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The Evolution and Ecology Program at IIASA fosters the devel-
opment of new mathematical and conceptual techniques for un-
derstanding the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Evolution and Ecology Program
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.
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Evolutionary Predictions Should be Based on Individual-Level Traits

Claus Rueffler1,2, Martijn Egas3 and Johan A. J. Metz1,4,5

ABSTRACT

A recent series of theoretical studies have analyzed the evolution of habitat special-

ization using either the logistic or the Ricker equation. These studies have implemented

evolutionary change directly in population-level parameters such as habitat-specific in-

trinsic growth rates r or carrying capacities K. This approach is a shortcut to a more

detailed analysis where evolutionary change is studied in underlying morphological,

physiological or behavioral traits at the level of the individual that contribute to r or K.

Here we describe two pitfalls that can occur when such a shortcut is employed. Firstly,

population-level parameters that appear as independent variables in a population dy-

namical model might not be independent when derived from processes at the individual

level. Secondly, patterns of covariation between individual-level traits are usually not

conserved when mapped to the level of demographic parameters. Nonlinear mappings

constrain the curvature of trade-offs that can sensibly be assumed at the population

level. To illustrate these results we derive a two-habitat version of the logistic and the

Ricker equation from individual-level processes and compare the evolutionary dynamics

of habitat-specific carrying capacities with those of underlying individual-level traits

contributing to the carrying capacities. Finally, we sketch how our viewpoint affects

the results of earlier theoretical studies.

Subject headings: development, logistic equation, optimization, Ricker equation, spe-

cialization, trade-off
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Introduction

Long term evolution by mutation and selection is largely driven by invasion of novel genotypes

into resident populations. Invasion is a population dynamical process and, when evolution is stud-

ied by means of mathematical models, therefore has to be inferred from a population dynamical

model. In the recent literature several studies have appeared that analyze the evolution of habitat

specialization using either the Ricker equation (Wilson and Yoshimura 1994; Egas et al. 2004) or

the logistic equation (Parvinen and Egas 2004; de Mazancourt and Dieckmann 2004) to describe

habitat-specific population growth. In these models habitat specialization is subject to a trade-

off, such that a high value in the carrying capacity or the intrinsic growth rate in one habitat is

bought at the expense of a low carrying capacity or growth rate in the other habitat. Evolution

and coexistence are then studied by assuming variation in the degree of habitat-specialization in

terms of either r or K. These parameters have an interpretation only at the level of populations

while mutations causing evolutionary change occur at the level of the individual. Therefore the

models mentioned above employ a shortcut because a description of how variation at the level of the

individual is linked to variation in population-level parameters is skipped. Such a shortcut is only

permissible when the assumed patterns of variation at the level of the demographic parameters can

be derived from variation in underlying individual-level traits, an issue that can only be evaluated

with models that are based on an explicit mapping from processes at the level of individuals to

population-level parameters.

Although our study is motivated by the specific problem introduced above, the issue at hand

is of a much more general nature. Genetic variation occurs at the level of DNA sequences and ulti-

mately affects the make-up of a population. The step from individual sequences to population-level

characteristics can be described by a cascade of mappings. Genotypes are mapped to enzymes and

their regulation. During development these characteristics might be mapped to, e.g., morphomet-

rical properties of the beak of a bird, which determine its handling times for different seeds, which

determines energy uptake, which determines offspring production, which determines population

growth rate. The general question then becomes how patterns of variation and covariation at one

level are mapped to the next level.

The aim of this paper is to show how an explicit mapping from individual-level traits to

population-level parameters can help us to understand how evolution is likely to work by informing

us about how patterns of variation and covariation at lower levels can constrain resulting patterns

of variation at higher levels. In the following section we discuss two pitfalls that con occur when

an explicit description of the mapping from individual-level traits to demographic parameters is

skipped. We then continue by illustrating these issues by means of two examples and conclude by

sketching how our viewpoint affects the results of the above mentioned studies.



– 3 –

Population-Level Parameters Derive From Underlying Traits at the Level of the

Individual

In this section we use the logistic equation to illustrate two separate issues that emerge when

patterns of variation and covariation at the level of population-level demographic parameters are

derived from variation in underlying individual-level traits.

The logistic equation is given by

1

N

dN

dt
= r

(

1 −
N

K

)

, (1)

where N denotes population density, r the intrinsic rate of increase and K the carrying capacity.

The logistic equation is widely used to describe density-dependent population growth of a single

species with only two parameters. The fact that r and K do not have an interpretation at the

level of the individual has triggered a series of derivations from first principles at the level of the

individual. Such derivations either assume density dependence in the birth rate b (MacArthur

(1972, p. 56), Schoener (1973), Edelstein-Keshet (1988, p. 119), see also Kooi et al. (1998)) or in

the death rate d (Gyllenberg 2005). For derivations that do not describe the dynamics of individuals

but the fraction of either inhabited patches in a meta-population or of infected individuals in a

population of susceptible and infected individuals see Hanski (1999, p. 56) and Diekmann and

Heesterbeek (2000, p. 212), respectively. The derivations that assume a density-dependent birth

rate have a limited scope because they predict a negative birth rate when the population size passes

some threshold and we do not consider these derivations any further. All derivations that assume

a density-dependent death rate implement the idea that the death rate is linearly increasing with

population density:
1

N

dN

dt
= b − (d + αN) = (b − d)

(

1 −
α

b − d
N

)

, (2)

where the biological interpretation of the positive proportionality constant α depends on the specific

derivation. From comparing equation (2) with equation (1) we see that r = b−d and K = (b−d)/α.

Based on these derivations two observations can be made. Firstly, K depends linearly on

those traits that underly r and any variation that affects r causes K to vary proportionally. Thus,

seemingly independent parameters at one level are not necessarily independent when they are

derived from an underlying level. A conclusion from the above derivation is that models that use

the logistic equation as a building block and that assume variation in r while K is kept constant

(e.g. Parvinen and Egas 2004) do not have an interpretation at the level of the individual. We do

not claim that it is impossible to construct a derivation of the logistic equation from first principles

such that a individual-level trait exists that contributes to r but not to K. But even in this case

independent variation of r can only be motivated if genetic variation is likely to contribute only to

those traits that do not affect K.

Secondly, K can change independently of r only through a change in α. This parameter is

inversely related to K, hence, any change in α affects K in a non-linear way. This observation
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becomes important when the evolutionary dynamics of correlated traits is studied. Assume a

situation where an organism occupies two different habitats that require different adaptations and

that population growth in each habitat can be described by the logistic equation (eq. 2). In

this situation it is likely that a constraint exists that prevents a genotype from being optimally

adapted to both habitats simultaneously. Here we adopt the viewpoint that such a constraint can

be visualized as the outer boundary of the set of possible phenotypes to which we will refer as

trade-off curve (fig. 1). Assume further that adaptations to the habitats occur in the traits α1 and

α2. Since population growth is increasing with decreasing values of αi (eq. 2), selection will push a

population’s trait distribution from high values of αi towards lower values until the trade-off is hit.

From then onward selection will keep the phenotype distribution close to the trade-off relative to

the mutational step size. Patterns of covariation within a population will then depend on the shape

of the outer boundary of the set of possible phenotypes and different trade-off curves correspond

to different such boundaries. Arnold (1992) refers to this scenario as the Charnov-Charlesworth

model for equilibrium genetic covariance for a single pair of traits (cf. Charnov 1989; Charlesworth

1990). The pattern of covariation in individual-level traits causes specific patterns of covariation

at the level of demographic parameters (fig. 1). In our example phenotypes are mapped from the

(α1, α2)-space to the (K1,K2)-space by (K1,K2) = ((b1 − d1)/α1, (b2 − d2)/α2). In the same way

we can map the trade-off curve from one level to the next. The result of this mapping is shown in

figure 1. Note that the phenotype distribution in the (K1,K2)-space lies below and to the left of

the trade-off because population growth is increasing with increasing values of Ki.

The important message from this example is that properties of the phenotype distribution

and the trade-off are not necessarily conserved when mapped from one level to the other. The

phenotypes indicated by the dots in the (α1, α2)-space in figure 1 show relative low values of αi

for both habitats. The corresponding trade-off is called “weak” because the habitat generalist

is only slightly inferior in each habitat when compared to the habitat specialists. On the other

hand, phenotypes in the (K1,K2)-space show relative low carrying capacities in both habitats. In

this case the the trade-off is called “strong” because habitat generalists are strongly inferior in

each habitat in terms of their carrying capacity when compared to the corresponding specialist.

From this observation two questions emerge. Firstly, can an a priori chosen curve for the trade-off

between K1 and K2 be derived from a curve in the underlying constraint that connects α1 and α2?

Secondly, assume that the answer to the first question is ‘yes’, how biologically plausible is it to

assume the type of curve for the trade-off between α1 and α2 that maps to the a priori chosen curve

for the trade-off between K1 and K2? In the following examples we will show that in some cases a

weak trade-off between habitat-specific carrying capacities cannot be derived from any underlying

trade-off and that in other cases specific curves for the trade-off at the higher level can only be

realized by assuming rather extreme curvatures for the trade-off at the underlying level.

Before we continue to illustrate our point we want to point out that the very same two obser-

vations can be made for the Ricker equation Nt+1/Nt = exp[r(1 − Nt/K)]. For derivations of the

Ricker equation from first principles see Royama (1992), Gatto (1993), Gurney and Nisbet (1998),
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Sumpter and Broomhead (2001), Thieme (2003), Geritz and Kisdi (2004), and Brännström and

Sumpter (2005).

Two Examples

We want to illustrate by means of two examples how patterns of covariation between de-

mographic parameters can be derived from an explicit model of individual-level processes that

contribute to the demographic parameters. Our examples are strongly inspired by the models of

Wilson and Yoshimura (1994), Egas et al. (2004), Parvinen and Egas (2004) and de Mazancourt and

Dieckmann (2004). In this section we develop a two-habitat version of the logistic and the Ricker

equation from first principles. This provides us with explicit expressions for the carrying capacity

in terms of individual-level traits. We then investigate how specific trade-off curvatures underlying

traits that contribute to carrying capacity affect the curvature of the resulting trade-off between

habitat specific carrying capacities. These results are shown in the following section. In the final

section before the discussion we show how evolutionary predictions can differ when evolutionary

change is directly assumed in the carrying capacities when compared to trade-offs in underlying

individual-level traits.

Continuous Time: Fast Migration Between Habitats

Assume that individuals migrate at a high rate between habitats and that travel time is

negligible. This means that the environment is fine-grained. Under the assumption that birth and

death rates are small compared to the migration rates, we calculate the probability for an individual

to be in habitat one, p1, or to be in habitat two, p2 = 1−p1 in appendix A. Furthermore, we assume

that birth and death processes are determined instantaneously, that is, whether an individual dies

or gives birth at a certain moment in time, purely depends on its current habitat. If population

growth within each habitat can be described by the logistic equation (eq. 1), then the population

dynamics is given by

dN

dt
= N

[

p1r1

(

1 −
p1N

K1

)

+ p2r2

(

1 −
p2N

K2

)]

, (3)

with ri and Ki the habitat-specific intrinsic growth rates and carrying capacities, respectively. The

dynamics has a single, nontrivial, stable equilibrium at

N̂ =
(p1r1 + p2r2)K1K2

p2
1
r1K2 + p2

2
r2K1

. (4)

In order to give the parameters ri and Ki an interpretation at the level of the individual, we

present in appendix A one possible derivation of equation (3) based on individual-level processes.

This derivation is inspired by Royama’s derivation of the Ricker equation (1992, pp. 144, see

following section). We assume that individuals die at some minimum rate when they can exploit a
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competition neighborhood of size a on their own. The size of this neighborhood is determined by

a variety of biological properties like the conversion efficiency of food into energy or the efficiency

with which resources are gathered. The minimum death rate increases incrementally by l, a positive

constant, with each additional conspecific that enters the competition neighborhood of the focal

individual. For a single habitat this mechanism yields

dN

dt
= N(b − d)

(

1 −
la

b − d
N

)

, (5)

where b and d are the density independent birth and death rate, respectively. Equation (5) cor-

responds to equation (2), but now the demographic parameters r and K have an interpretation

in terms of individual-level traits: r = b − d and K = (b − d)/la. This description holds for each

habitat so that ri = bi − di and Ki = (bi − di)/liai. If we insert these descriptions into equation

(3), we get the following two-habitat version:

dN

dt
= N

[

p1(b1 − d1)

(

1 −
l1a1

b1 − d1

p1N

)

+ p2(b2 − d2)

(

1 −
l2a2

b2 − d2

p2N

)]

. (6)

Discrete Time: Juvenile Dispersal

Here we assume that generations are discrete and non-overlapping. At birth individuals are

randomly distributed over two habitats with probabilities p1 and p2 = 1 − p1. These probabilities

are proportional to the relative size of the two habitats and independent of the habitat of birth. The

latter is the case either because of very effective dispersal or due to a fine-grained environment. Once

settled individuals stay within their habitat until death. In case of a fine-grained environment this

implies that organisms are sessile. If we assume that the population dynamics within each habitat

can be described by the Ricker equation (Ricker 1952), then population growth is given by:

Nt+1 = Nt

[

p1 exp

(

r1

(

1 −
p1Nt

K1

)

)

+ p2 exp

(

r2

(

1 −
p2Nt

K2

)

)]

. (7)

Only in case of symmetric parameter values r1 = r = r2,K1 = K = K2 and p1 = 0.5 = p2 can

we calculate the equilibrium population size analytically as N̂ = 2K. The population dynamics

of this case are well understood. The equilibrium N̂ = 2K is stable for r < 2, larger value of r

lead to cycles and eventually chaotic dynamics (May and Oster 1976). Here we restrict ourselves

to parameter values that produce stable equilibria.

In order to get an individual-level interpretation of equation (7) we again follow Royama

(1992, pp. 144). Royama assumes that the offspring number an individual produces, Rn, decreases

exponentially with the number of conspecifics n within a competition neighborhood of size a:

Rn = R0k
n. The sensitivity parameter k is a positive constant smaller than one. For the case that

individuals are Poisson distributed over the habitat, Royama (1992) shows that

Nt+1 = Nt exp

(

log R0

(

1 −
a(1 − k)

log R0

Nt

)

)

. (8)
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This is the Ricker equation where r = log R0 and K = log R0/(a(1 − k)). By combining equation

(8) with equation (7), we get a two-habitat version of the Ricker equation:

Nt+1 = Nt

[

p1 exp

(

log R01

(

1 −
a1(1 − k1)

log R01
p1Nt

)

)

+p2 exp

(

log R02

(

1 −
a2(1 − k2)

log R02
p2Nt

)

)

]

(9)

The Mapping of Trade-Offs

The preceding section provides us with an individual-based interpretation the population-level

parameters K1 and K2:

Ki =
bi − di

aili
ri = bi − di logistic equation (10)

Ki =
log R0i

ai(1 − ki)
ri = log R0i Ricker equation. (11)

We now investigate how a trade-off between the habitat specific carrying capacities can be

derived from a trade-off in traits at the level of the individual. Here we assume that mutational

change occurs for the size of the competition neighborhoods a1 and a2 and that these traits are

coupled by a trade-off, which can be written as a function a2(a1) with da2/da1 < 0. All other traits

are assumed to be fixed parameters. We choose a1 and a2 because they can, at least in principle,

be measured at the level of the individual and because they influence the carrying capacities in

the logistic and the Ricker equation in the same way, which facilitates a comparison between these

models. From now on we refer to a trade-off between a1 and a2 as a trade-off in a, and similarly,

to a trade-off between K1 and K2 as a trade-off in K.

Next we introduce specific trade-off parameterizations for a2(a1) and K2(K1). This allows us

to visualize how a trade-off in a maps onto a trade-off in K, or, vice versa, what trade-off in a is

implicitly assumed when a specific trade-off in K is chosen. Our parameterizations generalize the

trade-off function used by Egas et al. (2004) and Parvinen and Egas (2004).

a = (a1, a2) =
(

a1max − a1var(1 − θ)
1

z , a2max − a2varθ
1

z

)

(12)

K = (K1,K2) =
(

K1min + K1var(1 − θ)
1

z ,K2min + K2varθ
1

z

)

(13)

Here a1max, a1var, a2max, a2var,K1min,K1var,K2min,K2var are positive constants determining the range

of possible parameter values while the positive parameter z determines the curvature of the trade-off

curve.

Note the following difference between the two trade-off parameterizations. In equation (12)
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θ = 0 corresponds to a low value of a1 and to a high value of a2. In equation (13) the opposite holds

true, θ = 0 corresponds to a high value of K1 and to a low value of K2. Since population growth is

decreasing in ai (eq. 6 and eq. 9) but increasing in Ki (eq. 3 and eq. 7) this means that in both cases

θ = 0 corresponds to a specialist for habitat one while θ = 1 corresponds to a specialist for habitat

two. A similar pattern applies to the curvature of the trade-off and the corresponding curvature

parameter z (fig. 2). Values of z < 1 correspond to a concave trade-off in a (d2a2/da2
1 < 0) and

to a convex trade-off in K (d2K2/dK2
1 > 0). The opposite pattern holds for z > 1. Hence, these

parameterizations are such that z < 1 corresponds to a strong trade-off and z > 1 corresponds to

a weak trade-off in both a and K. This terminology is motivated by the following observation.

In case of symmetric values for aimax, aivar,Kimin, and Kivar all phenotypes that lie on a linear

trade-off (z = 1) have exactly the same value for a and K, respectively, when averaged over both

habitats. On a convex trade-off a generalist has a lower competition neighborhood size (eq. 12)

and a lower carrying capacity (eq. 13) than a specialist when averaged over both habitats. Such a

generalist is superior over the specialists in terms of its average competition neighborhood size but

inferior in terms of its average carrying capacity. The opposite pattern holds for concave trade-offs.

How does the function a2(a1) mediates the trade-off in K? To see this we have to combine

equation (10) and (12). The result is shown in figure 2a&b. Note that the curvature of the derived

trade-off in K can change from convex to concave along a single trade-off curve (see fig. 2b, right

panel). In the following we refer to the curvature around the generalist’s trait with θ = 0.5. In

figure 2a the trait space encompasses values of ai between 0.1 and 0.2 (aimax = 0.2, aivar = 0.1)

while in figure 2b the trait space encompasses values between 0.1 and 1 (aimax = 1, aivar = 0.9). In

the first case all trade-offs in a corresponding to z < 2 are mapped into a strong trade-off in K.

In other words, for trade-offs in a with 1 < z < 2, that is, for moderately weak trade-offs, their

weakness is not inherited. In the second case, only extremely weak trade-offs in a corresponding

to z >≈ 12 are mapped onto weak trade-offs in K. For trade-offs with 1 < z < 12, the weakness

is not inherited. Hence, weak trade-offs in a are mapped to strong trade-offs in K for z-values

below some threshold. In appendix B we show that this threshold increases with increasing values

of aivar. In the limit of aivar = 0 the threshold becomes one and the curvature property is always

inherited. In the limit of aivar = ∞ the threshold becomes infinity, hence, any trade-off in a, weak

or strong, is mapped to a strong trade-off in K.

Models assuming a trade-off directly at the level of the carrying capacities make an implicit

assumption about the shape of the trade-off in an individual-level trait. This implicit assumption

can be laid bare by applying the inverse mapping, from the trade-off in the carrying capacities K

to the trade-off in a. The result of this exercise is shown in figure 2c&d.

Evolutionary Dynamics

Analyses of long term evolution should be based on an invasion argument: Can a rare mutant

type increase in frequency or is it doomed to extinction? This is determined by its invasion fitness
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s, its long term average growth rate when rare in an environment determined by a given resident

type (e.g., Metz et al. 1992). If s > 0, then such a mutant has a positive probability to invade

the resident population and if s < 0 such a mutant will disappear. Under certain conditions an

invasion analysis is equivalent to solving an optimization criterion (Metz et al. 1996). The quantity

that is maximized by evolution cannot be chosen a priori but has to be derived from an invasion

argument (Mylius and Diekmann 1995). For our examples we are able to show that equilibrium

population size N̂ serves as an optimization criterion. Populations with trait values that correspond

to a higher equilibrium population size N̂ replace populations with lower equilibrium population

size and and trait values that maximize population size are potential endpoints of evolution. These

trait values are both attractors of the evolutionary dynamics and are uninvadable by individuals

with other trait values. Eshel (1983) coined the term continuously stable strategies (CSSs) for such

trait values. Trait values that correspond to minima of N̂ are evolutionary repellors from where

the evolutionary dynamics moves away. The existence of an optimization criterion allows us to

visualize the evolutionary process using Levins’ fitness set approach (Levins 1962; Rueffler et al.

2004). In this graphical method the trade-off curve is plotted on top of the contour lines of the

fitness landscape given by N̂ (fig. 4). Evolutionary endpoints are those phenotypes on the trade-off

curve that lie on the highest fitness contour line.

Fast Migration Between Habitats

First we consider the case where evolutionary change is assumed to directly affect K1 and K2.

Invasion fitness of a mutant type K′ = (K ′

1,K
′

2) in a resident population with carrying capacities

K = (K1,K2) can be derived from equation (3) as

s(K′,K) = p1r1 + p2r2 − N̂(K)

(

p2
1r1

K ′

1

+
p2
2r2

K ′

2

)

. (14)

Equation (14) is obviously monotonically decreasing in N̂ (eq. 4). As mentioned above, this is a

sufficient condition for the equilibrium population size to be an optimization criterion (Mylius and

Diekmann 1995). Figure 4a shows the numerically calculated location of the minima and maxima

of the optimization criterion as a function of the curvature parameter z for one specific set of

symmetric parameter values. For weak trade-offs the habitat generalist with K1 = K2 maximizes

equilibrium population size N̂ and is therefore a CSS. The habitat generalist remains to be a CSS

for moderately strong trade-offs and it is only for very strong trade-offs with z < 0.35 that the

generalist turns into an evolutionary repellor (fig. 4).

In appendix C we show that whether the habitat generalist with K1 = K2 constitutes a

minimum or a maximum of N̂ also depends on the parameters Kimin and Kivar, i.e., on the range of

possible parameter values for Ki. Small values of Kimin favor the generalist even for z < 1 (strong

trade-offs) while with small values of Kivar a situation is approached where weak trade-offs select

for a generalist while strong trade-offs select for specialists.

Does the evolutionary dynamics change when we implement evolutionary change in individual-



– 10 –

level traits? Invasion fitness of a rare mutant type with competition neighborhood size a′ = (a′1, a
′

2)

in a population with a = (a1, a2) can be derived from equation (6) as

s(a′,a) = p1r1 + p2r2 − N̂(a)(p2
1a

′

1l1 + p2
2a

′

2l2), (15)

where ri = bi − di. As in the previous version, fitness is a monotonically decreasing function of

N̂ , which therefore qualifies as a optimization criterion. From equation (4) we can derive that

N̂ = (p1r1 + p2r2)/(p
2
1a1l1 + p2

2a2l2). Differentiation of N̂ reveals that critical points are given by

da2/da1 = −p2
1l1/(p

2
2l2) and that the sign of the second derivative equals the sign of −d2a2/da2

1.

Hence, critical points of N̂ are maxima for z > 1 (weak trade-offs) and minima for z < 1 (strong

trade-offs). For z = 1 all trait combinations are selectively neutral. Figure 4b depicts this results

for the case of symmetric parameter values. A comparison of figure 3a and 3b shows that the

range of z-values that favor habitat generalists over specialists is considerably smaller when the

trade-off is implemented between a1 and a2. This indicates that in this case the shortcut of

directly implementing a trade-off in demographic parameters overestimates the likelihood of finding

generalists.

It is illuminating to plot these results in terms of fitness sets (Levins 1962). The fitness land-

scape, that is, the optimization criterion, can be plotted either as a function of the demographic

parameters K1 and K2 (fig. 4a&c) or as a function of the underlying individual-level traits a1 and

a2 (fig. 4b). In the first case the contours of the fitness landscape are given by those values of K1

and K2 that result in equal values c of the optimization criterion N̂ . These Ki-values lie on convex

hyperbolas given by K2 = cp2
2r2K1/(K1 − cp2

1r1). In the second case the contours of the fitness

landscape are straight lines with a negative slope given by a2 = (1 − cp2
1a1l1)/(cp

2
2l2). In a next

step we plot different trade-off curves on top of the contour plot of the fitness landscape. In figure

4a this is done for trade-offs in K and in 4b for trade-offs in a. In figure 4c this is done again

for a trade-off in K, but now the trade-off is derived from the underlying trade-off in a. From

figure 4a we see that fitness landscapes with convex fitness contours favor generalists and it is only

for very strong trade-offs (e.g., z = 1/4) that specialists do better (cf. fig. 3a). In the presence

of a fitness landscape with linear contours (fig. 4b) weak trade-offs favor generalists and strong

trade-offs favor specialists (cf. fig. 3b). Figure 4c shows that optimization in terms of K and a are

equivalent approaches as long as the trade-off in K is derived from an underlying trade-off in a. In

both case the trade-off curve given by z = 1 exactly follows a contour line of the fitness landscape

which accounts for the evolutionary neutrality of all traits.

Juvenile Dispersal

Fitness in discrete time models can be expressed more easily as w = exp(s). If w > 1, a

mutant is able to invade while a mutant with w < 1 cannot invade. As in the previous section

we first perform an evolutionary analysis under the assumption that K1 and K2 are traded-off

directly followed by an analysis where evolutionary change is implemented in the size of the two

competition neighborhoods a1 and a2. In both cases the fitness function is monotonically decreasing

in N̂ , which therefore again qualifies as an optimization criterion (Mylius and Diekmann 1995).



– 11 –

Unfortunately, we can only calculate N̂ analytically for the case of symmetric parameter values

and a consumer that is equally specialized for both habitats. Hence, the maximization of N̂ has to

be done numerically.

For the first case where the trade-off is directly assumed in K we find the following fitness

function:

w(K ′,K) = p1 exp

(

r1

(

1 −
p1N̂(K)

K ′

1

)

)

+ p2 exp

(

r2

(

1 −
p2N̂(K)

K ′

2

)

)

. (16)

Numerical analysis of the optimization criterion N̂ reveals a pitchfork bifurcation of θ-values that

correspond to extrema in N̂ (fig. 3c). For small values of z (strong trade-offs) the generalist is an

evolutionary repellor. The generalist turns into a CSS when some threshold value of z is passed. For

r < 2, i.e., for stable population dynamical equilibria, we prove in appendix C that this threshold

always has a value smaller than one.

In the second case where the trade-off is assumed between the underlying traits a1 and a2

invasion fitness is given by

w(a′,a) = p1 exp

[

r1

(

1 −
p1N̂(a)a′1(1 − k1)

r1

)

]

+ p2 exp

[

r2

(

1 −
p2N̂(a)a′2(1 − k2)

r2

)

]

. (17)

By numerical calculations we find again a pitchfork bifurcation (fig. 3d). For this case we can

prove (app. C) that the change from a repelling generalist strategy to a generalist which is a CSS

takes place for some z-value larger than one (for a weak trade-off). In appendix C we also show

that the bifurcation point moves towards higher z-values with increasing population growth rate r.

This means that fast growth favors habitat specialization. Figure 4d-f illustrate these results with

the use of fitness sets. A comparison of figure 3c and 3d shows that our approach of implementing

the trade-off at the individual level results in a even smaller range of z-values that favor habitat

generalists than in the previous example.

Discussion

Genetic variation is the fuel for evolutionary change. This variation occurs at the level of

DNA sequences. The direction of evolutionary change depends on the available genetic variation

and on the per capita growth rate of the different genotypes in the environment where selection

takes place. A complete understanding of the evolutionary process would require knowledge of

how variation at the level of the DNA sequence is mapped through the process of development

to variation in demographic parameters. In most cases we are far away from such a detailed

knowledge and in order to deal with this difficulty theoretical biologists have followed either of

two different roads. Theoretical population geneticists study variation in allele space and assume

an extremely simplified genotype-phenotype map by assigning fixed fitness values to alleles. The

other approach neglects the genotype-phenotype map altogether and studies the effect of variation

directly at the level of phenotypes (optimization models, quantitative genetics, game theory, and
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adaptive dynamics). Either approach is a shortcut and it is important to develop an understanding

of the possible consequences of such shortcuts. In this paper we show how patterns of variation

and covariation at one level are mapped to a higher level and pinpoint two pitfalls that can occur

when variation at a higher level is not derived from variation in underlying traits.

Our paper is motivated by a recent series of models where habitat specific population growth is

described by either the logistic equation (Parvinen and Egas 2004; de Mazancourt and Dieckmann

2004) or the Ricker equation (Wilson and Yoshimura 1994; Egas et al. 2004). In these models

variation is implemented in habitat specific growth rates or carrying capacities. Assuming evo-

lutionary change in these population-level parameters might not be admissible for at least two

reasons. Firstly, population-level parameters that appear as independent variables in a population

dynamical equation might not be independent when derived from processes at the individual level.

Such is the case with r and K in both the logistic and the Ricker equation. In these growth models

K appears to be linearly dependent on r. Consequently, variation in r alone cannot be derived

from variation in an underlying trait. Independence of r and K should only be assumed based on a

derivation showing how different independent traits at the individual level can affect the different

demographic parameters separately. Kuno (1991), Olson (1992), and Berryman (1992) all discuss

why the logistic equation is likely to be a bad candidate to find such a derivation. Secondly, trade-

offs between population-level parameters originate from correlations in underlying individual-level

traits. If the mapping from these traits to higher level parameters is nonlinear, then specific trade-

off curvatures are not inherited from one level to the next. By implementing a certain trade-off

curvature between population-level parameters the modeler makes an implicit assumption about

the nature of the trade-off at the individual-level. Because of the involved nonlinearity this assump-

tion might often be rather unrealistic and in some cases, as we have shown, a certain curvature

cannot be derived from an underlying trade-off at all.

The observation that, based on all derivations of the logistic equation and the Ricker equation

known to us, the carrying capacity increases linearly with intrinsic growth rate, has important con-

sequences for the theory of r- and K-selection. In the classical sense, as popularized by MacArthur

and Wilson (1967), Roughgarden (1971) and Charlesworth (1971), this theory states that variable

environments where population densities are regularly set back to low values, select genotypes with

high intrinsic growth rates while more stable environments select genotypes corresponding to high

equilibrium population densities. The influential paper by Roughgarden (1971) uses the logistic

equation to derive these predictions formally. In this model a trade-off is assumed: genotypes with a

high intrinsic growth rate correspond to a low carrying capacity and vice versa. This assumption is

clearly at odds with the viewpoint championed in this paper suggesting that r and K are positively

rather than negatively correlated. Thus, in models that are based on the logistic equation but where

the demographic parameters are derived from processes at the level of the individual, selection for

high growth rates result in a concomitant increase of the carrying capacity. This point has also

been made by Kuno (1991). That the theory of r- and K-selection in its narrow sense is flawed for

other reasons is known at least since the important paper by Matessi and Gatto (1984). They have
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shown that stable environments need not select the genotype corresponding to the highest carrying

capacity but rather select the genotype that can live on the fewest resources. These authors sug-

gest to use the terms r- and K-selection to refer to the conditions of selection (density independent

vs density dependent) rather than to the outcome of selection (r-maximization vs K-maximization).

Application to the Recent Literature

The ideas presented in this paper affect the results of a recent series of papers that study

the evolution of habitat specialization. In these models mutational change is assumed for habitat-

specific carrying capacities or intrinsic growth rates.

Wilson and Yoshimura (1994) have explored the scope for coexistence of two habitat specialists

and a habitat generalist as determined by their habitat specific carrying capacities in a model where

habitat specific growth is described by the Ricker equation. In their basic model version the carrying

capacity for a specialist is ten times higher in the habitat it is adapted to when compared to the

habitat it is not adapted to. This situation corresponds to our figure 2b&d, where the two specialists

are characterized by K = (1, 0.1) and K = (0.1, 1). The shape of the trade-off is determined by

the carrying capacities of the generalist. To cover trade-off relations from strong to weak, Wilson

and Yoshimura varied the carrying capacity of the generalist between 0.3 and 0.99. Wilson and

Yoshimura (1994) find that coexistence is possible for generalists ranging from K = (0.99, 0.99)

to K = (0.4, 0.4). According to our parameterization (see eq. [13]), these generalists correspond

to trade-offs in a that are parameterized by values between z = 617 (for K = (0.99, 0.99)) and

z = 3.8 (for K = (0.4, 0.4)). Hence, all these trade-offs correspond to very weak or extremely weak

trade-offs in a (cf. fig. 2d). Moderately weak, linear and strong trade-offs in a all correspond

to strong trade-offs in K (cf. fig. 2b) and do not allow for the coexistence of two specialists and

a generalist. From this viewpoint the scope for coexistence seems to be far more restricted than

suggested by Wilson and Yoshimura.

Egas et al. (2004) present a re-analysis of the model of Wilson and Yoshimura. In one version

of their model they assume that the habitat-specific carrying capacities can vary continuously

between zero and 100. A carrying capacity of zero corresponds to an infinitely large competition

neighborhood size with aimax = ∞ = aivar. In appendix B we prove that in this case any trade-off

in a is mapped into a strong trade-off in K. However, from the analysis in Egas et al. (2004) it

becomes clear that coexistence of two specialists and a generalists requires a weak trade-off in K in

all cases where environmental variability is not extremely high. This perspective therefore suggests

again that coexistence is far more restricted than it appears from the analysis of the authors.

Parvinen and Egas (2004) studied the evolution of habitat specialization in a metapopulation

model with two types of habitat and logistic growth within patches. Evolutionary change is assumed

in either habitat-specific intrinsic growth rates or carrying capacities. Currently no derivation of

the logistic equation known to us provides a mechanism that would allow to vary the intrinsic

growth rate while leaving the carrying capacities constant: in all published mechanisms known to
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us the latter is linearly dependent on the former. Hence, we lack an individual-based interpretation

of habitat specialization in terms of intrinsic growth rates.

The main purpose of a paper by de Mazancourt and Dieckmann (2004) is to extend Levins’

(1962) graphical fitness set approach to accommodate frequency-dependent selection. In order to

illustrate their methodology they analyze a model of one consumer feeding in two habitats. The

consumer grows logistically in each habitat and evolves in a trait that determines habitat-specific

carrying capacities. Evolution in the carrying capacities is assumed to be constrained by a trade-off

and in the specific case analyzed by de Mazancourt and Dieckmann (2004) the space of possible

carrying capacities ranges from 0 to 10. As mentioned above, no individual-based derivation of

the logistic equation is known to us that can produce a weak trade-off in K for this choice of

parameters. Since a weak trade-off is a prerequisite for evolutionary branching in their model,

this seems, at least from the viewpoint of individual-level traits, contrary to the statement of the

authors, a very unlikely outcome. We want to emphasize that our objection against the specific

example does not detract from the eminent suitability of their methodology for analyzing situations

where little knowledge is available on the mapping from individual-level traits to population-level

parameters. An analysis along their lines produces graphical conditions that a trade-off curve has

to fulfill for a specific outcome to be realized.

Ultimately the nature of variation at any given level is an empirical question and it might very

well be that in a certain species a pattern of variation is found that matches the assumed variation

in the above mentioned studies without that this pattern is derived from considerations at the

level of the individual. Therefore, theoretical studies of an a priori chosen pattern of variation in

population-level parameters without deriving it from an underlying level can still be useful. How-

ever, such a match would seem to be a lucky coincidence and should not form the basis of a research

program. Instead, we suggest the following approach. Evolutionary predictions should be derived

from models that assume evolutionary change at the level of individual-based traits. In order to

get a broader picture one should get a collection of different individual-based derivations. In a

second step one can classify the traits occurring in these derivations with respect to how variation

at this level is mapped to the level of demographic traits and therefore result in the same class of

evolutionary dynamics.

The Evolution of Resource Specialization

Finally we want to draw attention to the results of our evolutionary analysis as such. In

the face of trade-offs, theory predicts two qualitatively different evolutionary outcomes. Natural

selection can either lead towards an intermediate phenotype where the gain from improving one

trait is exactly balanced by the loss through the accompanying change in another trait or to an

extreme phenotype at the boundary of the trait space. The evolution of habitat specialization in

terms of the size of the interaction neighborhood a shows a marked difference in the continuous

and the discrete time model. In the continuous time model, where fast migration between habitats

is assumed, the generalist is selected for in case of weak trade-offs, while specialists are selected
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for in case of strong trade-offs. This scenario coincides with the intuition of many evolutionary

ecologists about the evolution of resource specialization (e.g., Benkman 1993; Robinson 2000) and

with Levins’ predictions for evolution in an environment stable in time but heterogeneous in space

(Levins 1962). By contrast, in the discrete time model, where juvenile dispersal and no migration is

assumed, specialists are also selected for in combination with weak trade-offs. This scenario shows

that Levins’ result does not hold generally but only when fitness is a linear function of the traits

considered evolvable.
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Appendix A: Fast Migration Between Habitats

The population dynamics of one consumer species exploiting two different habitats can be

described by the following system of coupled differential equations:

dN1

dt
= m12N2

A2

A1

− m21N1 + b1N1 − d1N1 (A1)

dN2

dt
= m21N1

A1

A2

− m12N2 + b2N2 − d2N2. (A2)

N1 and N2 denote the population density in habitat one and two, respectively. Individuals migrate

at rate mij from habitat j to habitat i. Absolute habitat size is denoted by Ai. In each habitat

individuals reproduce and die at the habitat-specific rates bi and di, respectively. If we assume that

migration rates are high in comparison to the birth and death rates, we can calculate the equilibrium

distribution of the population over the two habitats as N̂1 = N̂2A2m12/A1m21. Combining this

with n = A1N1 + A2N2, where n denotes the total population size, we find that p1 = A1N̂1/n̂ =

m12/(m21 + m12) and p2 = A2N̂2/n̂ = m21/(m21 + m12).

In order to write the model purely in terms of individual-level traits, we assume that the

habitat-specific death rates increase linearly with the number of competitors and that therefore

the realized rate of increase of a consumer with n competitors in its competition neighborhood of

size a is given by rn = b0 − (d0 + ln). Here l is a positive constant. It describes the sensitivity

to competition such that the sensitivity is increasing with increasing values of l. If we substitute

r0 for b0 − d0 we can rewrite the realized rate of increase as rn = r0 − ln. The expected rate of

increase is then given by

E[r] = r0 − l
∑

n

nP (n) = r0 − ln̄ = r0 − lNa = r0

(

1 −
laN

r0

)

, (A3)

i.e., K = r0/la.

Appendix B: Mapping of the Trade-Off

Consider a trade-off between a1 and a2 that can be described by the function a2(a1). This

trade-off curve is translated into a curve K2(K1) by the map K2(a2(a1(K1))). This map has to be

derived from equation (12) and (10) or (11). To study the curvature of the trade-off in K, we have

to differentiate K2(a2(a1(K1))) twice:

d2K2(a2(a1(K1)))

dK2
1

∝ 2
da2

da1

(

da2

da1

1

a2

−
1

a1

)

−
d2a2

da2
1

. (B1)

This gives us an expression for the shape of the trade-off in terms of the first two derivatives of

a2(a1). Further analytical results can be obtained for specific parameterizations of the trade-off
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curve. Here we choose equation (12) which can also be written as

1 =

(

a1max − a1

a1var

)z

+

(

a2max − a2

a2var

)z

. (B2)

We can derive the trade-off function a2(a1) by solving equation (B2) for a2. The first two derivatives

of this function can be simplified using equation (12) and equation(B2) to:

da2

da1

= −
(1 − θ)θ

1

z a2var

(1 − θ)
1

z θa1var

and
d2a2

da2
1

=
(1 − θ)θ

1

z a2var(z − 1)

(1 − θ)
2

z θ2a2
1var

. (B3)

Now we are able to simplify condition (B1) using equation (B3):

d2K2(a2(a1(K1)))

dK2
1

∝ 1 − z + 2

[

θ
a1var(1 − θ)

1

z

a1max − a1var(1 − θ)
1

z

+ (1 − θ)
a2varθ

1

z

a2max − a2varθ
1

z

]

(B4)

This condition depends on the magnitude of z relative to 1 plus two times some complicated

expression in brackets. If both aivar are small, then the term in brackets is small as well, and the

sign of the second derivative will be determined by the difference between 1 and z. In this case,

whether K2(a2(a1(K1))) is a strong or a weak trade-off is inherited for most values of z from the

corresponding property in the underlying trade-off a2(a1). By contrast, if both aivar are large, i.e.,

very similar to aimax, then the term in brackets will be large as well and can dominate the whole

expression. In this case moderately weak trade-offs in a will be mapped into strong trade-offs in

K. When aivar approaches infinity, that is, when Kimin approaches zero, then K2(K1) will be a

convex trade-off for any value of z.

Appendix C: Analytical Results for Evolutionary Analysis

First we present some analytical results for the case of fast migration and mutational change

in K. These derivations are very similar to those in appendix B and will not be repeated in as

much detail. The optimization criterion is given by N̂ (eq. 4). Differentiating N̂ with respect

to K1 (where K2 is considered a function of K1) reveals that critical points of N̂ are given by

dK2/dK1 = −(p2
1r1K

2
2 )/(p2

2r2K
2
1 ). To see whether these critical points are maxima or minima of

N̂ we need to differentiate N̂ twice. It appears that we get a more tractable result if we differentiate

N̂ ′ := −1/N̂ , an expression that has minima and maxima for the same values as N̂ . Differentiating

N̂ ′ twice with respect yields

d2N̂ ′

dK2
1

=
p2
2r2

K2
2

d2K2

dK2
1

−
2p2

1r1

K3
1

−
2p2

2r2

K3
2

(

dK2

dK1

)2

. (C1)

When we evaluate this derivative a the critical points of N̂ we can replace the middle term with

−(dK2/dK1)2r2p
2
2/(K

2
2K1). This allows us factor out p2r2/K

2
2 from the right hand side of equation
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(C1). After replacing dK2/dK1 and d2K2/dK2
1 with their explicit expressions, which can be derived

analogous to equation (B3), we get

d2N̂ ′

dK2
1

∝ 1 − z − 2

(

θ
K1var(1 − θ)

1

z

K1min + K1var(1 − θ)
1

z

+ (1 − θ)
K2varθ

1

z

K2min + K2varθ
1

z

)

. (C2)

For z > 1 (weak trade-offs) this expression is always negative and therefore critical points are

maxima. For z < 1 the sign of expression (C2) depends on the term in brackets. When this term

is larger than 0.5, then d2N̂ ′/dK2
1 will be negative for any value of z and the critical point will be

again a maximum. This is the case when the Kimin’s are sufficiently small. In case of symmetric

parameter values for r, p,Kmin,Kmax, we find a critical point of the optimization criterion at θ = 0.5.

A sufficient condition for d2N̂ ′/dK2
1 to be negative is then given by Kmin < Kvar0.5

1

z . However,

when both Kivar are sufficiently small, then the term in brackets will be close to zero and the

difference between one and z dominates the term in brackets. The optimization criterion has then

the same qualitative curvature as the trade-off K2(K1). In the limit Kivar = 0, the term in brackets

becomes zero and a strong trade-off in K corresponds to a minimum in N̂ and a weak trade-off in

K corresponds to a maximum in N̂ .

For the model with juvenile dispersal and symmetric parameter values (p1 = 1/2 = p2, r1 =

r = r2, K1min = K2min, K1var = K2var, a1max = a2max, a1var = a2var, R01 = R02, k1 = k = k2)

we can prove that the bifurcation from a repelling generalist to a generalist that is a CSS occurs

for z < 1 when the trade-off is directly in K, and for z > 1 when the trade-off is in a. Under the

assumption of symmetry the first derivative of the fitness function (eq. [16] and eq. [17]) equals

zero at the generalists trait where K1 = K = K2 and a1 = a = a2, respectively. At these trait

values dK2/dK1 = −1 and N̂ = 2K in case of a trade-off directly in K and da2/da1 = −1 and

N̂ = 2r/(a(1−k)) in case of a trade-off in a. The bifurcation point is given by the z-value where the

second derivative of the fitness function (eq. [16] and eq. [17]) equals zero: d2w(K ′,K)/dK ′2

1 = 0

and d2w(a′,a)/da′21 = 0, respectively. Under the above mentioned conditions we can derive that

the bifurcation points are characterized by

d2K2/dK2
1 = 2(2 − r)/K (C3)

and

d2a2/da2
1 = 2r/a, (C4)

respectively. The right hand side of eq. (C3) is positive for r < 2. Hence, for stable population

dynamical equilibria the bifurcation occurs for a convex trade-off in K. As explained in the section

on the mapping of trade-offs, this corresponds to a strong trade-off in K (z < 1). The right hand

side of eq. (C4) is also a positive number, thus, indicating again that the bifurcation occurs for

a convex trade-off. However, for this case where the trade-off is assumed in a, a convex trade-off

corresponds to a weak trade-off (z > 1).
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Figure Legends

Fig. 1.— Distribution of phenotypes in the two-dimensional (α1, α2)-trait space. Solid lines corre-

spond to a constraint or trade-off beyond which no viable phenotypes can occur. Since fitness is

decreasing in both α1 and α2 the set of possible phenotypes lies above and to the right of the con-

straint. The right panel shows the location of the phenotypes and the constraint after applying the

mapping (α1, α2) 7→ ((b1 − d1)/α1, (b2 − d2)/α2) = (K1,K2). Because fitness is increasing in both

K1 and K2 the distribution of phenotypes lie below and to the left of the constraint. Note that the

trade-off has changed from weak to strong (see text for further explanation). In the (α1, α2)-space

the phenotypes have relative low values for both habitats, indicating a high degree of adaptation,

while in the (K1,K2)-space the phenotypes again correspond to low values, now indicating a low

degree of adaptation. Parameter values are chosen such that bi − di = 1.

Fig. 2.— Mapping of five different trade-off curves for the habitat-specific size of competition

neighborhoods ai onto trade-off in carrying capacities Ki through function given by equation (10)

(a & b), and vice versa through the inverse function (c & d). The left graph in each pair shows trade-

offs for five values of the curvature parameter z before the application of the mapping while the right

graph shows trade-offs as a result of the mapping. Curves with the same gray scale correspond to

the same value of z ∈ {4, 2, 1, 0.5, 0.25} with z decreasing with lighter coloration. Other parameters:

b = (0.3, 0.3), d = (0.1, 0.1), p = (0.5, 0.5), (a) amax = (0.2, 0.2), avar = (0.1, 0.1), l = (10, 10), (b)

amax = (1, 1), avar = (0.9, 0.9), l = (2, 2), (c) Kmin = (0.1, 0.1), Kvar = (0.1, 0.1), l = (10, 10), (d)

Kmin = (0.1, 0.1), Kvar = (0.9, 0.9), l = (2, 2).

Fig. 3.— Bifurcation diagram of extrema of optimization criterion as a function of curvature

parameter z for model with: (a & b) fast migration between habitats (logistic equation), (c & d)

juvenile dispersal (Ricker equation). Ordinate shows value of the specialization coefficient θ. (a &

c) Trade-off directly in K. (b & d) Trade-off in a. Solid lines indicate maxima of the optimization

criterion and correspond to CSSs while dashed lines indicate minima of the optimization criterion

and correspond to evolutionary repellors. The gray vertical line in (b) indicates that for θ = 1

all trait combination are selectively neutral. Arrows indicate the direction of evolutionary change.

Parameter values: p = (0.5, 0.5), (a & c) Kmin = (0.1, 0.1), Kvar = (0.4, 0.4), r = (0.2, 0.2), (b &

d) amax = (0.5, 0.5), avar = (0.4, 0.4), l = (4, 4), (b) l = (4, 4), b = (0.3, 0.3), d = (0.1, 0.1), (d)

k = (0.1, 0.1), logR0 = (0.2, 0.2).
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Fig. 4.— Fitness contour plots for model with: (a-c) fast migration between habitats (logistic

equation) and (d-f) juvenile dispersal (Ricker equation). Fitness contours represent values of op-

timization criteria as function of K1 and K2 (a, c, d, f) or a1 and a2 (b, e). Lighter coloration

indicates higher values of the optimization criterion and therefore higher fitness. Trade-offs with

different values of the curvature parameter z are plotted on top of the fitness landscape. For a

given trade-off curve the optimal phenotype is given by the point on the trade-off curve lying on

the highest contour. The color of the circles at the position of the habitat generalist indicates evo-

lutionary properties: black circle = CSS, white circle = repellor, gray circle = selectively neutral

with respect to all other traits on the trade-off. In (a & d) the trade-off is assumed directly in K.

In (b & e) the trade-off is assumed in a. In (c & f) the trade-off in K is derived from the underlying

trade-off in a. These latter two representations necessarily give the same result. Parameter values

as in figure 3.



0 10
0

10

0 1
0

1

α1

α2

K1

K2

-

Figure 1



Mapping from a to K

0.1 0.2
0.1

0.2

0.1 0.2
0.1

0.2

0.1 1
0.1

1

0.1 1
0.1

1

(a)
a2

a1

K2

K1

(b)
a2

a1

K2

K1

Mapping from K to a

0.1 0.2
0.1

0.2

0.1 0.2
0.1

0.2

0.1 1
0.1

1

0.1 1
0.1

1

(c)
K2

K1

a2

a1

(d)
K2

K1

a2

a1

Figure 2



(a)

6

?

?

6

(b)
6

?

?

6

(c)

6

?

?

6

(d)
6

?

?

6

Trade-Off in K Trade-Off in a

F
as

t
M

ig
ra

ti
on

J
u
ve

n
il
e

D
is

p
er

sa
l

z z

θ

z z

θ

Figure 3



0.1 0.5

0.1

0.5

0.1 0.5

0.1

0.5

0.1 0.5

0.1

0.5

0.1 0.5

0.1

0.5

0.1 0.5

0.1

0.5

0.1 0.5

0.1

0.5

F
as

t
M

ig
ra

ti
on

J
u
ve

n
il
e

D
is

p
er

sa
l

(a)

K2

K1

4

r

2

r

1

r

1/2
r

1/4sr

(b)

K2

K1

1/2
�

�

sr

1/4
����sr

1

sr

2

r

4

r

(c)

a2

a1

1/4 sr

1/2
sr

1

sr

2

r

4
r

(d)

K2

K1

4

r

2

r

1

r

1/2
r

1/4sr

(e)

K2

K1

1/2
�

�

cr

1/4
����sr

1

sr

2

r

4

r

(f)

a2

a1

1/4 sr

1/2
sr

1

sr

2

r

4
r


	front.pdf
	IRfront_074.pdf
	MS.pdf
	figure1.pdf
	figure2.pdf
	figure3.pdf
	figure4.pdf

