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IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 122

EEP

The Evolution and Ecology Program at IIASA fosters the devel-
opment of new mathematical and conceptual techniques for un-
derstanding the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Evolution and Ecology Program
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.
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ABSTRACT 

During bouts of evolutionary diversification, such as adaptive radiations, the emerging species 
cluster around different locations in phenotype space, How such multimodal patterns in pheno-
type space can emerge from a single ancestral species is a fundamental question in biology. 
Frequency-dependent competition is one potential mechanism for such pattern formation, as has 
previously been shown in models based on the theory of adaptive dynamics. Here we demon-
strate that also in models similar to those used in quantitative genetics, phenotype distributions 
can split into multiple modes under the force of frequency-dependent competition. In sexual 
populations, this requires assortative mating, and we show that the multimodal splitting of ini-
tially unimodal distributions occurs over a range of assortment parameters. In addition, 
assortative mating can be favoured evolutionarily even if it incurs costs, because it provides a 
means of alleviating the effects of frequency dependence. Our results reveal that models at both 
ends of the spectrum between essentially monomorphic (adaptive dynamics) and fully polymor-
phic (quantitative genetics) yield similar results. This underscores that frequency-dependent 
selection is a strong agent of pattern formation in phenotype distributions, potentially resulting in 
adaptive speciation. 
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1. INTRODUCTION 

Explaining the origin of diversity is a core problem in evolutionary biology that continues to re-
ceive much attention from both empiricists and theoreticians (Coyne & Orr 2004; Dieckmann et 
al. 2004). The process of diversification can be described as evolutionary change taking place in 
phenotype space. If individual organisms are assessed for their phenotypes, populations can be 
represented by the corresponding phenotype distributions, giving information about their abun-
dance in the population. A single, ancestral population would typically yield a unimodal 
phenotype distribution, with the average phenotype being at or close to the distribution’s peak. 
Processes of speciation can then often be described as the splitting of an ancestral and unimodal 
phenotype distribution into two (or more) peaks or modes, so that the descendent species emerg-
ing from speciation correspond to different peaks of the phenotype distribution. On the 
phenotypic level, speciation can thus cause pattern formation: during speciation, unimodal pheno-
type distributions may become multimodal. 

Traditional explanations for such pattern formation through speciation are based on geo-
graphic isolation: different, but phenotypically similar, subpopulations of an ancestral species 
come to occupy different and mutually isolated habitats, in which they embark on different evolu-
tionary trajectories. These trajectories may eventually take the populations evolving in different 
habitats to different locations in phenotypes space, so that the joint phenotype distribution of all 
descendent species becomes multimodal. It is important to appreciate that this allopatric mode of 
phenotypic pattern formation and speciation results from geographical isolation, rather than from 
ecological interactions within the ancestral population. 

The situation is reversed for sympatric processes of speciation, which unfold due to ecologi-
cal interactions within the ancestral population, rather than as a consequence of geographical 
isolation. For example, when phenotypes differ in their resource preference, and when most indi-
viduals in an ancestral population prefer similar resources, selection may favour rare phenotypes 
with a different resource preference. In this case, diversification of the ancestral population may 
be an adaptive response to the detrimental effects of frequency-dependent competition. In gen-
eral, adaptive speciation occurs when an ancestral lineage splits into phenotypically diverging 
descendent lineages due to disruptive selection caused by frequency-dependent interactions 
(Dieckmann et al. 2004). In this mode of speciation, pattern formation in phenotype space is 
caused by interactions that are intrinsic to the ancestral population. The theoretical framework of 
adaptive dynamics predicts that such adaptive diversification can occur under a wide variety of 
ecological scenarios (Metz et al. 1996; Geritz et al. 1998; Dieckmann & Doebeli 1999; Doebeli 
& Dieckmann 2000, 2003; Dieckmann et al. 2004; Kisdi & Gyllenberg 2005). In this framework, 
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adaptive diversification is epitomized by the phenomenon of evolutionary branching, which oc-
curs when frequency-dependent selection drives a population towards a point in phenotype space 
at which selection turns disruptive. Evolutionary branching can be characterized mathematically 
and is a generic outcome of adaptive dynamics models (Metz et al. 1992, 1996; Geritz et al. 
1998; Kisdi & Gyllenberg 2005). 

Most models of evolutionary branching are based on a number of seemingly significant sim-
plifying assumptions. Chief among those are the assumptions that reproduction is asexual, and 
that populations are essentially monomorphic at all times (except when branching occurs, after 
which each of the emerging lineages is assumed to be essentially monomorphic). Obviously, both 
of these assumptions are often violated in real populations. It is thus important that it has been 
shown that evolutionary branching is also a robust outcome in asexual models of polymorphic 
populations (Metz et al. 1996; Meszéna et al. 2005), and that a number of recent models have 
incorporated explicit genetics to study adaptive speciation in sexual populations (Doebeli 1996; 
Dieckmann & Doebeli 1999; Drossel & McKane 2000; Dieckmann et al. 2004; Kondrashov & 
Kondrashov 1999; Kisdi & Geritz 1999; Geritz & Kisdi 2000; Doebeli & Dieckmann 2003; 
Doebeli 2005; Schneider & Bürger 2006; Bürger & Schneider 2006; Bürger et al. 2006). In sex-
ual populations under disruptive selection, random mating typically prevents speciation, so that 
diversification requires the presence of assortative-mating mechanisms ensuring that individuals 
preferentially mate with similar phenotypes. Such mechanisms have been considered in models 
with genetic architectures based on small to intermediate numbers of loci with additive effects 
(see articles cited above). One general conclusion of such studies is that adaptive speciation, or 
pattern formation in phenotype space, is possible in sexual populations when mating is assorta-
tive. 

It has recently been suggested by Polechová & Barton (2005) that occurrences of adaptive 
speciation in sexual populations could often be a consequence of the particular genetic models 
used, and that other genetic models would not generate diversification in sexual populations even 
with assortative mating. One reason for this caveat might be that in genetically explicit models 
with a finite number of loci and with finite allelic effects, a population’s variance is automatically 
constrained, leading to more intense intraspecific competition and thus strengthening disruptive 
selection. In models with more flexible genetic architectures, intraspecific competition might 
simply result in increased population variance. In particular, for populations described by a con-
tinuous phenotype distribution (rather than by a single monomorphic type or by the frequencies 
of a finite number of types), one might have the intuitive expectation that frequency-dependent 
competition merely flattens unimodal phenotype distributions, thus compensating for the effects 
of competition. According to this intuition, frequency-dependent selection would not result in 
pattern formation in phenotype space, i.e., in a bimodal or multimodal split of the phenotype dis-
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tribution, and hence would not result in adaptive speciation. 
To describe the dynamics of continuous phenotype distributions under frequency-dependent 

competition, Polechová & Barton (2005) used the “infinitesimal” model of quantitative genetics, 
which assumes a large (infinite) number of unlinked loci with additive effects (Roughgarden 
1979; Bulmer 1980). Polechová & Barton (2005) claim that in such models, frequency depend-
ence never leads to adaptive speciation even if mating is assortative. This would support the 
intuitive notion that frequency dependence can generate increased population variance, but not 
pattern formation in the form of bimodal or multimodal phenotype distributions. These questions 
are very interesting and deserve further study. In this paper we use a more general class of mod-
els to show that frequency-dependent competition in sexual populations indeed leads to pattern 
formation in phenotype space under many circumstances. 

The intuitive notion that in models for continuous phenotype distributions, frequency depend-
ence only leads to increased variance, but not to phenotypic clusters, thus turns out to be wrong in 
general. Instead, if mating is assortative, frequency-dependent competition often generates multi-
ple phenotypic modes also in infinitesimal models. Since a population’s split reduces the strength 
of disruptive selection, assortative mating facilitates the evolutionary response to frequency de-
pendence. Consequently, there is selection for assortative mating in initially randomly mating 
populations, in which segregation and recombination would otherwise prevent the emergence of 
multiple modes. This is why pattern formation in phenotype space is a possible outcome of fre-
quency-dependent competition in infinitesimal models of sexual populations. 

Our results show that, with regard to adaptive diversification, the outcomes of asexual adap-
tive dynamics models at one end of the spectrum, and of infinitesimal sexual models at the other 
end, are surprisingly congruent. In the sexual models, assortative mating is required for adaptive 
speciation to occur, but in both types of model the emergence of distinct phenotypic clusters out 
of unimodal or even monomorphic ancestral populations can readily be caused by frequency-
dependent ecological interactions. This pattern formation in sexual models could be an important 
mechanism underlying the instability and disruption of the sexual continuum of phenotypes 
(Maynard Smith & Szathmáry 1995; Noest 1997), and hence could help address the fundamental 
question why life forms appear to cluster phenotypically (Coyne & Orr 2004). 

2. MODEL DESCRIPTION 

Below we introduce the dynamics of the density distribution ( )xφ  of a quantitative character x  
in a sexual population. 
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(a) Ecological dynamics 

The ecological model underlying our analysis is an extension of Lotka-Volterra competition 
equations to polymorphic populations, in which the competitive impact of phenotype y  on a 
phenotype x  is measured by the competition kernel ( )x yα − . For a focal phenotype x , the total 
competitive impact experienced in a population described by the distribution φ  is given by the 
convolution 

 ( ) ( ) ( ) ( )x x y y dyα φ α φ∗ = − .∫  (1) 

In the asexual case, the dynamics of the distribution φ  are then given by the following partial dif-
ferential equation, 

 1 / .r r r K
t K
φ α φφ φ φ α φ∂ ∗⎛ ⎞= − = − ⋅ ∗⎜ ⎟∂ ⎝ ⎠

 (2) 

Here r  is the intrinsic growth rate, which we assume to be independent of the phenotype x , and 
( )K x  determines the carrying capacity as a function of x . Thus r Kφ α φ− ⋅ ∗ /  corresponds to the 

usual competition term in Lotka-Volterra models, whereas rφ  describes exponential population 
growth. 

(b) Mating and reproduction 

We incorporate sexual reproduction following standard procedures (Roughgarden 1979; Bulmer 
1980; see also Polechová & Barton 2005). We assume that matings are initiated bilaterally. The 
probability of mating between two phenotypes u  and v  is therefore proportional to the product 
of two preference functions, which we assume to be Gaussian, 

 
2 2

2 2

1 ( ) 1 ( )( ) exp exp
2 22 2A AA A

u v u vA u v
σ σπσ πσ

⎛ ⎞ ⎛ ⎞− −
, = − ⋅ − ,⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (3) 

where Aσ  is a measure for the degree of assortment: large Aσ  correspond to random mating, 
while small Aσ  correspond to assortative mating (note that we will always assume here that as-
sortative mating occurs with respect to the quantitative character that determines the ecological 
interactions). 

In accordance with the assumptions underlying the infinitesimal model of quantitative genet-
ics (Bulmer 1980), we assume that a mating between phenotypes u  and v  produces a Gaussian 
offspring distribution ( ) / 2 ( )

fu vN xσ+ , , with a mean equalling the midparent value ( ) 2u v+ /  and a 
variance of 2

fσ . 
To establish a baseline case, we assume that all phenotypes have the same per capita birth 

rate. This means that the relative contribution a mating with phenotype v  makes to the offspring 
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pool of a given phenotype u  must be normalized by the total amount of mating that phenotype u  
participates in, 

 ( ) ( ) ( )N u A u v v dvφ= , .∫  (4) 

Then the distribution of offspring with phenotypes x  produced by phenotype u  is given by 

 ( ) / 2
1 ( ) ( ) ( )
( ) fu vv A u v N x dv

N u σφ + ,, .∫  (5) 

Finally, the total density of offspring at phenotype x  resulting from all possible matings is given 
by 

 ( ) / 2
1( ) ( ) ( ) ( ) ( )
( ) fu vx u v A u v N x dv du

N u σβ φ φ + ,

⎡ ⎤
= , .⎢ ⎥

⎣ ⎦
∫ ∫  (6) 

The mating scheme just described for the infinitesimal model is a direct extension of the one used 
in Dieckmann & Doebeli (1999) for genetically explicit multilocus models. 

Putting everything together, we obtain the following equation for the dynamics of phenotype 
distributions in sexual populations, 

 /r r K
t
φ β φ α φ∂
= − ⋅ ∗ .

∂
 (7) 

The essential parameters in this dynamical system are Aσ  (degree of assortment) and fσ  (width 
of the so-called segregation kernel (Roughgarden 1979) that describes the offspring distribution 
of a given mating pair), as well as the functional forms of the ecological functions α  and K . For 
numerical simulations of the partial differential equation (7), we always used carrying capacity 
functions K  with finite variance, which implies that phenotypes that are far from the optimal 
phenotype are not viable. This allows the numerical simulations to be restricted to a finite interval 
without creating artefacts. 

(c) Competition kernel and carrying capacity function 

It is already very interesting to study the dynamics of the asexual model, eq. (2), which is deter-
mined by the functions α  and K . In particular, one can ask whether, for given functions α  and 
K , equilibrium distributions of the asexual model exhibit phenotypic clustering in the form of 
multiple modes. For example, if the competition kernel α  and the carrying capacity K  are both 
of Gaussian type with variances 2

ασ  and 2
Kσ , respectively, then the model has an equilibrium 

density distribution that is also Gaussian, with variance 2 2max(0, )K ασ σ−  (if 2 2
K ασ σ−  is negative, 

the equilibrium distribution has all its density concentrated at the maximum of K ). In particular, 
with Gaussian α  and K , equilibrium distributions of the asexual model never exhibit more than 
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one phenotypic cluster. 
It is known, however, that the asexual model with Gaussian ecological functions is structur-

ally unstable (Sasaki and Ellner 1995; Sasaki 1997), and that generic choices for the ecological 
functions often lead to pattern formation with distinct phenotypic clusters (Meszéna et al. 2005). 
We therefore use competition kernels of the form 

 
2

2( ) exp
2

x y
x y

α

α

ε

ε
α

α
σ

+

+

⎛ ⎞−
− = ⎜− ⎟

⎜ ⎟
⎝ ⎠

 (8) 

and carrying capacity functions of the form 

 
2

0 2( ) exp
2

K

K
K

xK x K
ε

εσ

+

+

⎛ ⎞
= − .⎜ ⎟

⎝ ⎠
 (9) 

Here the shape parameters αε  and Kε  measure deviations from the Gaussian case. 

(d) Equilibrium distributions 

For 2Kαε ε= =  (the “quartic” case in which the competition kernel and the carrying capacity are 
both platykurtic), it can easily be shown numerically that equilibrium distributions of the asexual 
model (2) have multiple peaks whenever ασ  is small enough. 

By contrast, for the sexual model (7) with Gaussian ecological functions α  and K  with vari-
ances 2

ασ  and 2
Kσ , one can show, by carrying out the various integrals introduced above, that a 

Gaussian equilibrium distribution exists whose variance 2
eqσ  satisfies the following equation, 

 
2 2 2

eq
4 2 2 4 2 2 2 2 2 2
eq eq eq eq eq

2( )
4 ( ) 2 (2 ) (8 5 )

A

f A f A f

σ σ
σ σ σ σ σ σ σ σ σ σ

+

+ + + + +
 

 2 2 2 2
eq eq

1 1 1
2 2( ) 2 Kασ σ σ σ

= + − .
+

 (10) 

For example, in the case of random mating, Aσ = ∞ , the variance of the Gaussian equilibrium 
distribution satisfies 

 2 2 2 2 2 2
eq eq eq

1 1 1 1
2 2 2( ) 2f Kασ σ σ σ σ σ

= + − .
+ +

 (11) 

Similarly, in the case of extreme assortative mating, 0Aσ = , there is a Gaussian equilibrium dis-
tribution with a variance satisfying 

 2 2 2 2 2 2
eq eq eq

1 1 1 1
2( ) 2 2( ) 2f Kασ σ σ σ σ σ

= + − .
+ +

 (12) 

The existence of Gaussian equilibrium distributions in infinitesimal models in which the eco-
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logical functions have Gaussian form may be perceived as supporting the claim that frequency-
dependent competition in polymorphic populations does not usually generate multimodal pheno-
type distributions. However, two important caveats need to be kept in mind. First, even though a 
Gaussian equilibrium distribution exists, it may not be stable under the dynamics given by eq. 
(7). Second, the existence of the Gaussian equilibrium given by eq. (10) depends on the assump-
tion that the ecological functions α  and K  have Gaussian form. As mentioned above, the 
asexual model with Gaussian ecological functions is structurally unstable, and hence there is no 
reason to believe that sexual models with non-Gaussian ecological functions and assortative mat-
ing would generally admit unimodal equilibrium distributions. 

The use of Gaussian functions for α  and K  has a long tradition in the literature (Roughgar-
den 1979). Unfortunately, other than for the fact that a Gaussian decrease in competitive effects 
and in carrying capacities appears to be heuristically appealing, there is no reason for using these 
particular functional forms. In fact, Ackermann & Doebeli (2004) have shown that the case in 
which both the competition kernel and the carrying capacity are Gaussian with finite variance 
cannot be derived from the underlying mechanistic consumer-resource model introduced by 
MacArthur (1972), which lies at the basis of most competition models for continuous characters 
(Roughgarden 1979). This in itself does not mean that the Gaussian case is biologically implausi-
ble, but it means that there is no biological reason why this case should receive preferential 
treatment over other, more general functions, such as those given by eqs. (8) and (9). In fact, the 
mathematical simplicity of the Gaussian case, which sometimes allows analytical equilibrium 
solutions, may lead to an undesirable bias towards drawing conclusions from a structurally unsta-
ble scenario (Meszéna et al. 2005). More general models, such as those based on eqs. (8) and (9), 
will generally yield more robust results, even though one typically has to resort to numerical 
simulations for solving the corresponding dynamical equations for the phenotype distribution. 

3. RESULTS 

Before we turn our attention to the effects of assortative mating on the dynamics of phenotype 
distributions in sexual populations, we mention two general conditions that are necessary for pat-
tern formation to result in multimodal distributions. First, the width of the offspring distribution 
of a given mating pair, fσ , must be small enough compared to the width of the carrying capacity 
function, Kσ . Wide offspring distributions tend to homogenize populations and hence to prevent 
pattern formation. Second, the force of frequency-dependent selection needs to be strong enough 
for the emergence of multiple phenotypic clusters. For our purposes, this means that in the eco-
logical functions given by eqs. (8) and (9) the width of the competition kernel, ασ , must be small 
enough compared to the width of the carrying capacity function, Kσ . Wide competition kernels 
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weaken frequency-dependent disruptive selection and hence prevent pattern formation. 

(a) Implications of assortative mating 

Even with these necessary conditions being satisfied, we never observed phenotypic pattern for-
mation when mating was random, in which case the equilibrium distributions were invariably 
unimodal. However, strikingly different outcomes resulted when mating was assortative, i.e., for 
small enough Aσ . This is illustrated in figure 1, which shows stable equilibrium distributions of 
the infinitesimal model for different values of Aσ  for the case in which the competition kernel 
and the carrying capacity are both Gaussian. As we pointed out in the previous section, this 
model admits Gaussian equilibrium distributions with variances given by eq. (10). These equilib-
rium distributions are stable for high Aσ  (random mating, figure 1a) as well as for very low Aσ  
(very strong assortment, figure 1d). In these cases, the numerical simulations are in exact agree-
ment with the analytical predictions for the variances of the equilibrium distribution given by eq. 
(11) for Aσ = ∞  and by eq. (12) for 0Aσ = . 

However, there is a range of intermediate values of Aσ  for which the Gaussian equilibrium 
distributions are unstable, and instead the dynamics converges to an equilibrium distribution ex-
hibiting distinct phenotypic modes, as shown in figures 1b,c. Because mating is assortative, the 
phenotypic clusters emerging through such pattern formation represent incipient species: the re-
sultant clusters are reproductively isolated to a large degree, with little gene flow occurring 
between them. To illustrate the niche partitioning between the incipient species, the grey lines in 
figure 1 show the carrying capacity function K , indicating the total available niche space. For 
figures 1b,c, the initial phenotype distributions were chosen to be very close to the Gaussian equi-
librium distribution, but, rather than approaching this Gaussian equilibrium, the system diverges 
from these unimodal distributions and exhibits pattern formation. Our numerical simulations in-
dicate that when the multimodal equilibrium distributions are stable, they are attractors for a large 
range of initial conditions. This is illustrated in figure 2 for the case shown in figure 1b. 

We note that the fact that the Gaussian equilibrium is stable for very small Aσ  (figure 1d) is a 
consequence of the special and non-robust characteristics of the Gaussian case for the asexual 
model, in which Gaussian ecological functions always generate unimodal solutions (see previous 
section): for very strong assortative mating, the sexual model becomes similar to the asexual 
model (albeit even in the limit of 0Aσ =  the sexual model is not exactly equivalent to the asexual 
model unless 0fσ = ). 

Figures 3a-d show examples of equilibrium distributions for quartic ecological functions, i.e., 
for 2Kαε ε= =  in eqs. (8) and (9). Again, random mating results in unimodality (figure 3a), but 
assortative mating readily results in multimodal phenotype distributions (figures 3b-d). In this 
case, diversification occurs even for very strong assortative mating (figure 3d), corresponding to 
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the fact that models with quartic ecological functions admit multimodal solutions even in the 
asexual case. In contrast to the case of Gaussian ecological functions, the existence of unimodal 
equilibrium distributions (stable or unstable) cannot be asserted when ecological functions are 
non-Gaussian. Even if such equilibrium distributions exist in the quartic case, our simulations 
indicate that they are never stable when assortment is strong enough. In particular, for the values 
of Aσ  used for figures 3a-d, the dynamics converge to the shown multimodal equilibrium distri-
butions, independently of the various initial conditions that we tested. 

In the quartic case, our extensive numerical simulations indicate that the dependence of pat-
tern formation on the various parameters can be roughly summarized as follows. First, for 
multimodal pattern formation we have the basic requirement that ασ  must be small enough to 
produce frequency-dependent disruptive selection, i.e., Kασ σ< . Second, both fσ  and Aσ  need 
to be small compared to ασ  and Kσ . We have found that this can be approximately summarized 
by the two conditions f A ασ σ σ+ <  and 3f A Kσ σ σ+ < / . Our simulations indicate that these 
conditions generally imply pattern formation in the quartic case. These conditions also apply in 
the case of Gaussian ecological functions, except that with Gaussian functions, we have the addi-
tional condition f Aσ σ< . If this condition is not satisfied, the sexual system behaves like the 
Gaussian asexual model and possesses a stable unimodal distribution (figure 1d). On theoretical 
grounds, it is difficult to assess the biological relevance of the above conditions. There is at least 
some empirical support for the ecological condition Kασ σ<  (Bolnick et al. 2003), and situations 
in which the genetic kernels (described by fσ  and Aσ ) are narrower than the ecological kernels 
(described by ασ  and Kσ ) do not appear to be unrealistic. 

Figure 4 further illustrates the generality of the phenomenon of diversification through pattern 
formation in phenotype space in the presence of assortative mating. In figure 4a, we considered 
different forms of the carrying capacity function by varying the shape parameter Kε , while as-
suming a Gaussian form for the competition kernel ( 0αε = ). For a given carrying capacity 
function K , we varied the assortative mating parameter Aσ  from values corresponding to ran-
dom mating (right) to values representing strong assortativity (left). For each parameter 
combination ( )A Kσ ε, , the figure indicates whether the resulting equilibrium phenotype distribu-
tion had a single or multiple modes. Analogously, in figure 4b we considered different forms of 
the competition kernel α  by varying the shape parameter αε , while assuming a Gaussian form 
for the carrying capacity function ( 0Kε = ). 

To produce figure 4, we used uniform initial phenotype distributions to start the dynamics for 
each tested parameter combination. However, the results were virtually identical when Gaussian 
initial distributions with unit variance were used. That these very different initial conditions 
yielded the same results underscores that the long-term dynamics of the models considered is 
largely independent of the initial conditions. Thus figure 4 shows that diversification resulting in 
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multimodal phenotype distribution occurs for a wide range of assortative mating parameters, and 
for general classes of competition kernels and carrying capacity functions. 

(b) Evolution of assortative mating 

Given that assortative mating can facilitate phenotypic diversification due to frequency-
dependent interactions, as evidenced in figures 1 and 2, it is natural to ask whether there is selec-
tion pressure on assortment itself to evolve in initially randomly mating populations. We analyze 
the selection acting on assortment in two steps. We first assume that the degree of assortment is 
asexually inherited (one could think of it as being maternally inherited), which permits an adap-
tive dynamics analysis. We then implement the sexual inheritance of the assortment trait based on 
standard quantitative genetics in an individual-based model. 

For the adaptive dynamic analysis, we extended eqs. (7) to two types differing in their degree 
of assortment. This allows us to follow the dynamics of the phenotype distributions of the two 
different types, and in particular to determine when one type can invade the other. With 1( )xφ  
and 2( )xφ  denoting the phenotype distributions of the two types with assortative mating parame-
ters 

1Aσ  and 
2Aσ , respectively, the resulting dynamics are given by 

 1
1 1 1 2( ) / ,r r K

t
φ β φ α φ φ∂

= − ⋅ ∗ +
∂

 (13) 

 2
2 2 1 2( ) /r r K

t
φ β φ α φ φ∂

= − ⋅ ∗ + .
∂

 (14) 

Because the two types are ecologically equivalent, their per capita death rates 1 2( )r Kα φ φ⋅ ∗ + /  
are equal, while their birth rates 1( )xβ  and 2( )xβ  may differ as a result of differential assortment. 
These birth rates are derived in the Appendix. 

To understand the evolutionary dynamics of assortative mating, we used eqs. (13) and (14) to 
generate pairwise invasibility plots (Metz et al. 1996; Geritz et al. 1998). These are two-
dimensional plots in which possible resident phenotypes are shown on the horizontal axis and 
possible mutant phenotypes on the vertical axis. For each resident-mutant pair ,res ,mut( , )A Aσ σ , we 
first let a population consisting only of the resident type reach equilibrium, and then introduced a 
mutant type at small total density, in order to evaluate whether the mutant’s growth rate was posi-
tive or negative. The mutant’s initial phenotype distribution was assumed to have the same shape 
as the resident’s equilibrium distribution, but with a much reduced total density. Using eqs. (13) 
and (14), the mutant’s growth rate was measured as the change in total density over a number of 
subsequent generations. This procedure generates a partitioning of the pairwise invasibility plot 
into plus-regions, indicating that for such resident-mutant pairs the mutant can increase when rare 
and hence will potentially invade the resident, and minus-regions, indicating that the mutant can-
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not invade the corresponding resident but instead will go extinct.  
Figure 5 shows examples of such pairwise invasibility plots that were obtained using the 

same ecological functions as used in figures 1 and 3. In figure 5, regions in which the mutant can 
invade the corresponding resident are black, while regions in which the mutant cannot invade the 
corresponding resident are white. In both figure 5a (Gaussian ecological functions) and figure 5b 
(quartic ecological functions), the area below the diagonal is black, whereas the area above the 
diagonal is white (note that the diagonal itself belongs neither to the plus- nor to the minus-
region, because a rare mutant with the same assortment phenotype as the resident will neither 
grow nor decline in total density, since the resident is at equilibrium). For very small resident 
values of Aσ , mutant growth rates are very close to zero. This is because in such resident popula-
tions any rare mutant has a strong effective assortment very similar to the resident, which is a 
consequence of the assumption that the probability of mating between two types is determined by 
the product of their respective preferences; see eq. (16) in the Appendix. Thus, for very small 
values of Aσ  selection as measured by initial mutant growth rates is nearly neutral, which is indi-
cated by medium grey shading in figures 5a and 5b. Nevertheless, the figures show that there is 
directional selection for decreased Aσ , and hence for increased assortativity. This is not surpris-
ing: selection favours increased assortativity because assortative mating is a mechanism that 
facilitates the evolutionary response to frequency-dependent competition (Dieckmann & Doebeli 
1999). This mitigation of frequency dependence manifests itself as pattern formation in pheno-
type space. 

There are various ways in which assortative mating could incur fertility costs. One straight-
forward way to incorporate such costs in the models studied here is to assume that the intrinsic 
growth rate r  is negatively affected by increased assortativity, i.e., by decreased Aσ . For exam-
ple, we can replace the birth terms ( )i xβ  in eqs. (13) and (14) by 

 1 (1 ) ( )
iA ic xσ β⎡ ⎤− / + ,⎣ ⎦  (15) 

so that the new cost parameter c  determines the maximal fertility cost, incurred for very strong 
assortativity (i.e., for 0Aσ → ). With costs of assortment, the pairwise invasibility plots change 
qualitatively, as is shown in figures 5c and 5d. For low resident values of Aσ , the plus- and mi-
nus-regions are now reversed across the diagonal, so that the plus-region is above the diagonal 
and the minus-region is below the diagonal. This means that for low resident values of Aσ  mu-
tants with higher values of Aσ  than the resident, i.e., less assortative mutants, can invade, while 
more assortative mutants cannot. Thus, at low values of Aσ  there is directional selection for less 
assortative mating. However, at high values of Aσ  there is still directional selection for increased 
assortativity (i.e., for lower Aσ ). The point at which the two regimes of directional selection meet 
on the horizontal axis is an evolutionary attractor for the degree of assortment. Once the popula-
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tion has reached the corresponding degree of assortment, either from above or from below, no 
further invasion of nearby mutants occurs. As expected, costs of assortative mating thus move the 
evolutionary attractor for the trait Aσ  away from 0. Figures 5c and 5d show that even for moder-
ately high costs of assortative mating, the degree of assortment is still expected to evolve to 
substantial levels. 

Finally, we used an individual-based model to investigate the full evolutionary dynamics of 
assortment. In such a model, individuals are described by their ecological trait x  and by their as-
sortment trait Aσ . At each point in time, every individual experiences a per capita death rate and 
a per capita birth rate. The per capita death rate is determined by the ecological trait and is calcu-
lated according to the death term in eq. (7) (integrals are replaced by sums over all individuals in 
the population). The per capita birth rate incorporates potential costs of assortment and is given 
by (15). At each point in time, individual rates are summed up to give the total birth and death 
rates B  and D , respectively. The waiting time until the next birth or death event is drawn from 
an exponential probability distribution with mean 1 ( )B D/ + , and a birth or death event is then 
chosen with probabilities ( )B B D/ +  and ( )D B D/ + , respectively. If a death event occurs, one 
individual is chosen probabilistically according to its relative contribution to the total death rate. 
The chosen individual is removed, and the birth and death rates of all other individuals are ad-
justed accordingly. If a birth event occurs, one individual is chosen probabilistically according to 
its relative contribution to the total birth rate. The chosen individual then selects a mating partner 
probabilistically according to the mate choice function given by eq. (16) in the Appendix, evalu-
ated for all other individuals in the population (as before, mate choice is based on the ecological 
trait). The resulting mating pair produces an offspring whose phenotypes are drawn from two 
Gaussian distributions with means given by the midparent values of the two traits and with stan-
dard deviations fσ  for the ecological trait and assfσ ,  for the assortment trait. The offspring 
individual is inserted, and the birth and death rates of all other individuals are adjusted accord-
ingly. This stochastic model naturally extends to finite populations the deterministic models 
introduced and analyzed above. 

Figure 6 shows examples of the joint evolutionary dynamics of the ecological phenotype and 
the assortment phenotype in the individual-based model. The initial conditions for these dynam-
ics were chosen such that populations were mating approximately randomly. As a consequence, 
the phenotype distribution for the ecological trait was initially unimodal (figure 6a). However, 
despite costs of assortment, assortative mating readily evolved to a degree that allowed the for-
mation of phenotypic clusters, and hence diversification (figures 6b and 6c). 
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4. DISCUSSION 

Our results show that even in infinitesimal genetic models for the dynamics of continuous pheno-
type distributions in sexual populations, frequency-dependent selection can split the population 
into separate phenotypic clusters when mating is assortative. If such pattern formation in pheno-
type space occurs, the emerging phenotypic clusters represent incipient species, as they are at 
least partially reproductively isolated due to assortative mating. Thus, frequency-dependent selec-
tion can cause adaptive speciation in these models. 

Apart from assortative mating, two requirements need to be met for diversification to occur. 
The width of the offspring distribution produced by a given mating pair must be small enough, 
and frequency dependence must be strong enough. Our extensive numerical explorations of thou-
sands of different cases revealed that when these conditions are satisfied, pattern formation 
occurs for a wide range of assortative mating parameters and for a wide range of forms of the 
competition kernel and the carrying capacity function. Moreover, assortative mating can readily 
evolve in initially randomly mating populations even if it comes at considerable cost. This is in 
accordance with recent results from explicit multilocus models showing that costs to assortment 
do not prevent adaptive sympatric speciation unless such costs are high (Doebeli & Dieckmann 
2005; Doebeli 2005; Schneider & Bürger 2006; Bürger & Schneider 2006; Bürger et al. 2006). In 
this study, we have focused on assortative mating based on the ecological trait under frequency-
dependent selection. Such assortment models are usually called one-allele models (Kirkpatrick & 
Ravigné 2002), in contrast with two-allele models, in which assortment is based on a selectively 
neutral display trait. The evolution of assortment in two-allele models for adaptive speciation has 
been studied in models with explicit multilocus genetics (Dieckmann & Doebeli 1999; Doebeli 
2005), with the conclusion that, while recombination between the display trait and the ecological 
trait hinders adaptive diversification, speciation is nevertheless possible in such scenarios, even if 
there are costs to assortment (Doebeli 2005). It would clearly be interesting to study two-allele 
scenarios in infinitesimal models incorporating frequency-dependent competition. 

Also, in this paper we have only considered costs to assortment that differentiate between dif-
ferent levels of assortative mating. For a population with a fixed degree of assortment, these costs 
are the same for all individuals. However, it is important to consider also scenarios in which there 
is a cost to assortment due to Allee effects. In this case, individuals may differ in fertility even in 
populations with a fixed degree of assortment, because rare phenotypes will encounter fewer pre-
ferred mates than common phenotypes, and so may have lower fertility. Allee effects can be 
incorporated into infinitesimal models (Noest 1997), and results for the dynamics of pattern for-
mation in such models will be reported elsewhere. Implementing the individual-based model 
introduced at the end of the previous section is a straightforward exercise, and we invite readers 
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to explore the dynamics of phenotypic pattern formation based on their own models and/or im-
plementations. Whether the regions in parameter space for which diversification can be observed 
are biologically realistic is a question that needs to be addressed in empirical studies, but, mathe-
matically speaking, it is clear that phenotypic pattern formation is a robust outcome of 
infinitesimal models. 

In fact, diversification involving assortative mating may be easier in infinitesimal models than 
in other, more explicit genetic models based on a finite number of loci with finite effects, such as 
those investigated by Dieckmann & Doebeli (1999), Kirkpatrick & Nuismer (2004), Schneider & 
Bürger (2006), Bürger & Schneider (2006), and Bürger et al. (2006). One obstacle to speciation 
in such models is that genetic variation in the ecological trait can be exhausted if mating is 
strongly assortative (Kirkpatrick & Nuismer 2004; Bürger et al. 2006). This cannot happen in 
deterministic infinitesimal models, in which offspring distributions always range across the 
whole spectrum of phenotypes (albeit with very low frequencies at most phenotypes). In infini-
tesimal models all phenotypes are thus present at all times, and hence any loss of phenotypes on 
which selection can act is not a problem. At any rate, the results reported here for infinitesimal 
models are in surprisingly good overall agreement with models for adaptive diversification based 
on adaptive dynamics and on multilocus genetics (Dieckmann & Doebeli 1999; Doebeli & 
Dieckmann 2000; Bürger et al. 2006), supporting the understanding that adaptive speciation due 
to frequency-dependent interactions can safely be considered a theoretically plausible scenario. 

It should, of course, be analyzed whether infinitesimal models can indeed provide a suffi-
ciently accurate approximation of multilocus dynamics under frequency-dependent disruptive 
selection. This may well be the case over shorter time spans, involving mostly standing genetic 
variation (Bulmer 1980), but the robustness of this approximation becomes more uncertain when 
one takes into account mutation and substitution of allelic effects at the loci. It could happen that 
variation typically becomes concentrated on just one or a few loci (van Doorn & Dieckmann 
2006), which is similar to the outcome predicted in adaptive dynamics models. Alternatively, 
variation might increase at all loci, potentially increasing fσ , which could in principle result in a 
stable unimodal equilibrium distribution. In addition, there are other possible evolutionary re-
sponses to frequency-dependent competition, such as sexual dimorphism and a widening of 
individual niche widths (Bolnick & Doebeli 2003; Ackermann & Doebeli 2004; Rueffler et al. 
2006) that could be considered. Although these are relevant issues, here we have focused our 
treatment on the infinitesimal model used by Polechová & Barton (2005) because, at the very 
least, it represents a conceptually interesting and traditionally well received case. 

Our results are in contrast to those reported by Polechová & Barton (2005) for infinitesimal 
models in which both the competition kernel and the carrying capacity are Gaussian functions. 
Rather than focusing on the actual dynamics of phenotype distributions, results presented by 
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Polechová & Barton (2005) only concern the variance of Gaussian equilibrium distributions: 
these authors seem to have implicitly assumed that the dynamics of the infinitesimal model al-
ways converges to such Gaussian solutions. In particular, Polechová & Barton (2005) did not 
consider the possibility that the Gaussian equilibrium could be unstable, nor did they investigate 
models with non-Gaussian ecological functions, which might not admit unimodal equilibrium 
solutions in the first place. Our results show that, in general, the dynamics of infinitesimal models 
do not converge towards unimodal equilibrium distributions when mating is assortative. While 
they do not appear to have numerically solved the infinitesimal model, Polechová & Barton 
(2005) mention that their simulations of a related model, the “symmetric” model with explicit 
multilocus genetics, suggest that dynamics in that symmetric model always converge to Gaussian 
equilibrium solutions, thus apparently lending support to their implicit assumption of stable 
Gaussian equilibrium distributions for the infinitesimal model. However, evaluating dynamical 
stability of one model in terms of another model is obviously not possible. Moreover, it has al-
ready been shown by Doebeli (1996) that the symmetric model also often exhibits pattern 
formation in the form of bimodal equilibrium distributions when mating is assortative. 

Based on their analysis of the infinitesimal model, Polechová & Barton (2005) concluded that 
the process of assortment itself, irrespective of any frequency-dependent competition, was the 
most important driver of divergence in sexual models of sympatric speciation. This conclusion 
was based on observing that in the infinitesimal model with Kσ = ∞  and sufficiently strong as-
sortment, the variance of a solution can increase without bound, even in the absence of 
frequency-dependent competition (i.e., if ασ = ∞ ). The possible role of assortment in permitting 
genetic divergence is of course a relevant issue. For the infinitesimal model, equilibrium solu-
tions with infinite genetic variance exist. For instance, for an infinite width of the carrying 
capacity function, and with very strong assortative mating ( 0Aσ = ) but without frequency de-
pendence, eq. (12) for determining the equilibrium variance eqσ  reduces to 2 2 2

eq eq1 ( ) 1fσ σ σ/ + = / , 
which only admits eqσ = ∞  as a solution. This solution might be regarded as an artefact of the 
assumption of the infinitesimal model that there is an unlimited supply of genetic variation in the 
population. Nevertheless, the qualitative conclusion that assortment sometimes can relax genetic 
constraints and thus enable an increase in genetic variation seems valid. 

An interesting question is then if assortment itself, without frequency-dependent competition, 
can lead to pattern formation. For our model, making the assumptions of very strong assortment 
( 0Aσ = ), no frequency dependence ( ασ = ∞ ), and a Gaussian carrying capacity with finite Kσ , 
we infer from eq. (12) that there is a Gaussian equilibrium distribution with finite variance 

2 2 2 21
eq 2 ( 4 )f f f Kσ σ σ σ σ= − + + , which is approximately equal to f Kσ σ  for small fσ . Numerical 

simulations indicate that this unimodal solution is always stable. Similarly, when the carrying ca-
pacity is not of Gaussian form, but still unimodal, even very strong assortative mating never 
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generated pattern formation in the absence of frequency dependence. Thus, in our numerical 
analysis of the infinitesimal model, speciation was never observed when frequency dependence 
was absent, independent of the strength of assortment. 

We can gain an intuitive understanding of the reason for this conclusion by noting that eq. (7) 
in the limit of 0Aσ →  approaches the asexual case in eq. (2), except that the offspring distribu-
tion ( ) / 2 fu vN σ+ ,  acts like a mutation kernel, smoothing the distributionφ . For such an asexual 
model, with very high rate of mutation and no frequency-dependent competition, there is no rea-
son to expect clustering of phenotypes, since there are no forces that could counteract the 
homogenization of a multimodally clustered distribution. Thus, under very strong assortment the 
sexual production of offspring, involving segregation and recombination, can increase genetic 
variation in the infinitesimal model, in a manner analogous to the process of mutation. This 
source of variation, however, cannot in itself drive pattern formation, just as mutation cannot in 
itself drive pattern formation. In the infinitesimal models considered here and in Polechová & 
Barton (2005) speciation is thus impossible without frequency-dependent competition. 

The results reported here are in complete agreement with those of Noest (1997), who pre-
sented an analytical study of a special class of infinitesimal models, in which the carrying 
capacity was assumed to be uniform (i.e., independent of x ), and the competition kernel was as-
sumed to be Gaussian. These models admit a uniform equilibrium phenotype distribution, and 
Noest (1997) investigated the conditions under which this uniform solution becomes unstable in 
the presence of assortative mating. His analytical results match our numerical results in essential 
aspects: if the offspring distribution is sufficiently narrow and frequency dependence is suffi-
ciently strong, then the uniform solution can become unstable when mating is assortative. Noest 
(1997) did not study more general forms of the ecological functions, for which analytical results 
are not feasible, and he did not consider the evolution of assortative mating. However, his results 
already clearly showed that frequency dependence and assortative mating can break up the sexual 
continuum (Maynard Smith & Szathmáry 1995) through the formation of multimodal distribu-
tions in phenotype space. Our results lead to the same conclusion for a more general class of 
models and evolutionary scenarios: adaptive speciation can occur as a result of pattern formation 
in phenotype space due to frequency-dependent selection and the evolution of assortative mating. 
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APPENDIX 

Here we derive expressions for the birth rates 1( )xβ  and 2( )xβ  used in eqs. (13) and (14). The 
probability of mating between type 1 and type 2 is the product of their respective preferences de-
termined by 

1Aσ  and 
2Aσ . Thus, for a given phenotype u  of mating type 1, the probability of 

mating with a phenotype v  of mating type i  (where 1i =  or 2i = ) is proportional to 

 
11

2 2

1 2 2

1 ( ) 1 ( )( ) exp exp
2 22 2

ii

i
A AA A

u v u vA u v
σ σπσ πσ

⎛ ⎞⎛ ⎞− −
, = − ⋅ − .⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (16) 

In accordance with eq. (7) for the single-type case, the offspring distribution of type 1 is then 
given by 

 [ ]1 1 1 11 2 12 ( ) / 2
1

1( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) fu vx u v A u v v A u v N x dv du

N u σβ φ φ φ + ,

⎡ ⎤
= , + , ,⎢ ⎥

⎣ ⎦
∫ ∫  (17) 

where 

 [ ]1 1 11 2 12( ) ( ) ( ) ( ) ( )N u v A u v v A u v dvφ φ= , + ,∫  (18) 

provides the normalization necessary to ensure that, up to explicit costs of assortment, all pheno-
types have the same total reproductive output. An analogous formula holds for 2 ( )xβ . 

If there is only one assortment type present, with assortative mating parameter Aσ , the above 
two-type model reverts to the original single-type model. 
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FIGURE LEGENDS 

Figure 1. Equilibrium phenotype distributions for different degrees of assortative mating with 
Gaussian competition kernel and Gaussian carrying capacity function, corresponding to 

0Kαε ε= =  in eqs. (8) and (9). (a) Random mating ( Aσ = ∞ ) does not allow pattern formation. 
(b,c) Assortative mating (with 0 56Aσ = .  and 0 28Aσ = . , respectively) can generate multimodal 
phenotype distributions. (d) With Gaussian ecological functions, very strong assortative mating 
( 0Aσ = ) leads to unimodal phenotype distributions. In each panel, the grey curve shows the car-
rying capacity function K . Other parameters: 1r = , 0 1K = , 2Kσ = , 1ασ = , and 0 2fσ = . ; 
initial phenotypes distribution were Gaussian with variance equal to that of a solution of eq. (10); 
dynamics were run for 410  time units. 

Figure 2. Dynamics of the system shown in figure 1b for different initial conditions (shown as 
thick curves). (a) Gaussian initial distribution with variance equal to 2

Aσ . (b) Gaussian initial dis-
tribution with variance equal to that of a numerical solution of eq. (10). (c) Uniform initial 
distribution (i.e., the phenotypic density is independent of x ). In each case, the total density of 
the initial distribution was equal to the total density of the Gaussian equilibrium distribution 
whose variance is given by eq. (10). In all cases, phenotype distributions converge to the trimodal 
equilibrium shown in figure 1b. 

Figure 3. Equilibrium phenotype distributions for different degrees of assortative mating with 
quartic competition kernel and carrying capacity function, corresponding to 2Kαε ε= =  in eqs. 
(8) and (9). (a) Random mating ( Aσ = ∞ ) does not allow pattern formation. (b-d) When assorta-
tive mating is strong enough ( 0 56Aσ = . , 0 28. , and 0  in (b) to (d), respectively), it always allows 
multimodal phenotype distributions. In each panel, the grey curve shows the carrying capacity 
function K . Other parameters: 1r = , 0 1K = , 2Kσ = , 1ασ = , and 0 2fσ = . ; initial phenotypes 
distribution were Gaussian with variance 1; dynamics was run for 410  time units. 

Figure 4. Dependence of the number of modes in equilibrium phenotype distributions on eco-
logical functions and assortative mating. (a) Gaussian competition kernel. Deviations from 
Gaussian form in the carrying capacity function are measured by Kε  in eq. (9), ranging from 

0 8− .  to 0 8.  in increments of 0 05.  along the vertical axis. The degree of assortment is measured 
by Aσ  in eq. (3), ranging from 0  to 1.41 in increments of 0 07.  along the horizontal axis. For 
each grid point, the infinitesimal model in eq. (7) was run from uniform initial conditions to equi-
librium ( 410  time units). Grey levels indicate whether the equilibrium distribution was unimodal 
(dark grey) or multimodal (light grey); intermediate grey levels indicate interpolated regions in 
which modality is uncertain. (b) Gaussian carrying capacity function. Deviations from Gaussian 
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form in the competition kernel are measured by αε  in eq. (8), ranging from 0 8− .  to 0 8.  in in-
crements of 0 05.  along the vertical axis. Other settings as in (a). Other parameters: 1r = , 0 1K = , 

2Kσ = , 1ασ = , and 0 2fσ = . . 

Figure 5. Pairwise invasibility plots for the degree of assortment. In each plot, the horizontal axis 
shows resident values of Aσ  and the vertical axis mutant values of Aσ . Regions are shaded ac-
cording to whether for resident-mutant pairs in that region the rare mutant’s growth rate is 
positive (black) or negative (white). Intermediate grey levels indicate regions in which the rare 
mutant’s growth rate did not differ from 0 by more than 510− . (a) Gaussian competition kernel 
and Gaussian carrying capacity function, corresponding to 0Kαε ε= =  in eqs. (8) and (9). (b) 
Quartic competition kernel and carrying capacity function, corresponding to 2Kαε ε= =  in eqs. 
(8) and (9). Without costs of assortment, the pairwise invasibility plots show directional selection 
for increased assortative mating. (c,d) Same as (a,b), but with the cost of assortment set to 

0 75c = .  in (15). Now there is an intermediate level of assortativity to which directional evolution 
converges from both above and below. The corresponding intermediate resident degree of as-
sortment cannot be invaded by any mutants (as indicated by the white regions) and hence is 
evolutionarily stable. Other parameters: 1r = , 0 1K = , 2Kσ = , 1ασ = , and 0 2fσ = . . The pair-
wise invasibility plots were obtained by varying resident and mutant values of Aσ  from 0 to 1 in 
increments of 0.0375. For each resident-mutant pair, the resident’s phenotype distribution was 
first allowed to equilibrate from a flat initial distribution for 410  time units, before a rare mutant 
with the same distribution shape as the resident but low total density was introduced; the mutant’s 
growth rate was then measured over 100 time units. 

Figure 6. Evolutionary dynamics of the individual-based model for Gaussian and quartic eco-
logical functions and for costs of assortment set to 1c =  in (15). (a) In both cases, the initial 
distribution in the two-dimensional phenotype space was chosen to describe a randomly mating 
population (high values of Aσ ) situated at the maximum of the carrying capacity function. (b) 
Evolutionary outcome for Gaussian ecological functions. (c) Evolutionary outcome for quartic 
ecological functions. After 410  time units, phenotype distributions in both cases have moved into 
the region in which mating is assortative, permitting multimodality in the ecological phenotype. 
The shown bimodal distributions are stable and no longer change appreciably. This illustrates that 
pattern formation through the evolution of assortative mating is possible even if assortative mat-
ing is costly and the degree of assortment is inherited sexually. Other parameter values were the 
same as in figure 5, except for 0K  in eq. (9), which was set to 0 600K =  (in the individual-based 
model, this parameter can be used to scale the total population size, which equalled approxi-
mately 500 individuals in the shown simulations). The parameter assfσ ,  describing the width of 
the offspring distribution in the direction of the assortment trait was set to 0 05. . 
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