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1. Introduction

Increasing vulnerability of the modern society is an alarming tendency of
current global changes. Losses from human-made and natural catastrophes
are rapidly increasing (Climate Change, 1999). For example, within the last
two decades the direct catastrophe damages from only natural disasters
have increased nine-fold. Catastrophes destroy communication systems,
the electricity supply and the irrigation. They affect consumption, savings
and investments. The main reason for the increasing catastrophe losses is
the lack of appropriate information on risks leading to the clustering of va-
lues in risk prone areas and the creation of new risk prone areas. The stan-
dard economic theory is based, in fact, on rather strong assumptions of cer-
tainty. It is assumed that economic agents know all possible shocks (states of
the world), i.e., they know when, how often, and what may happen to each of
them. Therefore, they can easily pool resources available in any state of the
entire society, i.e., a catastrophe becomes small on the scale of the world
(Arrow, 1996). In reality this pool does not exist, which calls for more realistic
models with explicit representation of uncertainties and associated risks.
Especially important are models that explain connections between poverty,
stagnation, and shocks. One of the reasons which could cause low growth
(Easterly, 1994), (Solow, 1997) is the low saving rates typically observed in
low-income countries: economies where the majority of citizens have in-
comes close to minimum of subsistence level are unlikely to have a high rate
of savings. Obviously, shocks affect savings, but the low saving rate is not
sufficient to explain within conventional deterministic models why the
sustained growth may not “take-off”.

This paper analyzes effects of random shocks on economic growth and
stagnation. A shock is understood as an event destroying a part of capital
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stock. For example, shocks may be due to the flight of capital from the coun-
try. We show that on average the economy may still grow exponentially, but
actual growth path exhibits stagnation, shrinking and even traps. Funda-
mental deterministic and stochastic models of economic growth are nicely
discussed in (Sargent, 1987), (Solow, 1997). In our model we analyze effects
of endogenously generated shocks when their impacts (probability distri-
bution) depend on the level of economic developments. Shocks of this type
are responsible for the increasing catastrophic losses and the vulnerability
of interacting socio-economic and natural systems. Section 4 illustrates that
even in the case of the exponential growth, persistent in time shocks may
implicitly modify the production function of the economy and lead to traps
and path dependencies.

The stabilization of growth has to rely on deliberately designed anticipa-
tive (forward looking, ex-ante) and adaptive (backward looking, ex-post) de-
fensive strategies such as borrowing, loss reduction measures, insurance
and financial markets. As the economy grows crossing certain thresholds
(instability levels), the assistance for growth can be reduced or completely
disappear. Section 2 analyzes effects of shocks on sustained growth. In sec-
tion 3 we illustrate that ex-ante and ex-post policies for dealing with shocks
are not substitutes and must be analyzed jointly as complementary deci-
sions. The outlined in this section and section 5 a two-stage dynamic stocha-
stic programming model incorporates both ex-ante and ex-post decisions.
It essentially differs from models of the standard control theory through the
presence of anticipative decisions, and it differs from the traditional models
of the expected utility theory through the presence of adaptive decisions.
Qualitatively, this model provides more realistic decision making framework
according to which only some decisions are made ex-ante, whereas other
options are kept open until more information about shocks becomes avail-
able and, hence, can be better utilized in ex-post decisions. In discussed mo-
dels a strong risk aversion occurs even for linear utility functions. Section 4
illustrates the convergence of an economy under shocks to a path of sustai-
ned growth. Shocks implicitly modify the economy, and the convergence
becomes path dependent. The economy may stagnate without appropriate
growth efforts to by-pass various traps and thresholds. Section 5 contains
more detailed mathematical formulation of the outlined in sections 3 and 4
models. Section 6 concludes.
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2. Exponential economic growth

Let us use some mathematical notations to simplify the otherwise very leng-
thy explanations. The ability to grow in our simple conceptual model is cha-
racterized by the production function with two factors: “capital” and
“labor”, Y = F(K,L), and constant returns to scale, Y = LF(K /L,1) , where Y
 is its output. Therefore, we can characterize the economy in terms of capital
to labor ratio, k = K /L , and output to labor ratio, y = Y /L, y = f (k):= F(k,1).
Assume that output Y  is subdivided into consumption and savings, and sav-
ings are equal to investments I . The growth is driven by the accumulation of
capital through investments

  = I – δK , K(0) = K
0
, t > 0,  (1)

where δ, 0 < δ < 1, is the capital depreciation rate. Assume further that the
investments I(t ) are simply a fraction s, 0 < s < 1, of the output, i.e., I(t) = sY
(t ), and γ is an exponential growth rate of the population, d /dt lnL = γ.
We can then rewrite (1) in variables k :

 = sf (k) – (γ + δ)k, k(0) = k
0
, t > 0. (2)

or

 lnk = s – γ – δ. (3)

If the output to capital ratio is constant  θ, i.e., y /k = f (k) /k = θ, then it
leads us to the very influential Harrod-Domar (Ray, 1998), (Solow, 1997)
model with constant exponential rate of growth

    lnk = s θ – γ – δ. (4)

According to (4), the rate of growth is determined jointly by the saving rate s
and the  productivity of capital θ, that is, the inverse of the capital-output
ratio. From y /k = θ  follows that the growth in real output d /dt ln y(t) is the
same as the growth in the capital stock d /dt lnk(t). Therefore, the expo-
nential growth is defined by linear function

(5)

dK
dt

dk
dt

ln y = ln y
0

+ (s θ – γ – δ)t , y (0) = y (0) = y
0
, t > 0.

d
dt

f (k)
k

d
dt
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The economy is a complex system constantly facing shocks and changes.
A catastrophe is one of such shocks. We can model shocks similarly to the de-
pletion of capital reducing the rate of growth  sθ – (n + δ)  by a random level
ν = ν(t, y, ω), where ν(t, y, ω) denotes impacts of the shock ω at the current
y (t ). Shocks occur at random time moments T

0
, T

1
, T

2
, … , T

0
= 0, ν(0, y, )ω)= 0.

The random intensity  ν  in our model depends on the aggregate current level
y(t ). In realistic versions of the model ν(t, y, ω) depends on the geographical
distribution of the wealth and shocks as well as on other country-specific
sources of vulnerability. The accumulation of investments in specific risk
prone regions and sectors of the economy can make significant difference
to the probability distribution of ν. The instability of the economy due to
shocks, say, from natural disasters, may provoke the flight of capital from the
country and further magnify the instability. Shocks, in general, transform
linear function (5) into highly nonlinear (discontinuous) random function
(see Fig. 1)

(6)

where  N(t)  is the number of shocks in the interval  (0,t] , and ν
i
 is the size of

these shocks.

Assume that random variables ν
1
, ν

2
, … are independent, identically dis-

tributed, and they are independent of intershock times τi
= T

i
– T

i–l
. If

intershock times have stationary distribution with mathematical expec-
tation λ, then E ln y(t) = ln y

0
+ (sθ – γ – δ – λμ)t. Since, ln Ey(t )>E lny(t ),

then the expected exponential growth is still characterized by a linear in

Figure 1. Expected and real growth rates.

ln
y 0

 + (sθ – γ – δ)t

ln y 0
+ (sθ – γ – δ)t –V(t)

ln y0
+ (sθ – γ – δ – λμ)t

t

ln y (t ) = ln y
0

+ (sθ – γ – δ)t –V (t ), V(t) = ν
i
 ,

Ν(t)

t=1

∑
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t function (see Fig. 1) and it is positive when the rate of investments exceeds
the average rate of losses, sθ – γ – δ – λμ > 0. At the same time real random
growth path y(t,ω) may considerably fluctuate. From the strong law of large
numbers it follows that

with probability 1. It means that for each possible random growth path
y(t, ω) the sustained growth “takes-off” only after a random time T(ω),  i.e.,
ln y (t, ω) ≈ (sθ – γ – δ – λμ)t > 0, t > T(ω).On the way to the sustained growth
for t <T(ω)  the economy may stagnate and even shrink, i.e., it requires as-
sistance.

Thus, for a given  t  there may exist a positive probability that accumulated
random losses exceed accumulated growth

(7)

This probability characterizes the vulnerability of the growth, whereas the
probability of the complementary event characterizes its resilience. The abi-
lity of the growth to sustain a given target rate  g  can be characterized by the
probability that the accumulation of growth between successive (say, t  and
t  +τ) shocks exceeds possible losses, i.e.,

(8)

where V(t, τ) are losses associated with the first shock which occurs at time
t + τ after t. Let us note that the deterministic model characterized by the
linear function ln y

0
+ (sθ – γ – δ – λμ)t is not able to address these issues

since it ignores the variability of the real growth path, i.e., it ignores the risk of
growth. In our simple model this is equivalent to the substitution of the
complex jumping process ln y (t )by the linear function

(9)

This function still shows the exponential growth with increased deprecia-
tion rate δ + λμ, but it ignores possible stagnation of the economy in the in-
terval [0,T ]. The uncertainty analysis, which is usually recommended after
such deterministic substitutions, can not reveal the possibility of the stag-
nation either, since in our case it is equivalent to the turning around the
function (9).

(sθ – γ – δ)t –V(t) ≤ 0.

(sθ – δ – γ)τ –V(t, τ) ≥ q τ ,

ln y
0

+ (sθ – γ – δ – λμ)t .

A

t
ln y(t, ω) → sθ – γ – δ – λμ
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3. Stabilization of growth: Anticipative and adaptive strategies

The common practice to deal  with economic shocks is to use adaptive (ex-
post) measures as borrowing, foreign aid, and the diversion of investments
committed to other needs. This section illustrates the importance of both
anticipative (ex-ante) and adaptive (ex-post) control strategies in order to be
prepared for shocks before they occur, as well as to have enough flexibility to
react more effectively to revealed situations.

The deterministic Harrod-Domar model (4) is a building block in the
growth control (Ray, 1998), (Khan et al., 1990). According to (4), the overall
rate of growth in the interval  [t, t + Δt] for small enough Δt  is approximately
defined as

(10)

This equation links the growth rate of the economy to two fundamental va-
riables: the ability of the economy to save and the productivity of the capital
θ. By increasing the rate of savings s or capital productivity θ, it would be
possible to accelerate the rate of growth. This creates the basis for program-
ming of the growth rate, i.e., the design of policies which provide such levels
of parameters s, θ, γ, δ, that guarantee a given level of growth g. A “gap” be-
tween available investments and the investment required to achieve the
output growth target, e.g., due to “unforeseen” shock, provides the informa-
tion for the borrowing needed to cover this “gap”.

Equation (10) has rather conceptual, symbolic character. In realistic mo-
dels values of all parameters s, θ, γ, δ are defined by various components.
For example, the distribution of incomes among the population and invest-
ments among various sectors of the economy and geographical regions may
play a critical role for the stability of the growth. If some of the parameters
s, θ, γ, δ or their components are fixed, then missing values can be defined
from (10). As it was pointed out in (Ray, 1998, p. 58), such “if-then” analysis in
many cases does not make sense, since the parameters that are used to pre-
dict growth rate may themselves be affected by the growth processes. Be-
sides this, a critical issue arises with the naïve adaptive sequential adjust-
ments of growth rates. It is evident that the analysis of the growth rate at time
t only for the next interval [t, t + Δt ] may not provide a good idea to develop
preparedness and loss reduction measures for rare events. The occurrence
of a shock in a small interval of length Δt is often evaluated by negligibly
small probability  λΔt , but the probability  l – (l – λΔt)T  /  Δt ≈ l – e λT  of a shock

[Y(t + Δt) – Y(t )] / ΔtY(t) ≈ sθ – γ – δ .
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in the interval [0,T ] is dramatically increasing with T . Therefore, the control
of growth must take a long-term perspective in order to develop measures
against the “unforeseen” otherwise shocks.

The coexistence of anticipative and adaptive decisions within the same
model can be viewed as a rather flexible decision making framework when
we ex-ante commit ourselves only to a part of possible decisions and, at the
same time, we keep other options open until more information becomes
available and can be effectively utilized by appropriate ex-post decisions. In
other words, these decisions are not evaluated in a sequential, “one-by-one”
manner, since the most important is the synergy of them. Thus a certain level
of mitigation measures increasing, say, resistance of buildings to earthqua-
kes, may essentially increase their insurability. On the other hand, the exis-
tence of insurance may enforce the mitigation measures through appropri-
ate reductions in prices of insurance contracts.

The need for coexistence of ex-ante and ex-post decisions becomes
more evident from the following simple situation. Assume that there are
only two time intervals: “now”, t = 0, and “future”, t = 1. Ex-ante decision x  is
made at t = 0, whereas ex-post decision y(ω) is made at t = 1 on the basis of
information about impacts ν(ω) of shock ω and the decision x. The deci-
sion x stabilizes the economy from losses ν(ω) below the level x at the cost
cx, i.e., ν(ω) is transformed into the function

ν(x, ω) =

The ex-post borrowing z(ω) further stabilizes the economy from losses
ν(x, ω) at the cost ß(ω)z(ω). The cost-efficient stabilization minimizes ex-
pected value of the function

f (x, y(ω)) = cx + E(β(ω)z(ω)), x ≥ 0,

where z(ω) = ν(ω) – x  for x ≤ ν(ω). It is clear that z(ω) = max{0, ν(ω) – x},
i.e., z(ω) depends on (x, ω). Thus, the cost-efficient stabilization is reduced
to the minimization of the function

F(x) = cx + E (β(ω) max {0, ν(ω) – x})

ν(ω) – x , if x ≤ ν (ω),

0 , otherwise.{

x

–ν
= cx + ∫ β(ν)(ν – x)ϕ(ν) dν,
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x

for x ≥ 0 . Here we assume that the probability distribution of v  has the sup-
port [0, ν], with a continuous density function ϕ(ν). From this it follows that
F(x) has the continuous derivative F’(x) and, as it is easy to verify, F ’(x) = c –
∫ β(ν)ϕ(ν)dν. A solution of this problem may be x = 0, i.e., the stabiliza-
tion totally relies on the borrowing. The function F’(x) is monotonically in-
creasing for x → ν. Therefore, if  c < ∫ β(ν)ϕ(ν)dν, or c < E β(ν), then there is
a positive value x = x*, x* ≠ ν, such that F’ (x*) = 0. Here x* = ν  is excluded be-
cause c > 0. If β(ω) does not depend on ω, β(ω) = β , then x* is a quantile or
the so-called Value-at-Risk (VaR) of  v(ω) satisfying the equation (Ermoliev &
Wets, 1988, p. 416)

P [ν > x] = .

Thus, the minimization of the linear in (x, y (ω)) function f (x, y (ω)) does
not lead to the dominance of the preferable on average ex-ante solution
(c < β), i.e., both ex-ante and ex-post solutions coexist.

Let us note that the notion of an anticipative solution x reflects the fact
that this type of solutions can not be chosen after the observation of shock  ω.
For example, the decision x may be a height of a water wall that must pro-
tect a region from floods. This type of decisions restricts the use of standard
recursive equations (Sargent, 1987) of the optimal control theory dealing
only with the “adaptive” control strategies. The design of combinations of
ex-ante and ex-post strategies requires the use of stochastic optimization
methods and models discussed with more details in section 5.

4. Convergence, traps and path dependencies

Section 2 shows that even for well-defined economies with expected expo-
nential growth rate the sustained growth takes off only in the long run. This
property of the growth path radically changes when parameters  s ,θ ,γ  and
losses ν

i
are affected by the growth. In our model it is characterized by per

capita income y. The rate of savings s may critically depend on the overall
level y and its distribution in the society. Obviously, at low level of income,
rates of savings are small. In this case a shock may further reduce them even
to negative values (borrowing). As the economy grows there is increasing
room for savings (Ray, 1998, p. 59), but this does not necessarily mean that
savings will grow steadily. To endogenize the dependence of s ,θ, γ,δ , on y
and ω requires certain assumptions, the most important of them is the as-
sumption of utility maximizing consumers. We do not follow this approach

– ν—

–

c

β

– –0

ν–
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~ ~ ~

Δt
≈ y (t )[sθ – γ – δ – λμ(y(t ))] .

Figure 2. Traps and thresholds.

sθ —γ —δ

y1 y2
y3 y4

λμ(γ)

y

in the paper. Instead, let us make a rather optimistic assumption that shocks
do not affect the parameters s, θ, γ, δ of the economy but only the state y
reducing y to a level y, 0 < y ≤ y. The probability distribution of y in the inter-
val [0, y] is characterized by a density function Ψ, i.e., the probability of losses
in the interval [h, h + dh] is Ψ(y, h)dh. Then the expected losses μ depend
on y and have the form μ(y)=   hΨ(y, h)dh. It is easy to see that the second
derivative μ”(y) involves the derivative d Ψ(y, y)/dy , which may be posi-
tive or negative at different levels of y. Therefore μ”(y) may have an oscil-
lating character, as it is shown in Fig. 2. From (6) follows that for the
shocks independent of the intershocks times, the change of  y(t) to a value
y(t +Δt) in the interval [t,t +Δt ] is such that the conditional expectation
E {y (t + Δt )  y (t )} of y(t + Δt) for fixed y (t ) changes as follows

          E [y (t + Δt )  y (t )] – y(t )

As we can see in Fig. 2 the value sθ – γ – δ – λμ(y)   is positive in the interval
(0, y

1
). Therefore, the economy is expected to grow in (0, y

1
). If the economy

is in interval (y
1
, y

2
), the value y(t + Δt )  is expected to decrease towards y

1
.

The state y
1

is expected to be a trap, i.e., the economy stagnates around y
1
. If

the economy is pushed up to cross threshold y
2
, it enters a path of sustained

growth until it reaches the next trap. These conclusions concern only ex-
pectations. Nevertheless, it is possible to show that in our economy every
random path y(t ) converges to a trap with probability 1. In other words,
starting from the same initial conditions, the economy may end up (with-
out assistance to growth) at different traps and stagnate within these traps
thereafter. This simple model illustrates that the assistance to growth is very
important in such intervals as (y

1
, y

2
), (y

3
, y

4
).

0
∫
y
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If s, θ, γ, δ depend on y, the constant s θ – γ – δ in Fig. 2 changes to an
oscillating curve, but the character of the path dependencies remains the
same. The assistance to growth has to change these curves, e.g., to increase
the value s θ – γ – δ and/or decrease λ μ(y) in intervals (y

1
, y

2
), (y

3
, y

4
). Of

course, we can not derive a similar to Fig. 2 curve in general cases. Instead,
we have to rely only on an optimization model designed with the main pur-
pose to remove traps and thresholds in an optimal way. Consider this with
some detail.

5. Stochastic optimization model

A simple growth stabilization model of section 3 illustrates the coexistence
of adaptive and anticipative decisions. This is a general fact. Consider the
following important growth stabilization problem where a part of the growth
is used to protect a given target value of the growth rate.  According to the
model (6) the growth rate g = s θ – γ – δ may be interrupted by a shock  ω. In
order to protect g it is possible to mobilize internal resources by reducing
consumption, increasing inflation, by asking for external aid and borrowing.
Let us denote this type of decisions by z(ω), where  ω  indicates that they are
made after observation of the shock ω. Besides, it is possible to reduce or
spread losses through various ex-ante measures. Let us denote this type of
decisions by x. They are chosen before the observation of  ω  and, therefore,
they do not depend on ω. In general, x  and z(ω) are vectors. For example, the
first component of x may correspond to a measure for the reinforcement of
buildings, second – to an insurance contract, another pair of components
– to a weather related bond characterized by two decision variables specify-
ing its “trigger” and the “cap”. The fundamental challenge with the presence
of ex-ante strategies in contrast to ex-post strategies is that they must be
evaluated not only against the observed ω but against all possible ω. This
requires specific computational approaches. Consider a discrete time ver-
sion of (6). Assume that G(t ) = ln y(t ) and a time horizon [0,T]  consists of N
subintervals of length Δt = T / N, t

s
= t

s–1
+ Δt, s = 1,2,…N, t

0
= 0. We also as-

sume that a shock ω at time t = t
s
 comprises all events in [t

s
– Δ,t

s
]. In the

same manner losses v
t
, t = t

s
, s = 1,2,…,N from ω

t
comprise aggregate losses

from all events in [t
s

– Δ,t
s
]. For the simplicity of notations we assume that

ν
t
 may be equal 0 and Δt = l, i.e., we simply consider time moments

t = 0,1,…,N. Variables G(t ), ν
t
in general depend on the history of shocks

ωt = (ω1,…,ω
t
). In the following we use the notations G (t, ω), ν

t
(ω) to indicate

this dependence, where ω = (ω1,…,ωΝ). A vector x of ex-ante decisions
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(11)

chosen at t = 0 transforms ν
t
(ω) into ν

t
(x, ω), whereas G(t) depends on both

ex-ante and ex-post decisions G(t, x, zt (ω),ω), zt(ω) = (z
1
(ω),…, z

t
(ω)). By us-

ing these notations we can write the discrete time version of (6) in the form

G(t, x, zt, ω) = G(t – 1, x, zt–1, ω) + gt – ν
t
(x, ω) + z

t
– (1 + β

t–1
)z

t–1
,

where g = s θ – γ – δ , t = l,…, N, x ∈ X ∈ R n  and  X  is a compact set of feasi-
ble ex-ante decisions,  z

t
  is the amount of borrowing (credits) in [t – l, t ], zt =

(z0, z1, …, z
t
). In this model we assume that credits at t  are paid at t + l with

the interest rate β
t
, which may require borrowing at t +1, and so on.

The problem is to find a combination (x, z(ω)) of ex-ante and ex-post de-
cisions maximizing the expected accumulated growth rate in [0,T ], i.e., the
expectation function

(12)

ensuring a given target growth rate q:

(13)

In general, q may also be a decision variable, but here we assume that q  is
fixed. We can subtract q from g in (11) and transform (13) into require-
ments

(14)

Therefore, in the following we consider (14) instead of (13), assuming
g = s θ – γ – δ – q. In this model a target value  q  of the growth rate is achieved
by sacrificing a portion of the economic growth for defensive ex-ante and ex-
post measures. Let us note that G(t, x, zt (ω), ω) is a linear in zt(ω) function
and it may also be a linear function in x. The important feature of the model
(11), (12), (14) is that it incorporates both ex-ante x and ex-post z(ω) de-
cisions, which generates a strong risk aversion with respect to x. Indeed,
G(t, x, zt (ω), ω) can be written in the form

G (t, x, zt (ω), ω) = G
t
(x, ω) – β

s
z

s
+ z

t
,

E [G(T, x, zT (ω), ω) – (1 + β
T
) z

T
(ω)],

G (t, x, z t, ω) ≥ qt, t = 1, 2,…,T, for all ω.

G (t, x, zt, ω) ≥ 0, t = 1, 2,…,T , for all ω.

t–l

s=l

∑
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where  G
t
(t, ω) = ln y

0
+ gt – ν

s
(x, ω). From this it follows that  z

t
  satisfies

equation

(15)

Therefore, the problem (11), (12), (14) can be rewritten as the maximization
of the expectation function

(16)

which depends only on ex-ante decisions x ∈ X, where

In other words, the problem (11), (12), (14) is equivalent to the maximization
of the nonlinear in x expectation function (16) and the calculation of ex-
post decisions according to the recursive equation (15). If the probability
distribution of ν

t
for some t = 1,…, N has a continuous density function,

then the expectation function (16) is a strictly concave function since f(x, ω)
is formed by using the operation min of linear in x functions. The described
above implicit nonlinear character of the problem (11), (12), (14) with re-
spect to  is due to the nature of ex-post decision z(ω). It is made on the basis
of ω and given x, i.e., z(ω) depends implicitly on x. This is a general feature
of the two-stage stochastic optimization problems (Ermoliev & Wets, 1988).
The model (11), (12), (14) is a dynamic two-stage stochastic optimization
problem, which can be solved by specific stochastic optimization procedu-
res.

6. Concluding remarks

Any rational strategy for managing the increasing vulnerability of inter-
acting socio-economic and natural systems requires understanding of in-
volved risks and losses. Now existing catastrophe models (Walker, 1997) pri-
marily deal with the estimation of direct losses from natural catastrophes.
Indirect losses may be much higher. They include costs of business inter-
ruptions, jumps of prices, booms in some sectors and depression in others.
A destruction of capital stock results in losses of outputs and, hence, affects
wages, profits, savings and investments. This paper shows that shocks may
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have even deeper indirect consequences – they implicitly modify the econo-
my and may cause the stagnation and shrinking even in the case of sustained
on average exponential growth.

In our conceptual model the increasing endogeneously generated vulne-
rability is characterized by a probability distribution in the interval [0, y],
which depends on the current level of per capita output y. For example, a
dam may trigger new economic developments in flood-prone areas but its
failure, say, due to an earthquake, may lead even to more dramatic catastro-
phic losses. Of course, any realistic model of the economic growth under
shocks must be based on geographically explicit catastrophe models with
specific (for a given economy) patterns of catastrophes and the vulnerability
(see discussion in Ermoliev et al., 2000).

Often the costs of catastrophes are borne by the central government, what
may “unexpectedly” divert resources from other planned projects or may
require “unplanned” borrowing. Anticipative ex-ante hazard preparedness
and loss reduction measures may significantly reduce “unexpected” costs of
post-shock responses. Any short term adaptive incremental analysis of eco-
nomic growth underestimates the impacts of rare catastrophic shocks. To
purchase catastrophe insurance or bond would be a good solution if the
catastrophe occurs tomorrow. But it may occur in 5, 20, or 100 years, i.e.,
within a time interval sufficient for implementing certain loss reduction
measures. The outlined in section 5 model incorporates both ex-ante and
ex-post growth efforts and provides a unified decision-making framework to
assess benefits of their synergy. From the formal point of view the analysis of
the long-term growth efforts is similar to the design of insurance portfolios
in the presence of catastrophic risks (Ermoliev et al., 2000). Stochastic mo-
dels (Davis, 1984), (Daykin, 1994) of a non-diffusion type provide appro-
priate modeling framework. In both cases the main problem concerns the
protection of growth of certain accumulation processes such as risk reserves
of insurers or outputs of the economy. The presence of only ex-post options
significantly simplifies the analysis, since such measures have to be optimal
with respect to a particular observed shock. An ex-ante solution has to be
optimal (robust), in a sense, against all possible shocks. The presence of ex-
ante options makes impossible to use the so-called recursive equations of
the conventional control theory (Sargent, 1987). Major challenges are con-
nected with the lack of historical data on rare events and analytically in-
tractable structures of realistic accounting models for growth processes
(MacKellar & Ermolieva, 1999). The role of catastrophe modeling (Walker,
1997) becomes essential. The most promising approach for managing the
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