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Abstract

In this paper we study the relationships between local and global prop-

erties in networks of dynamical systems by focusing on two global proper-

ties, synchronization and peak-to-peak dynamics, and on two local prop-

erties, coherence of the components of the network and coupling strength.

The analysis is restricted to networks of low-dimensional chaotic oscilla-

tors, i.e. oscillators which have peak-to-peak dynamics when they work in

isolation. The results are obtained through simulation, first by considering

pairs of coupled Lorenz, Rössler and Chua systems, and then by studying

the behavior of spatially extended tritrophic food chains described by the

Rosenzweig-MacArthur model. The conclusion is that synchronization

and peak-to-peak dynamics are different aspects of the same collective

behavior, which is easily obtained by enhancing local coupling and co-

herence. The importance of these findings is briefly discussed within the

context of ecological modelling.
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1 Introduction

As is well known, coupling strength controls synchronization in networks of

dynamical systems ([Pecora & Carrol, 1990; Pecora & Carroll, 1998; Pikovsky

et al., 2001; Boccaletti et al., 2002; Manrubia et al., 2004]). In other words, a

property concerning local interactions among components of the network turns

out to be strategically important for the existence of simple global behaviors. In

this paper we extend the analysis of the relationships between local and global

phenomena in networks of various topologies by focusing on two global and two

local properties. The analysis is restricted to networks of N similar but not

identical low-dimensional chaotic oscillators linearly coupled with their nearest

neighbors. The fact that the components of the network are not identical pre-

cludes any analytical treatment, and in fact our analysis is based on numerical

simulations.

The interest for this class of networks is motivated by an ecological appli-

cation. Indeed, networks of similar but not identical oscillators can be used to

model species living in slightly different regions and flowing through the bound-

aries separating adjacent regions at a rate proportional to the difference of the

animal and plant abundances in the two regions ([Okubo, 1980]). Finally, the

assumption of low-dimensionality of each chaotic component of the network,

which a priori seems rather restrictive, is actually not very limiting in ecol-

ogy, as shown by a survey of the most common ecological models and of the

most studied (laboratory and field) ecological time-series ([Rinaldi et al., 2001;

Candaten & Rinaldi, 2003]).

The two local properties considered in the paper are coupling and coherence.

As for the coupling mechanism, we simply assume that if xi is the state vector

of the i-th oscillator and Si is the set of oscillators coupled with it, the state

equation is

ẋi = f(xi, pi) + εD(
∑

j∈Si

xj − mix
i) (1)

where ε is a positive scalar, called coupling strength, D is a specified diagonal

matrix with non-negative diagonal entries, mi is the cardinality of Si and pi is
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the parameter vector characterizing the i-th component of the network. Notice

that eq. (1) could be made more general by assuming that the coupling matrix

D depends upon i. However, we use here eq. (1) since in all the experiments

we have performed we have used constant coupling matrices.

By contrast, coherence is a property concerning each oscillator when it works

in isolation (ε = 0 in eq. (1)). Highly coherent oscillators are characterized by

a small variability of their ups and downs and, indeed, periodic oscillators are

infinitely coherent. Among the various ways of defining and measuring coherence

we have chosen the one used by [Liu & Lai, 2001] which is nothing but the µi/σi

ratio of the return times on a Poincaré section. In particular we use as Poincaré

section of each oscillator the manifold on which a scalar variable si associated

to the oscillator, called output variable, is maximum. Although the output

variable si could be any function of the state vector xi, in the following it will

be identified with one of the components of the vector xi, which means that

the behavior of each oscillator of the network is observed through one of its

state variables. Thus, µi and σi are simply the mean and standard deviation

of the time intervals separating successive peaks of the output variable si. Of

course, both µi and σi depend upon the parameter vector pi characterizing the

state equation ẋi = f(xi, pi) of each oscillator, so that it is possible to vary

particular components of each vector pi in order to control the coherence of all

the oscillators present in the network.

The two global properties discussed in the paper are synchronization and

peak-to-peak dynamics. As for synchronization we cannot refer to the extreme

notion of complete synchronization, defined as xi(t) ≡ xj(t) ∀(i, j) and ∀t be-

cause such a relationship can be satisfied only in networks with identical com-

ponents. We will therefore consider a weaker form of synchronization, called

almost complete synchronization ([Boccaletti et al., 2002]), by looking at the

4



correlations between the various oscillators. More precisely, if

R =
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is the N ×N correlation matrix, where ρi,j = ρj,i is the correlation between the

output signals si and sj when the network is on its attractor, the degree ρ of

synchronization is defined as the mean correlation index, i.e.

ρ =
2

N(N − 1)

N
∑

i<j

ρi,j .

Obviously, complete synchronization corresponds to ρ = 1, while values of

ρ slightly smaller than 1 correspond (by definition) to almost complete syn-

chronization, and are associated to networks in which all oscillators, observed

through their output variables, behave roughly in the same way. In particular,

in almost synchronized networks, outputs si of all oscillators peak almost at the

same time (we exclude here exceptional cases like those described in [Balmforth

et al., 2000]).

As for peak-to-peak dynamics, let us first recall what they are. For this

consider a nonlinear n-dimensional continuous time system observed through a

scalar output variable s(t) and assume that the system behaves on its attractor.

Thus, an infinite series of peaks ŝ1, ŝ2, ŝ3,. . . can be extracted from the signal

s(t) and used to obtain the peak-to-peak plot which is nothing but the set

of all pairs (ŝk, ŝk+1) in R2. The peak-to-peak plot is obviously composed of

K points if the attractor is a limit cycle and if the output variable peaks K

times during the entire cycle. By contrast, if the system is chaotic the peak-to-

peak plot is a fractal set. Moreover, in the case of low-dimensional chaos, i.e.

when the fractal dimension of the strange attractor in Rn is close to 2 (as it

is in the most known three-dimensional chaotic models ([Candaten & Rinaldi,

2000])) the fractal dimension of the peak-to-peak plot is close to 1, so that it

can be fairly well approximated by its so-called skeleton. i.e. by one or more

curves in R2 . Very often the skeleton is actually a single curve described by

5



a one-dimensional map ŝ′ = F (ŝ) which allows one to approximately forecast

the next peak ŝ′ of the output variable, as soon as the last peak ŝ is available.

For this reason the map F is called peak-to-peak map and the system is said

to have peak-to-peak dynamics, from now on abbreviated as PPD. Thus, in

conclusion, in low-dimensional chaotic systems the prediction of the peaks of any

output variable does not require n differential equations but much more simply

only a one-dimensional map. This is a very important result because in many

applications, in particular in those concerning social and environmental sciences,

the prediction of the peaks of a specific output variable is often the problem of

major concern. Actually, also the time τ separating two successive peaks can

be predicted from the value ŝ of the last peak, through a one-dimensional map

τ = G(ŝ). Therefore, in low-dimensional chaotic systems the dynamics of the

peaks is fully described by the following equations

ŝ′ = F (ŝ) t̂′ = t̂ + G(ŝ) (2)

where t̂ and t̂′ are the times of occurrence of two successive output peaks.

Coming back to our problem, let us first notice that the assumption that all

chaotic oscillators ẋi = f(xi, pi) of the network are low-dimensional is equivalent

to say that they all have PPD. In other words, each oscillator is endowed of a pair

of maps (Fi, Gi) that could be used to predict through eqs. (2) the next peak

ŝ′i and its time of occurrence t̂′i from the last peak ŝi and its time of occurrence

t̂i, when the oscillator works in isolation. Notice, however, that the possibility

of predicting the future peaks of each uncoupled oscillator does not imply that

the peaks of a scalar output variable s associated to the set of all oscillators can

be predicted. If, for example, s is the weighted mean of the output variables of

the oscillators, i.e. if

s =
N

∑

i=1

λisi (3)

where 0 ≤ λi ≤ 1,
∑

i λi = 1, the peaks of s occur when
∑

i λiṡi = 0 and

this does not necessarily imply that ṡi = 0 ∀i (in the following λi = 1/N ∀i).

Thus, using a continuity argument, we can say that the mismatch of the times

of occurrence of the output peaks of the N uncoupled oscillators (ε = 0 in (1))
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prevents the possibility of predicting the peaks of the output variable s of the

network when ε is very small. By contrast, if ε is increased it might be that some

form of synchronization attenuates the mismatch of the times of occurrence of

the local peaks so that PPD can emerge at the global scale. In such a case the

next peak ŝ′ of the output of the network (see (3)) and its time of occurrence

t̂′ can be predicted from the last peak ŝ and from its time of occurrence t̂

through eqs. (2) where F and G are one-dimensional maps depending upon all

parameters pi characterizing the oscillators and upon the coupling strength ε.

The previous discussion, mainly based on intuitive arguments, brings us nat-

urally to conjecture that synchronization and network PPD are simply different

aspects of the same dynamic phenomenon, namely the attenuation of the mis-

match in the rhythms at which the components of the network tend to oscillate.

It is therefore natural to expect that synchronization and global PPD emerge

not only when coupling strength is increased but also when coherence of the

oscillators is increased, because higher local coherence means smaller variability

in the rhythms locally produced in the network.

In order to support the above conjecture we present a rather systematic

study performed on various networks. More precisely, in the next section we

study pairs of coupled chaotic oscillators, but for three different types of oscilla-

tors, namely Lorenz system ([Lorenz, 1963]), Rössler oscillator ([Rössler, 1976]),

and Chua circuit ([Pivka et al., 1996]). Of course the analysis is performed by

varying local coherence and coupling strength and by fixing parameter values

which guarantee that these oscillators produce low-dimensional chaos when they

are uncoupled. Then in the third section we verify that the conjecture holds also

in more complex networks. For this we consider a very simple spatially extended

ecosystem composed of resource, consumer, and predator and we describe the

interactions among the three populations with a third order continuous-time

model which exhibits low-dimensional chaotic behavior for suitable values of its

parameters. We also assume that the territory where these populations interact

is composed of N homogeneous regions characterized by slightly different pa-

rameter values and that migration is possible between adjacent regions. In par-
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ticular, we consider three possible territorial topologies which give rise to three

different networks: a pair of coupled oscillators (N = 2), a one-dimensional

closed array of locally interacting oscillators (N = 50), and a rectangular array

of locally coupled oscillators (N = 20 × 20). Finally, in the last section we

point out open questions and show very briefly the potential of our findings by

commenting on the studies concerning the longest chaotic ecological time series,

namely that of the Canadian Lynx ([Elton & Nicholson, 1942]).

2 Pairs of coupled chaotic oscillators

This section discusses the simplest networks of chaotic oscillators, namely those

composed of only two coupled oscillators. Three prototypes, namely Lorenz,

Rössler and Chua systems, are used for the experiments. We show that al-

most complete synchronization is needed to achieve network PPD. Moreover,

our analysis points out that lower coupling strength is needed to achieve syn-

chronization when the oscillators have higher coherence.

The section is structured as follows. First we recall the state equations of the

three oscillators and check that for the proposed parameter values the oscillators

have low-dimensional chaos no matter if their coherence is high or low. Then,

we specify the coupling mechanism (i.e. the matrix D in (1)) and report the

results obtained at the network scale in terms of synchronization and PPD for

various values of the coupling strength and of the local degree of coherence.

The Lorenz oscillator

The Lorenz system is described by the following state equations ([Lorenz, 1963])

ẋ1 = σ1(x2 − x1)

ẋ2 = rx1 − x2 − x1x3

ẋ3 = x1x2 − b1x3

and the associated output variable is the third state variable. Reference param-

eter values are σ = 10, b = 8/3, while r ∈ [33, 52] is used to control coherence,
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which decreases with respect to r. For these parameter values the Lorenz oscil-

lator has PPD as shown in the upper block (first two rows) of Fig. 1. In the

first and second column of this figure the maps F and G used in (2) are shown.

The Lorenz system is not very coherent; in fact, the range of its return times

is rather large as shown in the second column of Fig. 1. In particular, both the

high and low coherence regimes present a pronounced tail toward high return

times, caused by the slowing down that trajectories experience when they pass

close to the origin.

The Rössler oscillator

The state equations of the Rössler oscillator are ([Rössler, 1976])

ẋ1 = −x2 − x3

ẋ2 = x1 + ax2

ẋ3 = b + x1x3 − cx3

and the state variable selected as output is the second one. Reference parameter

values are a = 0.2, b = 0.2, while parameter c ∈ [5, 9] controls coherence which

decreases with respect to c. The peak-to-peak plots from which the maps F

and G can be derived are shown in the second block of Fig. 1. As shown in

the second column of Fig. 1 the Rössler system, yet being chaotic, can be quite

coherent or poorly coherent, depending on the value of c. The low coherence

regime is often called “funnel regime” ([Blasius & Stone, 2000; Pikovsky et al.,

2001]) because of the tight swirls its trajectories produce when projected on the

(x1, x2) plane.
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The Chua oscillator

The Chua circuit is described by the following state equations ([Pivka et al.,

1996]):

ẋ1 = a(x2 − bx3
1 − cx1)

ẋ2 = x1 − x2 + x3

ẋ3 = −dx2 − ex3.

and the state variable considered as output is the second one. Reference pa-

rameter values are b = −0.5, c = 0.2, d = 31.25, e = −3.125, while parameter

a ∈ [−100,−65] controls coherence, which increases with it. The peak-to-peak

plots for which the maps F and G can be identified are reported in the third

block of Fig. 1. Depending on the value of a, the Chua system can be very

coherent or poorly coherent as shown in the second column of Fig. 1.

We now show the results obtained by simulating pairs of coupled oscillators

for each type reported above. As shown in Table 1, the parameter values of

the two coupled oscillators are very similar but not identical (small variations

with respect to reference values). By contrast, the parameter used to control

coherence has been systematically given the same value in both oscillators. As

for the coupling matrix D, we have made the simplest choice, namely the identity

matrix.

The simulations of the network have been performed by integrating eq. (1)

with the 4th order Runge-Kutta-Fehlberg method with 5th order error estimate

and the degree of synchronization has been measured with the mean correlation

index ρ. The results obtained by varying the coupling strength and the param-

eter controlling coherence in relatively large ranges are shown in Fig. 2 which

points out that almost complete synchronization is obtained for high values of

coupling and coherence. It is easy to notice that oscillators with higher coher-

ence need less coupling strength to synchronize. For example, in the case of the

Chua circuit, in the high coherence regime (a = −65) almost complete synchro-
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nization emerges already at the relatively weak coupling strength of ε = 0.075,

while in the low coherence regime (a = −100) almost complete synchronization

cannot be achieved even with a three times higher coupling strength.

As for global PPD we could produce a similar figure if we would be able

to define a synthetic indicator telling us if the network has or not (at least

approximately) PPD. The most natural indicator is the fractal dimension of

the peak-to-peak plot associated to the output s = 1

2
(s1 + s2) of the network.

However, the few trials we made in this direction did not give sharp results. By

contrast, a much more transparent message is obtained by showing explicitly

the peak-to-peak plots for a series of combinations of the coupling strength and

of the parameter controlling coherence. The result is shown in Fig. 3 where

16 peak-to-peak plots are reported for each type of network. If the coupling

strength is very small the two oscillators are not synchronized and the network

peak-to-peak plot is a cloud in a two-dimensional space. In other words, if the

two oscillators composing the network are very weakly coupled, peak-to-peak

dynamics is lost. By contrast, if the coupling strength is increased, PPD can

emerge, in particular if the oscillators are coherent.

Moreover, by comparing Figs. 2 and 3 one can conclude that all peak-to-

peak plots corresponding to values of the parameters which guarantee almost

complete synchronization are very narrow clouds around a skeleton, suggesting

a one-dimensional peak-to-peak map.

3 Spatially extended tritrophic food chains

In order to further support our conjecture on the role of local features in the

emergence of global phenomena in networks of low-dimensional chaotic oscilla-

tors, we present in this section a study on a simple spatially extended ecosystem.

For this we consider three populations, resource (x1), consumer (x2) and preda-

tor (x3), and use the most standard tritrophic food chain model, namely the

so-called Rosenzweig-MacArthur model ([Rosenzweig & MacArthur, 1963]) to

describe the interactions among the three populations in each homogeneous re-
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gion of a given territory. We consider, in particular, three possible cases. In

the first one the territory is composed of two regions with possible migrations

in both directions (e.g. a forest with a river flowing through it). In the second

case the territory is a circular ring composed of various homogeneous regions

where migration is possible in two directions (e.g. an ecosystem functioning in a

narrow circular band of land, like the border of a lake or of an island). Finally,

in the third case the territory is a two-dimensional compact area partitioned

in various regions (e.g. a large island with various watersheds). In practice,

in our idealized study we will consider three topologically different networks: a

pair of coupled oscillators (N = 2), a one-dimensional closed array of oscilla-

tors (N = 50), and a two-dimensional array with reflecting boundary conditions

(N = 20× 20). The Rosenzweig-MacArthur model is

ẋ1 = rx1

(

1 −
x1

K

)

−
a2x1

b2 + x1

x2

ẋ2 = e2

a2x1

b2 + x1

x2 − d2x2 −
a3x2

b3 + x2

x3

ẋ3 = e3

a3x2

b3 + x2

x3 − d3x3

(4)

where r and K are the net growth rate and carrying capacity of the resource

and a2, b2, e2, d2 [a3, b3, e3, d3] are maximum predation rate, half saturation

constant, efficiency, and death rate of consumer [predator]. The model can

have chaotic behavior ([Hastings & Powell, 1991; Kuznetsov & Rinaldi, 1996;

Kuznetsov et al., 2001]). Moreover, the strange attractor is low-dimensional, so

that there are peak-to-peak dynamics (as shown below).

The reference parameter values for consumer and predator populations (see

(4)) are reported in Table 2. They will be assigned to all oscillators composing

the network, while the parameters r and K qualifying the resource will slightly

depend upon the position of the oscillator in the network. This means that in

our ecosystem only the resource dynamics are not spatially homogeneous. In

the following, we focus our attention on the dynamics of the predator, i.e. we

select x3 as output variable of each oscillator. Figure 4 reports an example of

timeseries and shows that the third state variable presents two substantially

different kind of peaks: super-peaks, marked with empty circles (and defined as
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peaks dominating the previous and subsequent peaks) and other peaks. Here

we only consider super-peaks, for two reasons: first, because they are the most

interesting extreme events in the dynamics of a food chain, and second, because

each super-peak clearly identifies the end of an oscillation. Figure 5 shows the

(super) peak-to-(super) peak plots (ŝ, ŝ′) (first column) and (ŝ, τ) (second col-

umn) obtained for two different values of the parameter e2 controlling coherence.

In the first row (e2 = 0.96) the oscillator is quite coherent (µ/σ = 8.76) while

in the second row (e2 = 1.02) the oscillator is less coherent (µ/σ = 3.75). The

plots in Fig. 5 are fractal sets which, however, can hardly be distinguished from

their skeletons. This proves that the oscillator (4) has low-dimensional chaos

for the selected parameter values.

Let us now specify the characteristics of the three networks we have studied.

As for the coupling mechanism, we have assigned strongly different values to the

three diagonal elements (D1, D2, and D3) of the coupling matrix D, because

such elements measure the tendency to disperse of the three populations. For

example, in the case of a (plant, herbivore, carnivore) food chain, consumer

(herbivore) and predator (carnivore) can disperse much more than resource

(plant). For this reason, we will first present the results obtained with D3 =

D2 = 100D1 and then show the effect of the diversification of D2 and D3. As

for the network topology we consider the following three cases

• pair of coupled oscillators (N = 2)

• one-dimensional closed array (N = 50)

• two dimensional array with fully reflecting boundary conditions (N =

20× 20)

For the first [second] network, mi is equal to 1 [2] for all i in eq. (1), while for

the third network mi is equal to 2 (at the four corners of the grid), 3 (on the

edges of the grid) or 4 (at the interior of the grid).

As already said, all oscillators in the networks have been diversified by as-

signing slightly different values to the resource growth rate r and the carry-

ing capacity K. More precisely, for the pair of coupled oscillators (r = 1.15,
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K = 1.07) in the first oscillator and (r = 1.2679, K = 1.05) in the second, while

the values of r and K in the two other networks are shown in Fig. 6 and mimic

a possible spatial dependence due to factors like altitude, exposure to light and

wind, humidity, . . .

The results concerning the synchronization of the three networks are re-

ported in Fig. 7. As in the previous section, synchronization increases with

coupling strength and coherence. Sixteen samples of the peak-to-peak plot

of each network are shown in Fig. 8. The figure is very similar to Fig. 3

and shows that the peak-to-peak plots are dispersed clouds of points for low

coupling strength and coherence and gradually become one-dimensional curves

when coupling strength and coherence are increased. Moreover, the comparison

of Figs. 7 and 8 shows, once more, that synchronization and global peak-to-peak

dynamics are different aspects of the same phenomenon.

The results we have illustrated are robust. Indeed, fully similar diagrams are

obtained when the parameters are modified. Particularly interesting is the anal-

ysis of the case of asymmetric dispersion of consumer and predator (D2 6= D3)

because the corresponding synchronization diagram, reported in Fig. 9, points

out an interesting result, namely that predator dispersion favors synchronization

(and hence PPD) much more than consumer dispersion.

The qualitative results we have pointed out with the Rosenzweig-MacArthur

model can be obtained also with other tritrophic food chain models, like those

studied in [Candaten & Rinaldi, 2003] which have low-dimensional chaos. This

is true, for example, for the tritrophic food chain model used by Blasius and

Stone in their studies on phase synchronization ([Blasius et al., 1999; Blasius &

Stone, 2000]). It is important to notice, however, that phase synchronization is a

weak form of synchronization which does not guarantee a strong attenuation of

the mismatch of the times of occurrence of the peaks of the oscillators composing

the network. For this reason, we have not even considered it in this paper, since

phase synchronization is sometimes too weak to generate global peak-to-peak

dynamics.
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4 Concluding remarks

We have shown in this paper that almost complete synchronization and peak-

to-peak dynamics are different aspects of the same phenomenon in networks

of low-dimensional chaotic oscillators. This implies that one can use the mean

correlation index not only for checking if a network is synchronized or not, but

also for discovering if it has PPD. Conversely, a simple peak-to-peak plot can

be used to point out synchronization.

The key feature for the emergence of synchronization and peak-to-peak dy-

namics is the attenuation due to local coupling of the mismatch existing among

the rhythms at which the components of the network oscillate. Moreover, co-

herence of the oscillators acts as a catalyst for the emergence of these global

phenomena since networks of oscillators with higher coherence systematically

synchronize with lower coupling strength.

Due to the interest in a specific application, we have considered networks

composed of locally coupled not identical oscillators. This has ruled out the

possibility of any analytical treatment, and in fact the results have been derived

through extensive simulation. It might be interesting, however, to give a more

formal support to our findings by studying the special case of identical oscillators

through the Pecora and Carrol master stability equation ([Pecora & Carroll,

1998]). Another interesting problem is to find out if the results hold also for

other classes of networks, obtained by relaxing the assumption of local coupling.

Indeed, intuition and analogy with other studies suggest, for example, that

the addition of some degree of intermittent long-distance coupling might be

another strong catalyst for the emergence of synchronization and peak-to-peak

dynamics. Finally, a more important but possibly more difficult extension would

be to relax the assumption of low-dimensional chaos of the oscillators composing

the network.

However, despite obvious limitations, our findings are of definite importance

in the context of ecological modelling. Let us explain this by making reference

to a problem that has attracted a great number of scholars, namely the descrip-

tion of the oscillations of various species in various regions of Northern Canada
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(see, for example, [Elton & Nicholson, 1942]). Over such a large territory the

ecosystem is composed of a huge number of interacting populations which can

however be roughly considered as a tritrophic food chain where the prototyp-

ical herbivore and carnivore are, respectively, the hare and the lynx ([King &

Schaffer, 2001]). Thus, on the basis of the results obtained in the previous sec-

tion (see Fig. 9) we should not be surprised to be able to detect peak-to-peak

dynamics in the lynx numbers of Northern Canada because the lynx can diffuse

much more than the hare. A second and more convincing argument in favor

of this idea comes from the data collected by Elton and Nicholson ([Elton &

Nicholson, 1942]) on the yearly lynx catches in ten regions of Northern Canada

for about one century. Looking at these data, reported in Fig. 10, one can

immediately recognize, even without any explicit computation, that the lynx

numbers (proportional to the catches) are quite synchronized. This simple ob-

servation, together with the results pointed out in this paper, definitely suggests

that one should licitly expect peak-to-peak dynamics in the lynx numbers over

all Northern Canada. Indeed, some evidence of this astonishingly simple result

was recently produced ([Rinaldi et al., 2001]) through the analysis of the data

of the MacKenzie River region (λi = 1 in (3) for that region). However, the fact

that this result is consistent with the conceptual framework pointed out in this

paper, makes it more credible.
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Table captions

Tab. 1 Parameter values used in the simulations of pairs of coupled chaotic

oscillators.

Tab. 2 Reference parameter values of consumer and predator populations in

Rosenzweig-MacArthur model (4).



Table 1: Maggi & Rinaldi 2005

oscillator 1 oscillator 2

Lorenz
σ = 10 σ = 10.1

b = 8/3 b = 8/3

Rössler
a = 0.2 a = 0.24

b = 0.2 b = 0.35

Chua

b = -0.5 b = -0.6

c = 0.2 c = 0.2

d = 31.25 d = 31.25

e = -3.125 e = -3.125



Table 2: Maggi & Rinaldi 2005

consumer predator

a2 5/3 a3 1/20

b2 1/3 b3 1/2

e2 1 e3 1

d2 4/10 d3 1/100



Figure captions

Fig. 1 Peak-to-peak plots (ŝ, ŝ′) (first column) and (ŝ, τ) (second column) for

the three kinds of oscillators. Parameter values are at their reference

values (indicated in the text). In each block the first [second] row reports

the case of highest [lowest] coherence µ/σ. The skeletons of all these peak-

to-peak plots (which are fractal sets) are the peak-to-peak maps denoted

by F (first column) and G (second column) in the text (see eq. (2)).

Fig. 2 The degree of synchronization ρ in the three types of networks as a

function of coupling strength ε and of the parameter controlling coherence.

In each diagram coherence increases going upward. Parameter values of

the oscillators composing each network are in Table 1.

Fig. 3 Sixteen peak-to-peak plots (ŝ, ŝ′) for each one of the three types of

networks considered in the text. Each plot has been obtained for the

parameter values specified in Table 1 and for the values of the coupling

strength and of the parameter controlling coherence specified on the axis.

In each diagram coherence increases going upward.

Fig. 4 Timeseries of the third state variable (predator) in the Rosenzweig-

MacArthur model (4). Empty circles identify the so-called super-peaks.

Parameters as in Table 2, r = 1.15, K = 1.07.

Fig. 5 Peak-to-peak plots (ŝ, ŝ′) (first column) and (ŝ, τ) (second column) for

the Rosenzweig-MacArthur model (4). The first row corresponds to the

most coherent regime (e2 = 0.96, µ/σ = 8.76) while the second row cor-

responds to the less coherent regime (e2 = 1.02, µ/σ = 3.75). All other

parameters are as in Table 2, r = 1.15, K = 1.07.

Fig. 6 Dependence of r and K upon the position of the oscillator in the net-

work: (a) one dimensional closed array with N = 50; (b) and (c) two-

dimensional array with N = 20 × 20.

Fig. 7 The degree of synchronization ρ in the three networks composed of



Rosenzweig-MacArthur oscillators. In each diagram coherence increases

going upward. Parameter values as in Table 2, r and K as in Fig. 6.

Fig. 8 Sixteen peak-to-peak plots (ŝ, ŝ′) for each one of the three types of

networks composed of Rosenzweig-MacArthur oscillators. Each plot has

been obtained for the parameter values specified in Table 1 and for the

values of the coupling strength and of the parameter controlling coherence

specified on the axis. In each diagram coherence increases going upward.

Fig. 9 The degree of synchronization ρ in a two-dimensional network of Rosenzweig-

MacArthur oscillators with asymmetric dispersion of consumer and preda-

tor.

Fig. 10 Lynx fur returns in 5 regions of Northern Canada (reproduced from

[Elton & Nicholson, 1942]).
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ŝ ŝ

τ
τ

ŝ
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