with most of the variation occurring along a single axis.

In addition to antigenic drift antigens also change in distinct shifts where reassortment

with avian influenza replaces whole segments of the viral surface-structure introducing a

new subtype. Such shift events occur at irregular intervals on the order of decades and

they are usually associated with the disappearance of the old subtype. Thus our focus

will be on an intermediate timescale describing the period between two shifts.

Previous models of influenza drift have focused on the epidemiological consequences

of drift by assuming that mutations occur along a one dimensional axis representing the
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main trunk of the phylogenetic tree and that the drift-mutation is constant over time

(Pease, 1987; Inaba, 2001; Thieme and Yang, 2002; Girvan et al., 2002; Andreasen, 2003).

They have modeled the speed of the drift along the axis (Andreasen et al., 1996; Gog

and Grenfell, 2002; Lin et al., 2003) or the mutation rate required for viral drift (Boni

et al., 2004). Because of the multiple strains and the complexities of the population

based herd-immunity, an account for the transmission dynamics and mutation process

sufficiently detailed to reproduce the drift-like behavior seems to require individual based

computer simulations (Ferguson et al., 2003; Tria et al., 2005). To avoid the complexities

of such models we will not attempt to include all processes involved in influenza drift

but rather study branching as ”a perturbation off” the normal drift process. Most of the

analytical drift-models do not allow for the introduction of additional mutants because

the immunological structure of the virus population is modeled in a way that links to the

time-progression so we shall base our model on that of Andreasen (2003).

2 Derivation of basic model

The basic idea in Andreasen’s drift-model is to separate completely the time scale of the

epidemic from that of the drift process. Thus at the beginning of a season, a drift variant

is introduced into the population. If sufficient susceptibility is present in the population,

an epidemic occurs and irrespective of whether an epidemic occurred or not, the strain

disappears at the end of the season. At the onset of the subsequent season a new drift

variant appears. Based on the outcomes of the previous epidemics, the susceptibility to

this strain is determined and a new epidemic may arise.

Mutation will not be described explicitly. Rather we assume that at the end of each

season sufficient genetic variation is present to ensure that at least one new strain will

establish in the subsequent season. The mutant strains appear towards the end of the flu-

season, circulate at low, possibly decreasing, numbers during the low transmission period
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Figure 1: The overlap of two independent (SIR) epidemics with different basic repro-
duction number starting from low numbers. The assumption of sequential epidemics
corresponds to neglecting the interactions occurring in the shaded area. The approxima-
tion of sequential epidemics works well for small size of the initial infectious population.
Parameter values used: ρA = 4 (full line) and ρB = 3 (broken line) while the infectious
period is 1 and population size is set to 1. In both graphs initial conditions are S = 1−I0,
R = 0, and IA = IB = I0 as indicated on the figure.

and start their exponential growth phase in the next high-transmission season. If all

strains occur at equally low prevalence at the beginning of the season, the strain with the

highest growth rate will be the first epidemic strain and we will assume that this epidemic

will run to its conclusion prior to the appearance of the next strain, ”sequential epidemics”.

From a modeling view point the assumption of sequential epidemics is an approximation

that is valid for small inoculum size I(0) ¿ 1 and thus a natural consequence of the

time-scale separation. As indicated in Figure 1, a difference in the growth-rates of the

two strains implies that the fastest growing strain almost completes its epidemic prior to

a second strain attaining detectable levels provided that the initial size of the infectious

population is small (compare to Ohtsuki and Sasaki,2005 and Gog et al.,2003).

From a biological view point some caution is called for. Specific strains appear to be

well suited for the low-transmission period (Gog et al., 2003) and in addition genetic and

antigenic variation is always present at least at the global and regional scales (Plotkin

et al., 2002; Holmes et al., 2005). Still within a single epidemic, variation appears to be
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limited (Schweiger et al., 2002; Shih et al., 2005). We shall return to these issues in the

discussion but for now we ignore such complications and assume the strains arrive to the

host population sequentially as described. This will establish a baseline to which one can

compare the more complex situation where cocirculation occurs.

Other strains circulating at the onset of the season – and hence the second strain

appearing in the host population – are likely to have a lower growth rate or possibly

higher cross-immunity to previous strains than do the first successful strain - or they

would have been the first successful strain! To avoid parameter proliferation, we focus

on an upper bound overestimating the growth potential of the second strain. Thus we

assume that the second strain is as fit as the first epidemic strain in the sense that the

two strains have the same reproduction number in a fully susceptible population and both

exhibit the same cross-reactivity towards their common ancestors. Since the two mutants

are supposed to arise through two independent mutations we will assume that they differ

by twice the amount of the annual drift thus eliciting a cross-reaction between them of the

same magnitude as that produced towards the strain occurring two seasons ago. If both

strains can cause an epidemic in the host population, a bifurcation in the phylogenetic tree

has occurred and as the two lineages separate further in subsequent seasons, persistence

of both branches is expected. Since we determine the branching conditions for a strain

that is more fit than most mutants, our results should be interpreted probabilistically in

the sense that the more easily the conditions for branching are met, the more likely it

is that a strain with the necessary properties would arise. In our model derivation we

will assume that single annual strain replacement happens in most years and hence we

implicitly assume that bifurcations are rare events, so for parameter values well within the

region where bifurcations can occur the model will no longer hold. For such parameter

values it is an open question if the genetic structure of the virus is still characterized by

drift at all (cf Abu-Raddad and Ferguson, 2004; 2005).
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Since our analysis focuses on the situation where branching is a rare event we will start

from a situation where annual strain replacement by drift has settled at equilibrium and

we now sketch a simplified version of the drift-model by Andreasen (2003) describing this

situation. For details of the analysis see Andreasen (2003). We first study the dynamics

of the epidemic within a single season.

Assuming that the level of cross-immunity depends only on the most related previous

infection (which for now is identical to the most recent infection), the immune structure

of the host population at the beginning of a flu-season is described by

sk, k = 1, . . . (1)

giving the fraction of the host population that was most recently infected k seasons ago.

Since drift is supposed to occur at a constant speed, we identify the difference in years

between the occurrence of two strains with distance in nucleotide composition and with

the distance in antigenic properties so that sk, k = 1, . . . in fact summarizes the herd-

immunity structure of the population. To keep the model simple we will assume that the

population is closed in the sense that population size is constant and that no migration,

births, and deaths occur. For mathematical convenience we will assume that infinitely

many flu-seasons have occurred allowing the index in (1) to run to infinity. In addition

we will assume that cross-immunity acts by reducing infectivity rather than susceptibility

because this leads to a significantly simpler model (Ferguson and Andreasen, 2002). These

simplifying assumptions can be altered without qualitatively changing our conclusions and

we return to the issue in the discussion.

At the onset of the epidemic season we assume that a few infected hosts come to the

population from an external source. Let Sk(t) denote the fraction of hosts whose most

recent infection occurred k seasons ago and who in this season have not yet been infected

at time t, while Ik(t) denotes the fraction of hosts that are currently infected and whose
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last previous infection occurred k seasons ago. We will not need to keep track of those

hosts that have recovered from infection. The course of the epidemic during the season

in question now evolves according to a mass-action model

Ṡk = −ΛSk (2)

İk = ΛSk − νIk

where Λ = c
∑

τkIk is the force of infection and τk gives the reduction in infectivity

due to acquired immunity. The parameter ν gives the rate of recovery from infection

while c measures the contact rate in absence of any cross-immunity. Initial conditions

are Sk(0) = sk, k = 1, . . . and 0 < Λ(0) ¿ 1. It turns out that we need not describe

distribution of cross-immunities of the inoculum.

The model for the epidemic season can be simplified by using Q =
∑

τkSk and Λ as a

dynamic variables. We will refer to Q as the potential infectivity because Q measures how

much infectivity could be produced if all hosts become infected. With these new variables

the course of the epidemic is determined by

Q̇ =
∑

τkṠk = −ΛQ (3)

Λ̇ = ρ
∑

τkİk = ρ
∑

τkSkΛ− Λ = ρQΛ− Λ, (4)

where in addition time is rescaled in units of average duration of infection 1/ν and ρ = c/ν

is the basic reproduction number.

Clearly model (3)-(4) is the classical model of Kermack and McKendrick (1927). Since

dΛ

dQ
= −ρ+ 1

Q

we can determine the outcome of the epidemic in terms of φ = Q(∞)/Q(0) by observing

that

0 = Λ(∞)− Λ(0) = log φ+ ρq(1− φ), (5)
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with q = Q(0). For the individual immunity classes Sk, we observe that dSk/dQ = Sk/Q

so that the fraction of hosts in immunity class k that avoid infection during the entire

epidemic is

Sk(∞) = φSk(0).

It is well known that equation (5) has exactly one solution 0 < φ < 1 if ρq > 1 and

none if ρq < 1. In addition φ = 1 is always a solution. Biologically φ = 1 corresponds

to the situation where no epidemic occurs and since we have assumed that an epidemic

occurs when possible we exclude the solution at φ = 1 when pq > 1. If no epidemic

is possible, there will be no growth in the virus population and hence no new genetic

variation allowing the drift process to continue and we will assume that the virus lineage

will die out.

We have now determined how the immune structure of the host population changes

from the onset of the epidemic to the end of the epidemic. According to our separation of

the epidemic and drift processes a new strain appears prior to the next season. Assuming

that the reproduction number ρ and cross-reactions τk remain unchanged from season to

season, we can now determine how the immune structure changes from the onset of the

T th season to the onset of the (T + 1)st season.

At the onset of season T + 1 the immunity class s1 consists of those hosts who were

infected during the previous season so that

sT+1
1 =

∑

k

(1− φ)sTk = 1− φ

while those hosts that will enter immunity class sk, k = 2, . . . at the onset of the (T+1)th

season will be those hosts who were in the sk−1 immunity class at the beginning of season

T and who did not get infected, i.e.

sT+1
k = φsTk−1, k = 2, . . . .
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This completes the formulation of the model which can now be expressed in terms of a

discrete map linking the immunity structure at the onset of season T to the immune-

structure at the beginning of season T + 1 :

(sTk )k=1... 7→ (sT+1
k )k=1...,

see Andreasen (2003) for details.

To simplify this map we will follow Boni et al. (2004) and make one additional assump-

tion about the infectivity reduction τk allowing us to obtain a Markov-like property for the

potential infectivity. Although cross-reactions are well documented in hemagglutination

studies, the relation between the cross-reactions observed in vitro and the cross-immunity

expressed in terms of the infectivity reduction factors τk remains unclear. Clearly cross-

immunity should decline as strains become more dissimilar corresponding to τk being an

increasing function of k reaching insignificant levels of cross-protection for strains that

are a few seasons apart. We will assume that cross-immunity decays geometrically such

that

τk = 1− αk,

where α < 1 is a parameter describing how far cross-immunity reaches.

The specific infectivity-reduction factors we have chosen, satisfies the recursion formula

τk+1 = τ1 + τk − τ1τk.

This relation allows us to capture the entire immunity structure at the onset of the

epidemic season in a single value q, since we have that the potential infectivity at the
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Figure 2: The ”attack rate” 1−φ i.e. the fraction of the host population that gets infected
during an epidemic season when the drift process is at equilibrium. Here ρ denotes the
basic reproduction number while α describes how far cross-immunity reaches in that 1−αk
gives the infectivity if infected k seasons after last infection relative to the infectivity of
an immunologically naive host.

start of the next season is

qT+1 =
∞

∑

1

τks
T+1
k

= τ1(1− φ) +
∞

∑

1

τk+1φs
T
k

= τ1(1− φ) + φ
∞

∑

1

(τ1 + τk − τ1τk)sTk

= τ1(1− φ) + τ1φ
∞

∑

1

sTk + φ(1− τ1)
∞

∑

1

τks
T
k

= τ1 + φ(1− τ1)qT

= 1− α + αφqT ,
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where φ = φT denotes the fraction of hosts that escape infection during season T .

Expressing our model of the season-to-season dynamics in terms of the potential in-

fectivity at the onset of the epidemic season now yields a one dimensional model

q 7→ 1− α + φαq, (6)

where φ = φ(q) is the solution to (5). In the appendix we show that for ρ > 1 this

model has a unique stable equilibrium corresponding to a situation where an epidemic of

the same size will arise in every season. Figure 2 shows how the ”attack rate”, i. e. the

fraction of the host population that is infected during a single epidemic, at equilibrium

1 − φ depends on ρ and α. As expected the attack rate increases with the reproduction

number ρ and decreases with the duration of cross protection α.

3 Selection in a drifting virus population

We now turn our attention to the conditions that will meet a second mutant strain when

entering the population in a given season. We will assume that drift has already occurred

for sufficiently long that the system has settled to its stable state where in each season

one new flu strain appears. We refer to this sequence of strains as the a-lineage. Then

in year T + 1 two strains appear. Both strains have exactly the same cross-reaction with

strains from the previous years while the immunological distance between the two strains

corresponds to the distance between strains that are two years apart; this represents

a situation where the two strains have arisen through independent mutations from the

strain of year T . As discussed in the introduction, the two strains arrive sequentially in

the population such that the epidemic caused by the first strain has already come to a

conclusion when the second strain is introduced.

In addition to the permanent immunity responsible for influenza drift, influenza may

give rise to a temporary immunity. Ferguson et al. (2003) and Tria et al. (2005) both
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report that their large simulation models could not produce flu-like phylogenies unless

they included a temporary immunity lasting some months and they quote several clinical

studies in support of the existence of such short-lived protection. Recently Forsberg

and Christiansen (2003) have found evidence for selection against known TCL-epitopes

in human influenza, suggesting that T-cell immunity plays a role. This system may be

associated with the observed broad but temporary immunity. Here we will assume that

only a fraction v of those infected are available for further infection during the same

season, corresponding to a temporary immunity lasting 3–4 months – i.e. a bit longer

than suggested by Ferguson et al..

The strain that is first introduced in the population can be considered to be the next

generation of the a-lineage, while the strain that is introduced later will be referred to as

the b-strain. Now imagine that strain a has already made an epidemic and that strain b

comes to the population. To characterize the immunity to strain b we can no longer rely

on identifying the strength of cross-immunity with time since last infection. In stead the

immunity to strain b is determined by summarizing the immunity structure of the hosts

after the a-epidemic but prior to the b-epidemic and we subdivide the host population

according to the possible immune states

• xk the fraction of hosts whose last infection occurred k seasons ago and who were

not infected by a during season T + 1.

• yk the fraction of hosts who were last infected k seasons ago and who were also

infected by a during season T + 1.

The size of the immune classes xk and yk can be expressed in terms of the immune

structure si at the onset of the T + 1st epidemic season and φ the fraction of hosts that

escaped the a-infection in the T + 1st season. Omitting the reference to the season, this

14
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Figure 3: The smallest width of cross-immunity α that prohibits the establishment of
the b−strain and inhibits branching of the phylogenetic tree in the absence of temporary
immunity (v = 1) as a function of the basic reproduction number ρ.

yields

xk = φsk yk = (1− φ)sk.

Since only the immune response to the most related strain causes cross-immunity, the

infectivity-reduction factors against b are

Immunity class infectivity reduction
xk τk

yk for k > 1 τ2
y1 τ1

Now strain b can invade if the threshold condition

1 < ρp1,
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holds where p1 is the potential infectivity of strain b at the onset of the b-epidemic i.e.

p1 =
∞

∑

i=1

τkxk + vτ1y1 + v
∞

∑

k=2

τ2yk

= φq + vτ1(1− φ)s1 + vτ2(1− φ)(1− s1)

= φq + v(1− α)(1− φ)(1 + αφ), (7)

Here φ denotes the fraction of host that did not get infected by the a-strain in the T +1st

season and the last equality holds only when the drift process is at equilibrium.

Figures 3 and 4 show the region in parameter space that allows the b-strain to cause an

epidemic. Clearly the b-strain can cause an epidemic more easily if the disease in question

has a high reproduction number than if the reproduction number is low, or more precisely

for high ρ the b-strain can establish even if only a fraction of the hosts can be reinfected

within a season.

4 The season after the bifurcation

If strain b can produce an epidemic in season T + 1, then the b-epidemic will affect

the immune structure of the host population including the conditions that will meet the

a-lineage in season T + 2. In this section we study the transmission dynamics in the

subsequent season. Two strains may arise in season T + 2, namely the drift progeny

of strain a and that of strain b. We shall refer to these two new strains as a2 and b2

respectively and their immediate ancestors (from season T +1) as a1 and b1. To keep the

argument simple we assume that both lineages will produce drift variants that differ by the

same amount as that observed during the normal drift process. Similar to our discussion

in the previous section we assume that cross-immunity to the strains is determined by the

number of mutations (or drift events) by which the immunizing and challenging strains

differ, see Figure 5.

To describe the cross-immunity structure at the onset of season T + 2, we need to
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Figure 4: The outcome of introducing second viral lineage originating from the same
ancestor as the epidemic strain. Establishment depends on v the fraction of the host
population that can be infected twice in the same season, the reproduction number ρ,
and the width of the cross-immune protection α. In the second year after the introduction
of a new lineage the outcome may depend on the sequence in which the two strains arrive.
Above the full curve strain b can establish during the first season after the mutation.
In the shaded area between the full and the broken lines the b strain will eliminate the
a-strain if it arrives to the population earlier than the a strain in the subsequent season,
T + 2. If the a strain arrives first, the b-strain can still establish.

determine the size of the epidemics in season T +1. Since the a1-epidemic occurred prior

to the arrival of the b1-strain, the size of the a1-epidemic is the equilibrium size (1−φ) of

the drift epidemics given by equation (9). The potential infectivity p1 of the b1-strain is

given by equation (7) and ψ the fraction of those hosts that could but did not get infected
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a0 a1 a2

b1 b2

Figure 5: Relationship between the strains. An arrow goes from ancestor to drift-offspring.
Cross-immunity is assumed to depend on the number of steps between the two strains in
question.

Symbol Infection in Size of class Immunity Immunity
season T + 1 at onset of T + 2 a2 b2

sk(ab) a1 b1 v(1− ψ)(1− φ)sk τ1 τ1
sk(a0) a1 0 (vψ + (1− v))(1− φ)sk τ1 min{ τ3, τk+1 }
sk(0b) 0 b1 (1− ψ)φsk min{ τ3, τk+1 } τ1
sk(00) 0 0 ψφsk τk+1 τk+1

Table 1: Immunity classes present at the onset of season T + 2 when in season T + 1
strains a1 and b1 have both produced an epidemic affecting the fraction 1−φ respectively
1 − ψ of the available host population. Here sk is the fraction of the host population
whose last infection prior to season T + 1 occurred k season earlier.

by the b1 strain is therefore given by

logψ + ρp1(1− ψ) = 0.

The resulting cross-immunity structure is now determined in Table 1.

Two distinct scenarios may occur in season T + 2 depending on which of the drift-

strains a2 and b2 that arrive first.

If the a2−strain is the first virus that enters the population it will give rise to an

epidemic provided that the threshold condition

1 < ρq2 = ρ
∞

∑

k=1

τ1sk(ab) + τ1sk(a0) + min{τ3, τk+1}sk(0b) + τk+1sk(00). (8)
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holds. Our numerical investigations of the threshold condition suggest that the threshold-

condition is satisfied for all parameter values that allow the b1-strain to produce an

epidemic in the previous season. It appears that the cross-immunity produced by the

b1-strain is in fact so insignificant that it does not affect the outcome of the a2-epidemic.

If the b2-strain subsequently arrives to the population it will meet transmission conditions

that are better than those experienced by the b1-strain: the a2-epidemic is slightly smaller

and the cross-protection conferred by a2-infections towards the b2-strain is less effective

than a1 versus b1 since a2 and b2 differ by four steps while a1 and b1 differ only by two

(Fig. 5). Thus the b2-strain will establish and the splitting of the flu quasi species into

two distinct lineages is completed.

The effect of early arrival of the b-strain in season T + 2 could differ significantly

from the previous scenario. Since the b1-epidemic is small due to cross-immunity and

temporary protection conferred by the a1-epidemic, most of the population will not have

significant cross-protection against the b2-strain and consequently this strain may produce

a large epidemic, which in turn may prevent an a2-epidemic later in the season.

To determine the size (1− ψ2) of the b2 epidemic, we first determine p2 the potential

infectivity of the strain. Consulting Table 1, we find that

p2 =
∞

∑

k=1

τ1sk(ab) + min{τ3, τk+1}sk(a0) + τ1sk(0b) + τk+1sk(00),

such that the fraction of hosts that escape infection in the b2 epidemic is the solution to

logψ2 + ρp2(1− ψ2) = 0.

The b2−epidemic affects the epidemic threshold for a subsequent a2-epidemic in two ways

since it protects the fraction 1 − v of those infected from further infection throughout

the season and in addition it confers extra cross-immunity to hosts who had not been

infected for at least 4 seasons. Numerical investigations indicate that the latter effect
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is insignificant and taking into account only the suppression of a2 that is caused by the

temporary immunity we find the approximate threshold condition

1 < ρq2(1− ψ2 + (1− v)ψ2) = ρq2(1− vψ2),

where q2 is the potential infectivity of strain a2 if it had arrived prior to the b2-epidemic.

The shaded region of Figure 4 shows the parameters for which the first generation of

the b-lineage can invade and its progeny can suppress the a-lineage if it is the first strain

to arrive in the subsequent season.

5 Discussion

Figures 3 and 4 summarize the conditions under which cross-immunity can prevent the

establishment of a second drift-mutant within the same epidemic season. For long lasting

cross-protection (α ≈ 1) and small reproduction number ρ, permanent cross-immunity

provides sufficient herd immunity to exclude a second invader. For more realistic durations

of cross-protection and larger values of ρ, cross-immunity alone cannot prevent branching

events and suppression of the second mutant occurs only if a fraction 1−v of those infected

obtain a temporary general immunity prohibiting reinfection by other strains within the

same epidemic season. Since the empirical support for the existence of a general immune

protection is rather weak, we expect that its effect must be small, perhaps on the order of

1− v ≈ 5− 20% suggesting that the parameter values for influenza must lie in the upper

left hand corner of Figure 4. As ρ increases and α decreases a higher level of temporary

immunity is required to exclude branching.

Since ρ denotes the reproduction number in an immunologically naive population, the

quantity cannot be observed directly during drift periods. Estimates based on the first

pandemic after a shift suggests that ρ ≈ 2− 4 for all three subtypes of influenza A (Mills

et al., 2004; Spicer and Lawrence, 1984). For such values of ρmoderate levels of permanent
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and temporary cross-immunity can explain the lack of branches in the flu tree. However,

the first viral strains arising after an antigenic shift may have uncharacteristically low

transmissibility. Bailey’s (1986) analysis of the 1965 epidemic in Leningrad gives ρ ≈ 7.5

with 75% of the population unavailable for infection for an influenza strain occurring more

than a decade after the last shift. Thus a higher level of cross-immunity may be necessary

to explain the regular virus drift process.

Hay et al. (2001) recently reviewed the observed evolution of the three influenza drift-

lines that circulate in the human population: the Hong Kong subtype, A/H3N2; the

Russian subtype, A/H1N1; and the B type. The A/H3N2 influenza exhibits the most

slender tree and at any given time little genetic and antigenic variation is observed among

the strains collected worldwide. The Russian A/H1N1 and the B influenza both have more

branched trees with cocirculation of antigenically distinct strains and both influenzaes

seems to have split into two successful lineages: B-influenza branched about 25 years ago

into the Victoria and the Yamagata lines and the A/H1N1 influenza branched in the mid

90’es into the Bayern and the Beijing lines.

It is unclear if differences among influenza (sub-)types in the reproduction number ρ

or the width of the cross-immunity α can explain these observations. However, the spatial

distribution of the two influenza B lines (and to a lesser extend also that of the lines of

A/H1N1) suggests that geographical isolation may be involved in the branching events as

well. Thus the ability of the virus to move successfully between continents may be crucial

for the branching process.

While the assumption of homogeneous mixing seems to be critical for our conclusions,

we have found that a number of other assumptions may be altered without significantly

affecting our findings. Branching conditions are not changed qualitatively if for example

cross-immunity acts by reducing susceptibility to reinfection rather than the ability to

spread the disease, see Figure 6. For abrupt decays of cross-immunity the model becomes
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Figure 6: The outcome of introducing a second viral lineage originating from the same
ancestor as in Figure 4 but for the case where cross-immunity acts by reducing suscepti-
bility with a factor σk = (k/n)

m for k < n while σk = 1 for k ≥ n. The factor m controls
how significantly cross-immunity acts during the first 1–2 seasons after infection. Strong
cross-immunity for a few seasons significantly reduces the chance of branching m = 2
(full line), m = 3 broken line. For small ρ and small width of cross-immunity (n = 4)
the drift-equilibrium is unstable and the branching condition varies among seasons (not
shown).

considerably more complicated and the drift process may lead to regular or irregular

oscillations in the annual disease prevalence (Andreasen, 2003). Still our numerical in-

vestigations show that our qualitative conclusion holds, with the modification that the

invasion threshold may vary over time making branching likely in some seasons and un-

likely in other seasons. Similar observations apply to simulations where ρ is varied among

seasons to resemble the jumps in cross-immunity over time that has been observed (Smith

et al., 2004).

If cross-immunity is almost but not quite strong enough to prevent the establishment of
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a second mutant and general temporary protection is present, then the mutant strain will

cause a minor epidemic in its first season rendering the host population highly susceptible

to its progeny in the subsequent season. In fact if the invader’s progeny starts its epidemic

before the resident lineage, then the mutant type may give rise to a large epidemic so that

the general temporary immunity caused by this epidemic excludes the off-spring from the

resident lineage resulting in what would be observed as a large jump in drift type. This

phenomenon could explain the occurrence of so-called ’herald waves’ where next seasons

main strain appears in low frequency at the end of the previous season (Glezen et al.,

1982) suggesting that herald waves should be associated with large jumps in immunity

type and should occur most frequently in influenzaes with branched trees.

Recent studies of the population genetics of influenza based on the whole genome show

that influenza is considerably more polymorphic than previously thought in particular in

its internal structures and that reassortment may generate at least some of the novel

viral variants (Holmes et al., 2005). These findings question our interpretation of the

relatedness among strains as solely characterized by amino-acid differences in the HA-gene

but not the relatednesses themselves as they may be seen as a schematic representation

of the observed cross-reactivity.

Our description of influenza drift describes the hypothesis that viable drift variants

appear at a high rate and that immuno-selection subsequently weed-out all but a single

successful strain. The alternative explanation is that drift is a mutation or recombination

limited process where the resident strain would circulate until an immunologically deviat-

ing mutant or recombinant establishes; the new strain would then suppress the previous

strain. In this scenario the lack of branches would reflect how rare such viable strains

are. While this hypothesis certainly deserves more attention, we feel that it is a less likely

explanation of drift selection because the immuno-suppression caused by the new type

appears to be rather small compared to the ”self-suppression” caused by the epidemic
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of the original strain itself. To quantify the hypothesis of mutation limitation one would

need a better (possible stochastic) description of strain elimination than the one presented

here.
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Appendix. Existence and stability of the internal drift

equilibrium

The season-to-season dynamics of the drift process is determined by the map

F (q) = 1− α + αφq,

where φ, 0 < φ ≤ 1 is the solution to equation (5). First note that if q = F (q) is an

equilibrium value, then the corresponding φ and q must solve the equilibrium condition

as well as equation (5). After elimination of q, we find that φ must satisfy the equation

G(φ) = log φ+ ρ
1− α
1− αφ(1− φ) = 0, (9)

and conversely if φ solves the equation G(φ) = 0 then φ corresponds to an equilibrium.

Using the method of Andreasen (2003) we will now show that G has a unique zero

in the interval (0, 1) if ρ > 1 and none if ρ < 1. To determine the roots of G(φ) = 0,

Andreasen (2003) observes that G has the following properties

1. G(1) = 0;

2. G(0+) = −∞;

24



3. G(φ)/(1− φ) is increasing on the interval (0, 1);

4. G′(1) = 1− ρ.

If ρ > 1, properties 1) and 4) shows that G is positive to the left of φ = 1, and from

property 2) we conclude that G has a zero in the interval (0, 1). Property 3) now shows

that this zero must be unique. If ρ < 1, the function G is negative to the left of φ = 1 and

consequently it must have an even number of zeroes on the interval (0, 1) and by property

3) we conclude that there are no zeroes. Since φ uniquely determines the equilibrium, we

conclude that there exists a unique internal equilibrium when ρ > 1 and none if ρ < 1.

The stability of the internal equilibrium q is determined by the magnitude of the

Jacobian

DF (q) = αφ+ αqφ′,

where φ and φ′ are evaluated at the equilibrium. By implicit differentiation of equation

(5) we find that

φ′ =
ρ(1− φ)
ρq − 1/φ.

Using (5) to eliminate ρq gives

DF (q) = αφ+ α
log φ

log φ

1−φ
+ 1

φ

= −α φ− 1− log φ
1/φ− 1 + log φ.

The elementary inequality x−1− log x > 0 applied to numerator and denominator shows

that the fraction is positive such that DF (q) < 0. Finally we observe that the difference

between the numerator and the denominator is

f(φ) = (φ− 1− log φ)− (φ−1 − 1 + log φ).

Since f(1) = 0 and f ′(φ) = (1 − φ−1)2 > 0 we conclude that f < 0 on the interval (0, 1)

such that the fraction numerically is less that unity, showing that 0 > DF (q) > −α > −1.

We conclude that the internal equilibrium is always stable when it exists.
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The observations in this appendix simplify considerably the subsequent analysis. The

fact that equation (9) establishes a one-to-one correspondence between ρ > 1 and φ the

faction of host that escape infection at equilibrium allows us to use φ rather than ρ as

our basic parameter thus obtaining explicit analytic expressions for most of the curves we

show.

Figure 3 showing the minimal duration of cross-immunity that can inhibit branching

the tree in the absence of temporary cross-protection, is obtained by setting p1 = 1/ρ and

v = 1 in equation (7), and combining with the equilibrium condition

q = 1− α + αφq (10)

plus the definition of φ in equation (5). After some algebra one finds that

α =
1

φ

√

1

log φ
+

1

1− φ,

and

ρ =
(1− αφ)(− log φ)
(1− α)(1− φ) .

The curve in Figure 3 is now parametrized by φ, 0 < φ < 1. In particular notice that the

smallest α that can inhibit branching for any ρ is given by

lim
φ→1

α(φ) = 1/
√
2.

Similarly the condition for invasion of the b-strain shown in Figure 4 can be determined

as a parametric curve of the form (ρ(φ), v(φ)), where ρ(φ) is given above while v(φ) is

found by setting the left hand-side of inequality (7) equal 1/ρ, solving for v, and expressing

q and ρ in terms of φ using equation (10).
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