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The Evolution and Ecology Program at IIASA fosters the devel-
opment of new mathematical and conceptual techniques for un-
derstanding the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Evolution and Ecology Program
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.
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The Evolution of Resource Specialization Through Frequency-Dependent and

Frequency-Independent Mechanisms

Claus Rueffler1, Tom J.M. Van Dooren2, and Johan A. J. Metz3,4

Institute of Biology Leiden, Leiden University, Kaiserstraat 63, 2311 GP Leiden

The Netherlands

ABSTRACT

Levins’ fitness set approach has shaped the intuition of many evolutionary ecologists

about resource specialization: if the set of possible phenotypes is convex, a generalist is

favored, while either of the two specialists is predicted for concave phenotype sets. An

important aspect of Levins’ approach is that it explicitly excludes frequency-dependent

selection. Frequency-dependence emerged in a series of models that studied the degree of

character displacement of two consumers coexisting on two resources. Surprisingly, the

evolutionary dynamics of a single consumer type under frequency-dependence has not

been studied in detail yet. We analyze a model of one evolving consumer feeding on two

resources and show that, depending on the trait considered to be subject to evolutionary

change, selection is either frequency-independent or frequency-dependent. This differ-

ence is explained by the effects different foraging traits have on the consumer-resource

interactions. If selection is frequency-dependent, then the population can become di-

morphic through evolutionary branching at the trait value of the generalist. Those

traits with frequency-independent selection, however, do indeed follow the predictions

based on Levins’ fitness set approach. This dichotomy in the evolutionary dynamics of

traits involved in the same foraging process was not previously recognized.

Subject headings: evolutionary branching, frequency-dependent selection, generalist,

specialist, trade-off

1. Introduction

In the presence of different resources, when should we expect a generalist phenotype and when

specialized phenotypes? This question has a long history in evolutionary ecology (for reviews see
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Futuyma and Moreno (1988); Wilson and Yoshimura (1994)). One of the first answers to this

question, which is still widely accepted, was given by Levins (1962) and is based on the shape of

the fitness set, i.e., on the set of feasible phenotypes. A consumer feeding on two different resources

should be equally well adapted to both of them, when the fitness set is convex (corresponding to a

weak trade-off). In this case the fitness of a consumer summed over the two resources is higher for

a generalist than for either to the two specialists. On the other hand, in case of a concave fitness set

(corresponding to a strong trade-off) both specialists do better than a generalist and a consumer

population is expected to specialize on either of the two resources.

A serious shortcoming of Levins approach is that it explicitly excludes the possibility of density-

dependent and frequency-dependent selection. These features cause the fitness corresponding to a

particular trait value to depend on that trait value as well as on the frequency and abundance of

other trait values in the population. In this case the fitness landscape is not fixed anymore but

changes with population composition (Rueffler et al. 2004). Density- and frequency-dependence

arise in a natural way when resource consumption and renewal are modeled explicitly. In this

context, frequency-dependence has to be understood in a generalized sense. It can arise from direct

interactions between different phenotypes, but it can also be mediated by variables like resource

densities that depend on the composition of the consumer population.

MacArthur and Levins (1964) were the first to introduce a model for the coevolution of two

consumers feeding on two resources with explicit dynamics. Their model was analyzed by Lawlor

and Maynard Smith (1976) using an ESS approach (Maynard Smith 1982), subsequently put into

a population genetics framework by Lundberg and Stenseth (1985), and extended to more traits

by Abrams (1986). The evolution of a single consumer was treated incompletely by these authors,

maybe because it was considered trivial according to the predictions of Levins’ earlier treatment.

That this is far from true became apparent from a paper of Wilson and Turelli (1986). They used

a similar setting to explore the conditions under which a population of homozygotes, specialized

on one resource, can be invaded by a new allele that causes the heterozygote to be a generalist

and the mutant homozygote to be more specialized for another resource. The unexpected result

of Wilson and Turelli is that such an invasion is possible even with marginal underdominance, i.e.,

when the efficiency of the heterozygote summed over the two resources is lower than the same sum

for each of the two homozygotes. For a single diallelic locus marginal underdominance is equivalent

to a strong trade-off (Lundberg and Stenseth 1985; Wilson and Turelli 1986). Levins’ approach

therefore would predict evolution towards specialization. However, invasion of the heterozygote

can be seen as evolution in the direction of the generalist. For a wide range of parameters the

new allele does not go to fixation but coexists in a stable polymorphism. The result of Wilson and

Turelli is of particular importance, because at population genetical equilibrium the heterozygote

has the lowest fitness and any mechanism preventing the production of the heterozygote is selected

for. Such convergence stable fitness minima were named evolutionary branching points by Metz

et al. (1996a) and Geritz et al. (1998).

Wilson and Turelli (1986) investigate the dynamics of mutations with large phenotypic effect.
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A mutant arising from a specialist for one resource immediately is a specialist for another resource

and both types can therefore coexist in a protected dimorphism. Is it also possible to obtain two

specialists by accumulation of mutations with small effects? In this paper we analyze the evolution

of a single consumer foraging on two resources with explicit dynamics. Instead of formulating a

population genetics model we assume clonal reproduction with rare mutations. This allows us

to use the toolbox of adaptive dynamics (Metz et al. 1992, 1996a; Geritz et al. 1998; Diekmann

2004). The assumption of clonal reproduction may seem a limitation. However, in the limit of rare

mutations with small phenotypic effect and random mating, the results carry over to monomorphic

diploid populations and polygenic traits (Van Dooren in press; Metz in press). Additionally, this

approach yields the same results as models derived from quantitative genetics (Iwasa et al. 1991;

Taper and Case 1992; Abrams et al. 1993a).

Lawlor and Maynard Smith (1976) and Wilson and Turelli (1986) assume a linear (type I)

functional response. In our model we assume that handling time is an important component of

the foraging process and that therefore the resource uptake is governed by a saturating (type II)

functional response. Due to this assumption our model involves more traits than those considered

by earlier authors (but see Abrams (1986)) and the question arises whether different traits involved

in the foraging process differ in their evolutionary dynamics. A major goal of our paper is therefore

to compare the evolutionary dynamics of different traits.

We find that the evolutionary dynamics of different traits fall into two different categories.

In one category the dynamics are driven by frequency-dependent selection while in the other case

selection is frequency-independent. For traits under frequency-dependent selection the trait value

of the generalist is approached for both weak and strong trade-offs. In the first case it is the end

point of evolution while in the latter case it is a branching point where protected polymorphisms

can emerge by small mutational steps. For traits experiencing frequency-independent selection the

classical predictions of Levins apply, though we can not use his methodology in general. For such

traits two different consumers can generically not coexist.

2. The Model

In this section we develop a population dynamical model for a consumer feeding on two nutri-

tionally substitutable resources which are assumed to be homogeneously distributed in space. From

this model, we will derive invasion fitness which we use to investigate the evolutionary dynamics.

Table 1 gives an overview of all model parameters.

2.1. Population Dynamics

The population dynamics of the consumer and the two resources are similar to those described

by Wilson and Turelli (1986). The consumer is an annual organism with its population census after
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juvenile mortality. Consumer densities are assumed to be constant within the foraging season. The

dynamics of the resources occurs on a much faster time scale and are followed in continuous time

within a year. Since the consumer density does not change on this time scale, resource densities

reach an within-year equilibrium. We will first introduce the dynamics of the consumer as a function

of the equilibrium densities of the resources reached within a year. In a second step we will derive

the resource dynamics within a year and their equilibrium (c.f. Geritz and Kisdi 2004).

The recurrence equation for the consumer is given by

Nt+1 = (α1C1 + α2C2) Nt, (1)

where the functional response Ci describes the amount of resource of type i consumed as a function

of resource density. The constant αi is the conversion efficiency of consumed resource into offspring.

Thus, a linear numerical response is assumed. Prey consumption is modeled by means of a two-

species version of Holling’s disk equation, which gives rise to a saturating (type II) functional

response Ci for each resource i (Holling 1959):

Ci =
eiR̂itpifi

1 + e1R̂1tp1(tp1 + f1tm1) + e2R̂2tp2(tp2 + f2tm2)
for i ∈ {1, 2}. (2)

We use a rather detailed version of Holling’s equation as described in Case (2000). In many

biological systems not all elements will be of importance. Such a detailed model can be adapted by

simplification to systems where only a subset of parameters is relevant. The number of encountered

prey per time step is the product of search efficiency ei [area/time step] and equilibrium resource

density R̂it [1/area] in a given year t. This introduces a time dependence into the functional

responses, but we suppress the time index for clarity. The search efficiency ei depends on the

speed of the consumer while searching for prey, its search area and its ability to detect a prey item

within the search area. Upon encounter the consumer decides to attack the prey with probability

pi. Throughout this paper we will assume that consumers behave opportunistically. Encountered

prey is always attacked and therefore p1 = 1 = p2. Hence, we will omit the p’s from now on.

In a follow-up paper we will incorporate flexible diet choice. The capture probability fi describes

the probability that an attacked prey is actually subdued. The handling time consists of two

components: the pursuit time tpi and the manipulation time tmi. The pursuit time is the time

needed to get hold of a prey once it is detected. Caught prey might still need a treatment before

it can be consumed, the duration of this treatment is the manipulation time. Note that the

denominators of C1 and C2 are identical and can be factored out. This factor, to be called search

probability,

s = 1/
(

1 + e1R̂1t(tp1 + f1tm1) + e2R̂2t(tp2 + f2tm2)
)

(3)

is the fraction of a time step that is not spend handling prey but left for searching prey. We can

therefore write Eq. (1) as

Nt+1 = s
(

α1e1R̂1f1 + α2e2R̂2f2

)

Nt. (4)
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If both the pursuit and the handling time are negligible, then s = 1 and Eq. (4) describes the

consumer’s population dynamics according to a linear (type I) functional response. If only the

pursuit time is negligible, the rather complicated formulas for the functional response and search

probability simplify to the more familiar formulas Ci = (eiR̂it)/(1 + e1R̂1ttm1 + e2R̂2ttm2) and

s = 1/(1 + e1R̂1ttm1 + e2R̂2ttm2) (e.g. Abrams 1986, 1987; there fi is incorporated into ei).

The within-year dynamics of the resources are given by

dRit

dτ
= bi − diRit − CiNt for i ∈ {1, 2}, (5)

where τ denotes time within a foraging season. We assume that the production of the resources

is independent of their abundance. This might be the case when prey population size is more

determined by migration (e.g., prey that is leaving a refuge at a constant rate), or for seeds or

fruits produced by trees. The parameter bi denotes the constant influx of resources and di its death

rate. Since we assume consumer densities Nt to be constant within the foraging season, we can

give the following implicit description of R̂it, the resource equilibria reached in year t, using Eq.

(2) and (3):

R̂it =
bi

di + seifiNt

for i ∈ {1, 2}. (6)

In order to calculate the equilibria of the consumer and resource dynamics across years, we have

to solve Eq. (1) and (5) simultaneously using Eq. (2). The lengthy analytical expressions are not

show here.

2.2. Trade-Offs

When a consumer feeds on two resources, trade-offs will occur almost inevitably. We will refer

to the boundary of the set of feasible phenotypes as the trade-off curve (see Fig. 1). Beyond the

trade-off curve either no genetic variation occurs or no viable offspring can be produced. Mutations

that lead to an increase in efficiency for both resources are certainly favored by selection and cause

the population’s distribution of trait values to shift closer to the trade-off curve. Once the trade-off

curve is reached, a mutation enhancing the consumer’s efficiency for resource one will decrease its

efficiency for resource two. From then on the population’s distribution of trait values will stay

close to the trade-off curve relative to the size of the mutational steps. We idealize this with the

assumption that, after approaching it, the evolutionary dynamics proceeds along the trade-off curve.

We define the trade-off curve as a function x2(x1) in the (x1, x2)-space where x represents any of

the traits we consider evolvable (Tab. 2). To simplify the analysis we parameterize the trade-off

curve in one parameter θ, called specialization coefficient, which varies continuously between zero

and one. Each θ determines a pair of trait values x = (x1, x2) lying on the trade-off curve in such a

way that θ = 0 corresponds to a specialist for resource one while θ = 1 corresponds to a specialist

for resource two (Fig. 1).
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We consider five different trade-offs (listed in Table 2): (1) between the capture probability

f1 and f2, (2) between the search efficiencies e1 and e2, (3) between the manipulation times tm1

and tm2, (4) between the pursuit times tp1 and tp2, and (5) between conversion efficiencies α1 and

α2. Specialization for a certain resource i corresponds to an increase in αiCi (see Eq. 1). This is

achieved when either tpi or tmi are decreasing or when fi, ei or αi are increasing. Therefore we

have to parameterize the trade-off curve in the opposite direction for tmi and tpi compared to fi,

ei and αi (see Fig. 1).

The curvature of the trade-off curve is determined by a parameter z in such a way that z > 1

gives rise to a convex phenotype set (bounded by weak trade-off) while z < 1 gives rise to a concave

phenotype set (bounded by a strong trade-off) (Fig. 1). For numerical calculations we use one of

the following parameterizations resulting in the trade-off curves of Fig. (1): for x ∈ {α, e, f}

we use x(θ) = (x1max(1 − θ)
1

z , x2maxθ
1

z ) while for x ∈ {tp, tm} we use x(θ) = (x1max − x1min(1 −

θ)
1

z , x2max−x2minθ
1

z ), where x1min, x1max, x1min, x2min are positive constants. Throughout the paper

we use both vectors x = (x1, x2) and specialization coefficients θ, to characterize a pair of trait

values lying on the trade-off curve.

2.3. Evolutionary Dynamics

A mutant differs from the resident in its position on the trade-off curve. A mutant phenotype

is indicated by θ′, giving rise to x′ = (x′

1, x
′

2). We assume that mutations are rare and of small

effect. Because of the first assumption the ecological and evolutionary time scales are separated:

a population has reached its ecological equilibrium before a new mutant arises. The fate of a

mutant is determined by its invasion fitness, i.e., its per capita growth rate when it is still rare in

a population dominated by a resident. For x ∈ {f ,e, tm, tp} invasion fitness is given by

w(θ′, θ) = α1C1(θ
′, R̂1(θ), R̂2(θ)) + α2C2(θ

′, R̂1(θ), R̂2(θ)). (7)

If conversion efficiency α is evolving, the αi’s are a function of θ′ and not the functional responses

Ci. Initially the mutant has no influence on the two resource levels. Therefore the resource levels

are a function of the resident’s trait value θ only. By R̂i(θ), we denote resource equilibria across

years set by a consumer with trait value θ and equilibrium population N̂(θ) (cf Eq. 6). Mutants

with w(θ′, θ) > 1 have a positive probability of invasion while mutants with w(θ′, θ) < 1 are doomed

to extinction. By definition, for any resident at population dynamical equilibrium w(θ, θ) = 1.

The direction of evolutionary change is derived from the fitness gradient, i.e., the first derivative

of the fitness function (Eq. 7) with respect to the mutant’s trait (see e.g. Geritz et al. 1998). Trait

values θ∗ where the fitness gradient equals zero are of special interest:

∂w(θ′, θ∗)

∂θ′

∣

∣

∣

∣

θ′=θ∗
= 0. (8)

Following Metz et al. (1996a) and Geritz et al. (1998) we call them evolutionarily singular points.

Singular points θ∗ can be classified according to two independent properties: convergence stability
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and invadability (Geritz et al. 1998; Rueffler et al. 2004). The first property determines whether a

singular trait value is reachable from nearby (Eshel 1983; Christiansen 1991; Abrams et al. 1993b;

Geritz et al. 1998) while the second property determines whether any consumer with a different

trait value than θ∗ can increase in frequency when initially rare (Maynard Smith 1982). A singular

trait value which is both convergence stable and uninvadable is called continuously stable strategy

or CSS (Eshel and Motro 1981; Eshel 1983). It is a final stop of evolution. A convergence stable

and invadable trait value is called evolutionary branching point (Metz et al. 1996a; Geritz et al.

1998). At these points selection becomes disruptive and favors increased genetic variation.

Note that traditional definitions of frequency-dependent selection have little discriminating

power when applied to invasion fitness expressions as Eq. (7). In population genetics frequency-

dependence is defined as the dependence of selection coefficients on allele frequencies. Invasion

fitness does not consider this dependence since mutants are assumed to be rare and the frequency

of the resident is always one. Lande’s (1976) definition of frequency-dependence, as a dependence of

fitness on the population mean trait value, includes all cases of density-dependent selection where a

mutant’s fitness depends on the equilibrium population size of the resident. In the following section

we introduce the concept of the feedback environment and its dimensionality. This provides us with

a tool to define frequency-dependence for density regulated populations as a condition allowing for

rarity advantage and protected polymorphism.

3. Feedback Environment

Whether a certain mutation is beneficial or not depends on the trait value of the mutant and on

the environment it experiences, which is set or influenced by the resident population. For example,

if the probability of invasion of a mutant type is determined in direct contests with individuals

of another common type, then those other individuals and their trait value can be viewed as

the environment a mutant experiences. Fitness can be written as a function of the trait value

of the mutant and of the resident: w(θ′, θ). In the model studied here, the interaction between

individuals is not direct but indirect via competition for the same resources. In this case fitness

is affected by the abundance of the resources (Eq. 7), which in turn are determined by the trait

value of the resident type (Eq. 6). We refer to those components of the environment that mediate

the interaction between individuals as feedback environment and collect them in a n-dimensional

vector I (Heino et al. 1997, 1998; Diekmann et al. 2003; Meszéna et al. in revision). With a slight

abuse of notation we can rewrite invasion fitness as a function of the mutant’s trait value and the

feedback environment I as it is determined by the trait value of the resident: w(θ′, I(θ)). The

dimension n of the feedback environment indicates via how many different variables the interaction

between resident and mutant is mediated. In the present case it seems intuitive to equate I with

the two-dimensional vector (R̂1, R̂2). If, however, by some mechanism R̂1 would always equal R̂2,

then a scalar is sufficient to describe the feedback environment. The dimensionality of the feedback

environment has important evolutionary consequences. Whenever the feedback environment can
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be represented by a scalar, robust coexistence is impossible (Metz et al. 1996b; Meszéna et al. in

revision). If, additionally, invasion fitness w is a monotone function in I, then the evolutionary

dynamics can be analyzed by maximizing an optimization criterion (Metz et al. 1996b). We call

selection in one-dimensional feedback environments frequency-independent. On the contrary, if two

or more variables are needed to describe the feedback environment, i.e., if I is a vector of dimension

two or higher, fitness depends on the relative values of the interaction variables collected in I

and optimization is generally impossible. We call selection in two- or higher-dimensional feedback

environments frequency-dependent (compare Heino et al. 1998). We note that our definition differs

from the classical definition of frequency-dependence as used in population genetics. In the next

paragraph we show how a two-dimensional feedback environment allows for a rarity advantage and

coexistence in protected polymorphisms.

4. Results

One of our main results is that the dimension of the feedback environment I depends on

the trait that is considered to be evolvable. In order to illustrate the mechanism behind this

result we derive it for the special (and easy) case that all traits that are not considered evolvable

are symmetric. In Appendix B we prove the result for the general case without the symmetry

assumption. Let us first assume that genetic variation occurs for tm, tp and α and not for f and

e. The symmetry assumption amounts to f1 = f2, e1 = e2, b1 = b2 and d1 = d2. Given this

symmetry, we immediately see from Eq. (6) that R̂1 = R̂2, independent of the amount of genetic

variation and of the degree of asymmetry in the traits tm, tp and α. The reason for this effect

is that these traits influence both resource equilibria in the same way via the consumer density

N and the search probability s. A population that is completely specialized on resource one in

terms of these traits (i.e., tm1 ≪ tm2, tp1 ≪ tp2, α1 ≫ α2) does not cause resource one to be more

depleted than resource two. Let us now investigate the case where evolution occurs for f or e and

not for the other variables. These traits do have a resource specific effect (see Eq. 6). If f1 > f2 or

e1 > e2, then R̂1 will be lower than R̂2 and vice versa (see Eq. 6). Hence, in this case we need two

scalars in order to track changes in the resource equilibria while the consumer population evolves.

We can now easily see how the dimension of the feedback environment affects the possibility for

frequency-dependence. If specialization in the consumer makes the resource it preys upon more

effectively less abundant, then a mutant that specializes on an underused resource will enjoy a

rarity advantage. This mechanism clearly does not work in one-dimensional feedback environments

where specialization in the consumer has no resource specific effects.

4.1. Traits With Two-Dimensional Feedback Environment

We start with the traits of this category because they directly correspond to the traits con-

sidered by Lawlor and Maynard Smith (1976), Lundberg and Stenseth (1985), Abrams (1986) and
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Wilson and Turelli (1986). Only the evolution of capture probability f is described in detail since

the results for search efficiency e are qualitatively identical.

Invasion fitness is given by Eq. (7) with

Ci =
eiR̂if

′

i

1 + e1R̂1(tp1 + f ′

1tm1) + e2R̂2(tp2 + f ′

2tm2)
. (9)

Given some symmetry constraints we can prove that the evolutionary dynamics of capture

probability f and search efficiency e are driven by the effect of mutations on the linear terms of

the functional response (see Appendix A). This result is confirmed numerically for cases where the

symmetry constraints are not met. It is therefore sufficient to study a fitness function derived from

a linear functional response:

w(f ′,f) = α1e1R̂1f
′

1 + α2e2R̂2f
′

2, (10)

which is equivalent to the ones studied by the authors referred to at the beginning of this section.

Fig. 2a shows the evolutionary dynamics as a function of the parameter z, the strength of the

trade-off curve. The figure is based on numerical calculations where all parameters besides f are

assumed to be equal for both resources. In Appendix A we show that the qualitative pattern can be

derived partly analytically. Asymmetric parameter values do not change the results qualitatively

but merely lead to asymmetries in Fig. (2). ere we give a verbal explanation of the results. When

the trade-off is weak (z > 1), the generalist’s trait is a global attractor of the evolutionary dynamics

and once it is reached it cannot be invaded by any other mutant. Hence, it is a unique CSS. The

mechanism behind this dynamics is as follows. Mutants that are more similar to the generalist

than the resident in terms of their capture probabilities are able to invade. Such mutants benefit

in two ways. (i) Because of the weak trade-off mutants closer to the generalist have a higher

overall capture probability than the resident. By overall capture probability we mean the sum of

the resource specific capture probabilities weighted by the traits assumed to be constant, hence:

α1e1f
′

1 + α2e2f
′

2 > α1e1f1 + α2e2f2. When αi and ei are equal for both resources this sum has a

maximum at the generalist’s trait value with f1 = f2. (ii) As explained in the preceding section, a

resident that is specialized in terms of its capture probability on one resource causes that resource

to be relatively rare compared to the resource it is not specialized on. Mutants that are more

similar to the generalist benefit in such a situation since they make better use of the less exploited

resource while decreasing their success on the more exploited resource. We want to emphasize that

it is this second feature which introduces frequency-dependence into the fitness of the mutant. Once

the generalist is predominant, it cannot be invaded anymore since any possible mutant would have

a lower overall capture probability while no rarity advantage exists since both resource are equally

abundant.

When the trade-off is strong (z < 1), the trait value of the generalist is still convergence stable,

however, in contrast with the preceding scenario, it loses its uninvadability when predominant and



– 10 –

therefore turns into a branching point. With a strong trade-off, a mutant that is more similar to

the generalist suffers a loss in its overall capture probability since this sum now has a minimum at

the trait value of the generalist. This imposes a selection component towards further specialization.

However, overall, the generalist remains attracting as long as the gain from becoming more spe-

cialized on the underused resource more than outweighs the loss from a decrease in overall capture

probability. Once the generalist is predominant any mutant can invade. In this situation a mutant

that is deviating from the generalist benefits from an increase in its overall capture probability on

resources that are equally abundant. However, when the mutant increases in frequency, the resource

that it captures more efficiently becomes less common. This gives a benefit to the generalist again.

The mutant does not go to fixation and the two types can coexist in a protected polymorphism.

Subsequently, only mutants that are more specialized than either of the two residents are able to

invade. This is a phase of character displacement driven by resource competition. In case of haploid

organisms, the dimorphic evolution results in a pair of two resident types, each completely spe-

cialized on one resource. This can be derived from the geometrical argument presented in Rueffler

et al. (2004) and is also described by Lawlor and Maynard Smith (1976).

The basin of attraction of the generalist, that is, the range of initial trait values from which

populations converge towards the generalist’s trait over evolutionary time, decreases with increasing

strength of the trade-off (i.e., with lower values of z). For very strong trade-offs only populations

that already perform reasonably well on both resources, will evolve towards the generalist (Fig.

2a). When the initial population is relatively specialized on one resource, selection will drive it

towards further specialization. In this situation the gain of further specialization due to an increase

in overall capture probability more than compensates for the detrimental effect of improving on

an already over-exploited resource. Though in this case a polymorphism cannot emerge by small

mutational steps at a branching point, coexistence is possible for types that are sufficiently different

from each other. This can for instance be the case when immigrants specialized for one resource

enter a population of specialists for the other resource. For very strong trade-offs (z ≪ 1) the

generalist may even turn into an evolutionary repellor. However, for parameters we checked, the

repellor lies in a parameter region where the population is not viable (see Fig. 2a).

Invasion fitness for search efficiency e is given by Eq. (7) and (9) where the ei’s are labeled

by a dash instead of the fi’s. Obviously the structure of the fitness function does not change and

therefore it results in the same bifurcation diagram (Fig. 2a).

4.2. Traits With One-Dimensional Feedback Environment

As in the previous section, we will describe the dynamics of one trait, manipulation time tm,

in detail. The other two traits belonging to the same category, pursuit time tp and conversion

efficiency α, show qualitatively identical evolutionary dynamics.

In contrast to the traits in the previous section, a mutation in tm only affects the denominator
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of the functional response Ci and hence search probability s (see Eq. 3). Invasion fitness is given

by

w(t′

m
, tm) = s′(α1e1R̂1(tm)f1 + α2e1R̂2(tm)f2) (11)

with

s′ = 1/
(

1 + e1R̂1(tp1 + f1t
′

m1) + e2R̂2(tp2 + f2t
′

m2)
)

. (12)

The evolutionary dynamics for manipulation time are shown in Fig. 2b. For weak trade-offs (z > 1)

the generalist with tm1 = tm2 is again a unique CSS while for strong trade-offs (z < 1) the generalist

turns into an evolutionary repellor. In this case the degree of specialization of the initial population

decides whether selection leads to complete specialization on resource one or resource two. The

mechanism behind this is simple. Any mutant with s′ > s (Eq. 3) has w(t
′

m
, tm) > 1 and is

therefore able to invade. This is equivalent to demanding e1R̂1f1t
′

m1 + e2R̂2f2t
′

m2 < e1R̂1f1tm1 +

e2R̂2f2tm2. Given that the two resource equilibria R̂1 and R̂2 are equal (as it is the case when all

fixed parameters are symmetric), evolution minimizes e1f1t
′

m1 + e2f2t
′

m2. For weak trade-offs, the

generalist minimizes this weighted sum while for strong trade-offs the two specialists correspond

to minima. A mutant can enjoy an advantage when it has increased its search probability s and

therefore can live on fewer resources than the resident but not because it is rare. At the bifurcation

point (z = 1) the fitness landscape is completely flat and all traits are selectively neutral, indicated

by a vertical line in Fig. 2b. However, this degeneracy only occurs when symmetric parameter

values are assumed. The fact that at the bifurcation of a CSS into a repellor two independent

properties, convergence stability and invadability, change simultaneously, is the due to the absence

of frequency-dependence.

Though these results are in accordance with the predictions based on Levins’ fitness set ap-

proach, we can in general not use his methodology to achieve them. Only under the assumption of

symmetry in certain parameters we are able to derive an optimization principle (see Appendix B),

which is equivalent to what Levins called the adaptive function.

The fitness function for pursuit time is structurally identical to Eq. (11) and Eq. (12) and

therefore shows a qualitatively identical bifurcation pattern (Fig. 2b). When mutations affect α

invasion fitness is given by w(α′,α) = α′

1C1 + α′

2C2 with Ci as in Eq. (2). Although the fitness

function is structurally different, it results in the same bifurcation pattern as in the preceding cases

and we are again able to derive an optimization principle when certain parameters are symmetric

(see Appendix B).

5. Discussion

In this paper we analyzed a model for the evolutionary dynamics of five different foraging

related traits of a consumer feeding on two resources. Similar models have been used extensively

in the study of character displacement between two competing consumer types (MacArthur and

Levins 1964; Lawlor and Maynard Smith 1976; Lundberg and Stenseth 1985; Abrams 1986). Here
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we concentrate on the evolution of a consumer population consisting of only one type. Our main

results are that the evolutionary dynamics of such a monomorphic population can differ strongly

for different traits (Fig. 2, Tab. 2) and that for some traits polymorphisms can emerge through

a series of mutations of small effect while for others coexistence of different types is generically

impossible.

At a first glance the different traits considered to be subject to evolutionary change seem

to be mechanistically similar and the discovered dichotomy in the evolutionary dynamics was to

our knowledge not recognized previously. However, there seems to be a certain awareness at least

since the early 70th that coexistence cannot be mediated by just any trait. For instance, from

MacArthur’s competition coefficient (e.g. MacArthur 1972; Schoener 1974), one can infer that for a

model with linear functional response, coexistence is only possible if consumers differ in their search

efficiencies and that differences in conversion efficiency are not sufficient. Vincent et al. (1996) found

similar results for a model with type II functional response: types that only differ in either handling

time or conversion efficiency cannot coexist on an ecological time scale while differences in search

efficiency do suffice to mediate coexistence. Whether a trait can mediate coexistence or not reflects

whether it causes interactions to be frequency-dependent or not. It is this perspective that allows

us to gain insight into the mechanism of how different traits affect coexistence.

If selection is frequency-dependent, i.e., in case of capture probability f and search efficiency

e, polymorphisms can emerge from a monomorphic population at an evolutionary branching point.

This happens for moderately strong trade-offs. In this case a mutant that is approaching the gener-

alist’s trait value is able to invade. Such a mutant gains from improving on the underused resource

and this directional force towards the generalist is stronger than the disruptive force stemming

from the strong trade-off. This is the mechanism discovered by Wilson and Turelli (1986) in the

case of marginal underdominance, where a rare heterozygote corresponding a generalist invades

a resident homozygote corresponding to a specialist. We showed that evolution towards the gen-

eralist can occur through a series of small mutational steps. Convergence towards the generalist

with subsequent disruptive selection was not recognized by Lawlor and Maynard Smith (1976) and

Abrams (1986), because strong trade-offs were a priori identified with immediate specialization.

Lundberg and Stenseth (1985) formulated a population genetics version of the model of Lawlor

and Maynard Smith where they explicitly considered the evolution of a single consumer. They also

postulated immediate specialization in connection with strong trade-offs because they overlooked

the variable character of the fitness landscape with changing gene frequencies. Following the clas-

sical tradition, they envisage evolution on a fitness landscape that corresponds to equilibrium gene

frequencies and not corresponding to the present gene frequency (in the adaptive function (their

Eq. 14) the resource levels corresponding to the gene frequency of the resident population have to

be inserted instead of the resource levels corresponding to the equilibrium gene frequency). Diek-

mann et al. (2005) investigate a very similar model where the trade-off is in the uptake coefficients

for two different resources. Their model assumes clonal reproduction as well, but leaves out the

assumption that mutations are necessarily rare, with a narrow, continuous distribution of trait
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values as a result. They also find that evolutionary branching occurs for strong trade-offs.

Evolutionary change in the other three traits, pursuit time tp, manipulation time tm and

conversion efficiency of resources into offspring α, is not subject to frequency-dependent selection.

In these cases an optimal consumer exists that is favored by selection over all other possible types

and generically only one consumer can exist on two different resources. If the trade-off is weak,

the optimal trait value corresponds to a generalist and if the trade-off is strong, the optimal trait

value corresponds to either of the two specialists with the outcome depending on initial condi-

tions. Though these predictions are in accordance with those derived by Levins (1962), we want to

emphasize that we could generally not fall back on Levins’ approach. Only under some symmetry

assumptions did we succeed to derive optimization principles which are essential elements of Levins’

methodology.

Our results show that two aspects are decisive for the evolutionary dynamics of foraging traits:

the shape of the trade-off and the dimension of the feedback environment. If one wants to relate

our results to real organisms these features have to be studied. Considerable effort has been made

with respect to the shape of the trade-off (Benkman 1993; Schluter 1993, 1995; Robinson et al.

2000) though is is only recently that more powerful methods are developed to infer the shape from

empirical data (Hatfield and Schluter 1999; O’Hara Hines et al. 2004). The tendency in the cited

studies is that trade-offs are indeed rather strong than weak, which fulfils a necessary requirement

for diversification in our theory.

Two extensions of the presented model seem obvious. Firstly, foraging related traits with-

out doubt do not evolve separately as envisaged in our model but simultaneously. Simultaneous

evolution of several traits will alter the results at least quantitatively. For instance, a decrease in

handling time for a certain resource will be accompanied by an increase in search efficiency and

capture probability. We can therefore expect that the feedback environment generally is not one-

dimensional. Secondly, like all our predecessors, we assumed that the consumer does not choose

between different prey. Upon encounter the consumer always attacks both types of prey, regardless

of its degree of specialization for one prey or the other. Abrams (1986) remarks that strongly

asymmetric handling times are expected to cause exclusion of one resource from the diet with spe-

cialization for the remaining one as a consequence. Hence, strong interactions result between the

evolutionary dynamics of morphological and physiological traits on the one hand and behavioral

traits such as diet choice that can change on an ecological times scale on the other hand. These

interactions will be the subject of a follow-up paper.

To summarize, our results show that depending on the trait that is considered to evolve,

selection is either frequency-dependent or frequency-independent in the same ecological system.

For these two cases the evolutionary dynamics of specialization can be in opposite directions. While

a monomorphic population subject to frequency-dependent selection and with a strong trade-off

evolves towards the generalist’s trait value, the same population will evolve towards a specialist

for a trait not subject to frequency-dependent selection. Under frequency-dependent selection,
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a monomorphic population can split at an evolutionary branching point. If the genetic system

and/or mating system does not favor the production of intermediate phenotypes, or if a mechanism

evolves that disfavors the production of such types, subsequent evolution will lead to a dimorphic

population exclusively consisting of two specialists.
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A. Analytical Results

Given the symmetries α1 = α = α2 and tm1 = tm = tm2 we can prove that the evolutionary

dynamics of capture probability f is driven by the effects of mutations on the linear terms of the

functional response. To show this, we take the derivative of Eq. (7) with respect to f ′

1:

∂w(f ′,f)

∂f ′

1

=
α

(

e1R̂1 + e2R̂2
df ′

2

df ′

1

)

(1 + e1R̂1tp1 + e2R̂2tp2)
(

1 + e1R̂1(tp1 + f1tm) + e2R̂2(tp2 + f2tm)
)2 (A1)

The sign of this derivative is solely determined by the first term in brackets in the numerator.

This is exactly the derivative of the fitness function with linear functional response. Numerical

explorations show that the qualitative behavior of the model, i.e., the number and type of singular

points, does not change if we break the above symmetry constraints. A similar argument holds for

search efficiency e.

The bifurcations shown in Fig. 2 are calculated numerically. Here we derive analytical results to

underpin the robustness of the numerical results. From a geometrical argument presented in Rueffler

et al. (2004), we can derive that weak trade-offs only allow for uninvadable singular points (CSSs and

Garden of Eden points) while strong trade-offs only allow for invadable singular points (repellors

and branching points). The prerequisite for this conclusion is that those trait combinations (x, y),

that are initially selectively neutral with respect to a given resident trait value lie on a straight

line in the (f1, f2)-plane. We call such lines invasion boundaries. They are implicitly given by the

fitness function (Eq. 7) set equal to one, i.e.:

1 =
αe1R̂1x + αe2R̂2y

1 + e1R̂1(tp1 + xtm) + e2R̂2(tp2 + ytm)
, (A2)

which after rearranging becomes a linear equation in x with a negative slope:

y =
1 + e1R̂1tp1 + e2R̂2tp2

e2R̂2(α − tm)
− x

e1R̂1

e2R̂2

. (A3)

It is easy to show that (α− tm) > 0 is a necessary prerequisite for a viable population. Hence, Eq.

(A3) has a positive intercept.

Setting Eq. (A1) equal to zero gives us a characterization of singular points f∗:

df2

df1
= −

e1R̂1

e2R̂2

. (A4)

Under the additional symmetry constraints that x1 = x = x2 for x ∈ {e, b, d} and the assumption

that f1 = f2 implies df2/df1 = −1, this is fulfilled for (f∗

1 , f∗

2 ) with f∗

1 = f∗

2 . In a next step we

show that such a intermediate singular point is a unique CSS for weak trade-offs. From (f1 ≶

f∗

1 ) ⇒ (df2/df1 ≷ −1) and (f1 ≶ f∗

1 ) ⇒ (R̂1 ≷ R̂2) follows (f1 ≶ f∗

1 ) ⇒ (R̂1 + df2/df1R̂2 ≷ 0).
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Hence, the fitness gradient is positive when f1 < f∗

1 and negative when f1 > f∗

1 . This means that

f∗ is a globally attracting and unique CSS.

As mentioned above the CSS loses its uninvadability when the trade-off becomes strong. Gener-

ically, a CSS becoming invadable turns into a branching point (Metz et al. 1996a; Geritz et al. 1998;

Rueffler et al. 2004). For our trade-off parameterization it is easy to show that the boundaries of the

trait space are attracting in case of strong trade-offs. Consequently, a repellor has to exist between

the boundaries and the intermediate branching point. Numerical calculations reveal a pitchfork

bifurcation. It follows from standard bifurcation theory that a pitchfork bifurcation unfolds into a

fold bifurcation when asymmetries in the parameters are introduced.

B. Dimension of the Feedback Environment and Optimization

Fitness is a function both of a specific phenotype and its environment. In order to make this

point operational the term “environment” has to be defined formally. The feedback environment

I is a n-dimensional vector that contains information on those aspects of the environment that

are affected by a focal population and simultaneously feed back by determining the current selec-

tion pressure that is acting on the population. Due to this eco-evolutionary feedback loop, the

environment in a sense co-evolves with the traits in the population. On an ecological time scale,

the defining property of the feedback environment is that individuals become independent of each

other when the feedback is given as a function of time (Diekmann et al. 2003; Meszéna et al. in

revision). On an evolutionary time scale I depends on the types present in the population and

on a population dynamical attractor of that population. I then contains the minimum number of

scalars that is needed to make the growth rate of a focal individual independent of the resident

population. The dimension of I indicates via how many different environmental components the

interaction between individuals is mediated and dim(I) constitutes an upper limit for the number

of potentially coexisting types (e.g. Meszéna et al. in revision).

In the present model the interactions between individuals are mediated by the densities of

the two resources R̂1 and R̂2. The upper limit for I and for the number of possibly coexisting

types is therefore two. Here we show that the dimension of I reduces to one when individuals

are only allowed to differ in tp, tm and α, as it is the case when we consider evolution in these

traits in populations monomorphic in e and f . To see this, let us consider a mutant θ′ with

manipulation time t′

m
that is invading a resident community consisting of the two phenotypes

θ1 and θ2 (the maximum number that can possibly coexist) with corresponding manipulation

times t1
m

= (t1m1, t
1
m2) and t2

m
= (t2m1, t

2
m2), respectively, resulting in the search probabilities s1

and s2 and equilibrium consumer densities N̂1 and N̂2. Superscripts refer to consumer types while

subscripts refer to resources specific traits. We can derive I from the fitness function of the mutant:

w(θ′, I(θ1, θ2). This function is given by Eq. (7) with the difference that the resource equilibria



– 17 –

are determined by the two resident phenotypes simultaneously (cf Eq. 6):

R̂i(θ
1, θ2) =

bi

di + eifi(s1N̂1 + s2N̂2)
for i ∈ {1, 2}. (B1)

Note that the different traits timj influence the resource equilibria only through the search proba-

bilities si and the consumer densities N̂ i. From Eq. (B1) we can see that it is sufficient to consider
∑2

i=1 siN̂ i as a function of time in order to achieve independence between the growth rate of an

individual and the resident community. This is a scalar and hence I is one-dimensional. The same

holds true if the population is polymorphic in either tp or α. Note, that populations that are

polymorphic in all three of these traits simultaneously still correspond to a one-dimensional I.

If the resident population is polymorphic in the capture probabilities, say, f1 = (f1
1 , f1

2 ) and

f2 = (f2
1 , f2

2 ), then the resource equilibria are given by:

R̂1(θ
1, θ2) =

b1

d1 + e1(f1
1 s1N̂1 + f2

1s2N̂2)

R̂1(θ
1, θ2) =

b2

d2 + e2(f1
2 s1N̂1 + f2

2s2N̂2)
.

Since the capture probabilities do have a resource specific impact, we need to specify two numbers

in order to achieve independence between individuals: I = (
∑2

i=1 f i
1s

iN̂ i,
∑2

i=1 f i
2s

iN̂ i). Hence,

the I vector does not reduce to a scalar but remains two-dimensional. The same result holds for

search efficiency e.

A consequence of a one-dimensional I-vector is that coexistence of two types is impossible.

This can be seen from the following argument (see also Meszéna et al. (in revision)). At population

dynamical equilibrium of two species with trait values θ1 and θ2

1 = w
(

θi, I(θ1, θ2)
)

for i ∈ 1, 2. (B2)

For an arbitrary combination of two trait values, solving the system of equations (B2) for a one-

dimensional I amounts to solving a system of two equations in one unknown. Hence, no generic

solution exists. By contrast, in case of two dimensions, Eq. (B2) is a system of two equations in

two unknowns, which can have a robust solution.

A one-dimensional feedback loop is a necessary prerequisite for the existence of an optimization

criterion (Metz et al. 1996b). However, we are able to find explicit optimization criteria only when

some symmetry constraints are met. When it is possible to collect those parameters of the fitness

function that are determined by resident and by the mutant in different factors, we can obtain an

optimization principle. Let us consider the case of manipulation time tm. A mutation only affects

search probability s. If e1 = e = e2, f1 = f = f2 and d1 = d = d2, we can rewrite Eq. (12) after

some rearrangement as

s′ =
1

1 + e

d+sefN̂(tm )
[f(b1t′m1 + b2t′m2) + (b1tp1 + b2tp2)]

. (B3)
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Any mutant with b1t
′

m1 + b2t
′

m2 smaller than the resident, is able to invade and a value of θ that

minimizes this sum cannot be invaded by any mutant and therefore corresponds to a CSS. Note,

that in deriving the optimization criterion in this way we do not need symmetry in b (compare

Section 4.2). From the same equation we see that in the case of pursuit time tp we have to minimize

b1t
′

p1 + b2t
′

p2 in order to find CSS’s.

With the same symmetry constraint we can rewrite the invasion fitness for α as

w(α′,α) = s
ef

d + sefN̂(α)
(α′

1b1 + α′

2b2). (B4)

It follows that α1b1 + α2b2 acts as an optimization criterion.
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Table 1: Notation. The index i refers to one out of two possible resources.
Term Definition

αi conversion efficiency of consumed resource into offspring
bi constant resource influx
Ci consumer’s functional response
di death rate of resource
ei consumer’s search efficiency [area/ time step]
fi capture probability for an attacked resource item
Nt consumer population density at time step t
pi consumer’s probability of attack upon encounter with resource
Ri resource density [1/area]
tmi manipulation time (needed for treatment of an already capture resource item)
tpi pursuit time (needed catch an attacked resource item)
s search probability (fraction of time spent searching for resources)
θ specialization coefficient ∈ [0, 1], determines location on the trade-off curve
w invasion fitness
z strength of trade-off (z > 1 strong, z = 1 linear, z < 1 weak)

Table 2: Overview of traits considered evolvable. Each parameter stands for a vector of two traits
coupled by trade-off.
Trait Dimension of Feedback Environment I Selection

conversion efficiency α one frequency-independent
search efficiency e two frequency-dependent
capture probability f two frequency-dependent
manipulation time tm one frequency-independent
pursuit time tp one frequency-independent
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Fig. 1.— Trade-off curves for capture probability f (a) and manipulation time tm (b). The number
next to each curve is the parameter z determining the strengh of the trade-off. Note that for capture
probability the phenotype set (i.e., the set of possible phenotypes) lies below the trade-off curve and
that the opposite holds true for manipulation time. The trade-off curve is parameterized in such a
way that θ = 0 corresponds to a specialist for resource one, and θ = 1 corresponds to a specialist for
resource two. Therefore the two trade-off curves are parameterized in opposite direction. All filled
circles half way on the trade-off curve correspond to the generalist with θ = 0.5. Other parameter
values: tmmax = (1, 1), tmmin = (0.5, 0.5), fmax = (1, 1).

Fig. 2.— Bifurcation diagrams for capture probability f (a) and manipulation time tm (b). Lines
indicate the location and type of evolutionarily singular values of the specialization coefficient θ
as a function of the bifurcation parameter z, the strength of the trade-off curve. Arrows give the
direction of evolutionary change. The hatched area indicates parameter combinations corresponding
to non-viable populations. Other parameter values: for (a) & (b) α = (1, 1), tp = (0.1, 0.1),
e = (0.05, 0.05), b = (5000, 5000), d = (0.1, 0.1); only for (a) fmax = (1, 1), tm = (0.1, 0.1); only
for (b) f = (1, 1), tmmin = (0.5, 0.5), tmmax = (1, 1). See text for further explanation.

Figure (1)
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Figure (2)
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