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PREFACE

Many problems of interest to applied ITASA projects can be formulated
within the framework of dynamic linear programming (DLP). Examples are
long-range energy, water, and other resources supply models, problems of
national settlement planning, long-range agriculture investment projects,
manpower and educational planning models, resources allocation for health
care, etc.

There are many different approaches and methods for tackling DLP prob-
lems, which use decomposition, penalty functions, augmented Lagrangian,
nondifferentiable optimization technique, etc.

This paper presents an extension of the simplex method, the basic method
for solution of dynamic linear programming problems. The paper consists of
three parts. Part I, “dual systems of DLP”, concerns theoretical properties
of the problem, primarily, duality relations; Part II, “the dynamic simplex
method: general approach” describes the idea and the theory of the method;
and Part III, “a basis factorization approach™, gives a complete description
of the algorithm, as well as the connection with the basis factorization ap-
proach. Part III also includes a numerical example that is not trivial for a
general LP algorithm but is solved very easily by using the dynamic simplex
method. Part II is written in a language more familiar to control theory
specialists, Part III is closer to linear programming. All parts are written as
independent papers with their own references and thus can be read indepen-
dently. However, the whole paper comprises a theory of finite-step methods
for DLP. The next development of the research might be first numerical
tests on the behavior of the method and thus a judgment of its efficiency,
and second, extensions of the approach to other elasses of structured linear
programming (for example, to DLP problems of the transportation type).

The paper has its origin in previous IIASA publications. These and other
related papers in DLP are listed at the end of this report.

The authors would like to express their acknowledgment to George B.

Dantzig for his long-standing interest in and support for this work. Many
thanks also to to Etienne Loute for his valuable comments and suggestions.
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SUMMARY

There are two major approaches in the finite-step methods of structured
linear programming: decomposition methods, which are based on the
Dantzig-Wolfe decomposition principle, and basis factorization methods,
which may be viewed as special instances of the simplex method.

In this paper, the second approach is used for one of the most important
classes of structured linear programming—dynamic linear programming
(DLP).

The paper presents a finite-step method for DLP—the dynamic simplex
method. This is a natural and straightforward extension of one of the most
effective static LP methods—the simplex method—for DLP. A new concept
—a set of local bases (for each time step)—is introduced, thus enabling con-
siderable reduction in the computer core memory requirements and CPU
time.

The paper is in three parts. Part I, “dual systems of DLP” concerns theo-
retical properties of the problem; it is written by A. Propoi. The pair of dual
problems are formulated and the relations between them are established,
which allows us to obtain optimality conditions, including the maximum
principle for primal and the minimal principle for dual problems. The results
are formulated for a canonical form of DLP, and then modifications and par-
ticular cases are considered.

Part II, “the dynamic simplex method: general approach” and Part III
“a basis factorization approach”, written by V. Krivonozhko and A. Propoi,
give the description of the dynamic simplex method and its extensions.

In Part II construction of a set of local bases and their relation to the
conventional “global” basis in LP are given. A special control variation and
the corresponding objective function variation as applied to this set of local
bases are described. This part is written in a language more familiar to con-
trol theory specialists.

Part ITI describes the separate procedures of the dynamic simplex method:
primal solution, dual solution, pricing, updating and the general scheme of
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the algorithm. The connection between the method and the basis factoriza-
tion approach is also shown. A numerical example and a theoretical evalua-
tion of the algorithms reveal the efficacy of the approach. The extensions
of the method (dual and primal-dual versions of the algorithms, application
to DLP problems with time lags) are briefly discussed in the final part of
the paper. This part is closer to LP specialists.
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I. DUAL SYSTEMS OF DYNAMIC LINEAR PROGRAMMING

A1. Introduction

The impact of linear programming (LP) [1,2] models and
methods in the practice of decision making is well known. How-
ever, because of computational difficulties in its solution, its
application has been for the most part one-staged and static in
nature; that is to say, the problem of the best allocation of
limited resources is usually considered at some fixed stage in

the development of a system.

When the system to be optimized is developing (not only in
time, but possibly in space as well), a one-stage approach is in-
adequate. In this case, decisions are scheduled over time and

the problem of optimization becomes a dynamic, multi-stage one.

In fact, almost every static LP model has its own dynamic
variant, the latter being of growing importance because of the

increasing role of planning in decision making [3].

Within the context of dynamic linear programming (DLP), new
problems arise. For the static LP, the basic question consists
of determining the optimal program. For the dynamic case, the
questions of feedback control, stability and sensitivity are also
important. Hence, the DLP theory and methods should be based both
on the methods of linear programming and on the methods of control
theory, Pontryagin's maximum principle [4] and its discrete

version [5] in particular.

The aim of this paper is a presentation of theoretical prop-
erties of dynamic linear programs, especially duality relations
and optimality conditions. The pair of dual problems are formu-
lated and the relations between them are obtained. From these
relations, optimality conditions (including maximum principle for
primal and minimum principle for dual problems) are derived. The
results are formulated for a canonical form of DLP, then modifi-

cations of the canonical form are given.



We consider the DLP problem in the following canonical form:

Problem 1. To find a control u = {u(0),u(1),...,u(T-1)}
and a trajectory x = {x(0),x(1),...,x(T)}, satisfying the state

equations

x(t+1) = A(t)x(t) + B(t)u(t) + s(t) (1)

with initial state

x(0) = x° (2)
and constraints

G(t)x(t) + D(t)u(t) < f(t) (3)

u(t) > 0 (¢t =0,1,...,T-1) (4)

which maximize the objective function (performance index)

T-1
Jy(u) = a(Mx(t) + ] (a(t)x(t) + b(t)ult)) . (5)
t=0

Here the vector x(t) = {x1(t),...,xn(t)} defines the state of

the system at stage t in the state space X, which is supposed to
be the n-dimension euclidean space En, the vector u(t) = {uj(t),
...,ur(t)}EEr specifies the controlling action at stage t; the
vector s(t) = {s1(t),...,sn(t)} defines the external effects on
the system (uncontrolled, but known a priori in the deterministic
models). Vectors f(t)esEm, xO, s(t), a(t), b(t) and the matrices
A(t), B(t), G(t), D(t) with conforming dimensions are given.

In the vector products the right vector is a column and the
left vector is a row; thus, ab is the inner product of vectors a

and b.

The choice of a canonical form of the problem is to some
extent arbitrary making various modifications and particular
cases of Problem 1 possible. In the last section, some examples



will be considered; however, it should be noted that such mod-
ifications can be either reduced to Problem 1 or it is possible
to use the results stated below for Problem 1 [5] for the mod-

ifications. We conclude this section with some definitions.

Definition. A feasible control of Problem 1 is a vector
sequence u = {u(0),...,u(T-1)} which satisfies with the trajec-
tory x = {x(0),...,x(T)} all constraints (1) to (4). An optimal
control is a feasible control u*, which maximizes (5). Fea-
sible control and the trajectory constitute feasible process

{u,x}.

2. Duality Relations

Note that if T = 1, Problem 1 becomes the conventional LP
problem. On the other hand, Problem 1 itself can be considered
as one "large" LP problem, with constraints on its variables in

the form of equalities (1), (2) and inequalities (3), (4).

Let us introduce the Lagrange function for Problem 1:

-1
Lu,x;A,p) = a(T)x(T) + § (a(t)x(t) + b(t)u(t)) (6)
t=0
T=1
+ ¥ p(t+1) (A(E)x(t) +B(t)ult) + s{t) - x(t+1))
t=0
T-1
+ 7 A(t) (£(t) -G{t)x(t) - D(t)u(t))
t=0

+ p(0) (x2 - x(0))

In the above p(t) €E"(t=T,...,0), A(t) €E™, A;(t) > 0 (i =1,
-«oym; £t =T-1,...,0) are the Lagrange multipliers for the con-

straints (1), (2) and (3) respectively.

Employing the Lagrange function (6), the following sub-

problems are now considered [6]:



sup inf L(u,x;X,p) = Wy (7)
x;ju>0 p;Ar>0
inf sup L(u,x;A,p) = Wy (8)

p;A>0 x;u>0

The problems (7), (8) will be studied separately. It is
assumed that an optimal process (solution) of the original

Problem 1 exists and is denoted by {u*,x*}.

Lemma 2.1. Any solution {u*,x*} of Problem 1 is also a
solution of (7); moreover the objective performance index

(5) satisfies
J1(u*) = Wy

If wy > ey, then any solution of (7) is a solution of
Problem 1; otherwise the system of constraints (1)-(4) <s

ineonsistent.

The proof, being a standard one in mathematical programming,

is omitted here.

Now let us rewrite the Lagrange function in the "dual"

form:

0
L{x,p:u,x) = (a(T) -p(TN)x(T) + } (p(t+1)A(t) - A(t)G(t)
t=T-1

0
+ a(t) -p(t)x(t)+ § (p(t+1)B(t) - A(t)D(t)
t=T-1

0
Fb(e))ult) + ) (p(t+1)s(t) + A(E)£(t)) + p(0)x°
£=T-1

and consider the following dual problem.

Problem 2. To find a dual control X = {A(T-1),...,Ax(0)}
and a dual trajectory p = {p(T),...,p(0)} such that they satisfy

the costate equations



p(t) = p(t+1)a(t) - A(t)G(t) + a(t) (t=0,...,0) (9)
with the boundary conditions

p(T) = a(T) (10)
and constraints

-p(t+ 1)B(t) + A(£)D(t) > b(t) , (11)

Ay >0, (12)

which minimize the dual performance index

T-1
Jy(A) = p(O)x0 + ) (p(t+)x(t) + A(E)E(t)) . (13)
t=0

We shall call Problems 1 and 2 a pair of dual problems. It
should be noted that dual Problem 2, as well as primal Problem 1,
is a control problem, in which the variable X (t) specifies the
dual controlling action at the stage t, the variable p(t) is the
dual state (costate) at the stage t; in the dual problem, time

is taken in the reversed direction: t = T-1,...,1,0.

So the following definitions are natural: The vector se-
guence A = {A(T-1),...,A(0)} is a dual control; the corresponding
sequence p = {p(T),...,p(0)}, which is obtained from the dual
state equations (9) with boundary condition (10), is a dual (con-
Jugate) trajectory; the process {},p}, which satisfies all con-
straints (9) to (12) of Problem 2, is feasible. The feasible
process {A*,p*}, which minimizes (13), is optimal (solution of
Problem 2).

The following proposition is proved in a similar manner to

Lemma 2.1.

Lemma 2.2. Any solution {\*,p*} of Problem 2 is also a
solution of the Problem (8) with JyA*) = wy. If wy < =, then
any solution of (8) is a solution of Problem 2; otherwise the

system of constraints (9)-(12) 1s inconsistent.



Now we shall consider the relations between the dual
Problems 1 and 2. First of all, the following assertion direct-

ly results from Lemmas 2.1 and 2.2.

Theorem 2.1. For any feasible controls u and * of the

primal and dual Problems 1 and 2, the inequality
J1(u) < Jy(R)

holds, where the values of J1(u) and JZ(A) are computed
from (5) and (13), wusing (1), (2) and (9), (10).

For optimal controls u* and A *, the inequality of Theorem

2.1 becomes an equality.

Lemma 2.3. (c¢f.[?1). The necessary conduction that
{u* > 0,x*} and {1* > 0,p*} be the optimal processes for
the dual Problems 1 and 2 is that {u*,x*¥;\*,p¥} be a
saddle point for the Lagrange function (6), that is

L(u*,x*;A,p) > L(u*,x*;A*,p*) > L(u,x;A*,p*)

If {u*,x*} and {A*,p*} are optimal, then L(u*,x*¥;A*,p¥*)
is the optimal value of the performance indices of dual

Problems 1 and 2.

Theorem 2.2. (Duality Theorem). If one of the dual
Problems 1 and 2 has an optimal control, then the other
has an optimal control as well and the associated values
of the performance indices of the primal and dual Problems

1 and 2 are equal:
Jq (u¥) = J,(2%)

If the performance index either of Problem 1 or 2 is
unbounded (for Problem 1 from above and for Problem 2 from

below), then the other problem has no feasible control.



The proof of Theorem 2.2 can be obtained in many ways. In
particular, one can apply the duality theory of "static" LP [1,7],
to Problem 1, regarding it as a static LP problem with constraints
on the variable u{t) and x(t), both in the form of equalities (1),
(2) and inequalities (3), (4), or using the dynamic programming
approach one can reduce Problem 1 to a recurrence sequence of
static linear programming problems and apply to them successive-

ly the LP duality theorem.

From the basic dual Theorem 2.2, the optimality and exis-

tence conditions follow for Problems 1 and 2:

Theorem 2.3. A feasible control u* is optimal <f and
only ©f there s a feasible A* with J2(k*) = J1(u*). A
feasible control A* is optimal if and only i1f there is a
feasible primary control u* with J1(u*) = J2(A*).

Theorem 2.4. (Existence Theorem). A necessary and

sufficitent condition that one (and thus both) of the dual
Problems 1 and 2 have optimal controls is that both have

feasible controls.

The above theorems are derived from their static analogues
[1,7]1. As such they represent nothing new. But in the dynamic
case, the duality relations for each step t, which are stated
below, are more interesting because they suggest, in a sense, a

decomposition of the problem.

3. Optimality Conditions

Let us introduce the Hamilton functions
Hi(p(t+1),u(t)) = b(t)ult) + p(t+1)B(t)ul(t) (14)
for the primary Problem 1 and
Hoy(x(t), A () = A(E)£(t) - A(e)G(t)x (L) (15)

for the dual Problem 2.



Lemma 3.1. For any controls u and X the following equality

T-1
Tp) - 3,00 = ] [Hy(p(erD) u(t) -y (x(£) A (6))

18 valid.

Proof. Let us consider the difference

T-1
Jy - J, = a(Mx(T) + [ (a(t)x(t) + b(t)u(t))
t=0
-1 0
- Y (p+D)s(t) + ABIE(Y)) - p(O)x~ .
t=0

Substituting the value x(t), defined by the primary system
(1), when t = T-1, and using the definition of the dual system

(9), one can obtain

J, = J, = a(T) (A(T-1)x(T-1) + B(T-1)u(T-1) + s(T-1)) + a(T-1)x(T-1)

T-2
+ b(T-1)u(T-1) + z (a(t)x(t) +b(t)u(t)) - p(T)s(T-1)

T-
- MT-1H)E(T-1) + ]
t=

2
(p(t+1)s () + A () E(£)) - p(0)x°
0

= Hy (p(T),u(T-1)) - Hy(x(T-1),A(T-1) + p(T-1)x(T-1)

T-2 T-2

+ ) (a(t)x(t) +b(tlul(t)) - } (p(t+1)s(t) + A(t)E(t))
0 -1

~p0)x = ... = 7§ [Hy (p(t+1),ult)) = Hy (x () ,A(t))]
t=0

In Section 2 the relations were established between the
objective functions of the primal and dual problems, which char-
acterize the problem as a whole. Now "local" duality theorems
Will be obtained establishing relations between the Hamilton

functions. For simplicity of statements, it is assumed that



Problem 1 (and, hence, Problem 2) has an optimal feasible solu-

tion.

Lemma 3.2. For any feasible process {u,x} and {Xx,p} the

following inequalities hold:

H] (P(t+1),u(t)) _<_ Hz(x(t)lk(t)) (t = OI"'IT_1)

Proof. One can obtain successively from (14),(12),(2),(15),
(11), and (3):

Hy(p(t+1) ,ult)) = b(tlult) +p(e+1)B(t)u(t) <b(t)ult)

+

p(t+1)B(t)u(t) + A (t) (£(t) - G(t)x(t) -D(tru(t))

Hy (x(£), 1 (£)) + (p(t+1)B(£) = A(£)D(t) + b(£))u(t)
< Hy (x(£) 2 (t) .

It should be noted that the statement of Theorem 2.1 also
follows from Lemmas 3.1 and 3.2 for any feasible processes {u,x}
and {X,p}.

Theorem 3.1. ("local duality Theorem). For any feasible
processes {u*,x*} of the primal and {3*¥,p*} of the dual to
be optimal it is necessary and sufficient that the values

of Hamilton functions are equal:

Ho(p* (t+1),u*(t)) = H (x*(t), ¥ (t)) (£=0,...,T-1) .

1( 2

Proof. One obtains from duality Theorem 2.2 and Lemma 3.1,

that for optimal processes of dual Problems 1 and 2 the equality

T~1 T-1
I B, (*(E+1),ux(£)) = ] Hy(x*(£),2*(£)) (16)
t=0 £=0

is valid. Hence from Lemma 3.2, it follows that the values of
the Hamiltonians must be equal for t = 0,1,...,T-1 in case of

optimal processes {u*,x*} and {i*,p*}.
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Indeed, let us assume that it is not so, that is, let for

some 0 < t < T=1:
H1(p*(t+1),U*(t)) < HZ(X*(t),A*(t))

This, however, is inconsistent with the equality (16). The

contradiction completes the proof of the Theorem.

Considering the proof of Lemma 3.2 and the equality (16),
it is not difficult to obtain that for optimality of {u*,x*}
and {)*,p*}, it is necessary and sufficient that the following

conditions be satisfied (t = 0,...,T-1):
A¥ ()Y [f(t) - G(t)x*(t) - D(t)u*(t)] = 0
[P*¥{(t+1)B(t) - A*(t)D(t) + b(t)]Ju*(t) =0

From the above equalities and the definitions of dual con-
straints [7], one can obtain in the usual way the following
"differential"” (complementary) optimality conditions for Prob-
lems 1 and 2 {(cf. [1,7]).

Lemma 3.3. If both Problems 1 and 2 have feasible controls,

then they have optimal controls u¥,A*, such that:

1f u* satisfies a constraint as an equattion, then A*

satisfies the dual constraint as a striet inequality;

if A* satisfies a constraint as an equation, then u¥

satis fies the dual constraint as a strict inequality.

Lemma 3.4. If both Problems 1 and 2 are feasible then for
any < either [G(t)x*(t) + D(t)u*(t)]i < £, ({t) for some optimal
u* and A¥({t) = 0 for every optimal A*; or [G(t)x*(t) + D(t)
u*(t)]; = £;(t) for every optimal u* and A¥(t) > 0 for some
optimal A*.

For any Jj either [-p* (t+1)B(t) + )\*(t)F(t)]j > bj(t) for

some optimal \* and ug(t) = 0 for every optimal u*; or
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[-p*(t+1)B(t) + )\*(t)D(t)]j = bj(t) for every optimal \¥

and u%(t) > 0 for some optimal u*.

The conditions stated in Lemmas 3.3 and 3.4 are similar to
the complementary slackness relations in linear programming [1,7].
From these lemmas, the known Kuhn-Tucker optimality conditions
easily follow for Problems 1 and 2. As the assertions of the
lemmas are not only necessary but also sufficient, it is not dif-
ficult to see that in order to investigate a pair of dual dynamic
Problems 1 and 2 it is sufficient to consider a pair of dual

"local" (static) problems of linear programming:
max Hy (p(t+1),u(t))
G(t)x(t) + D(t)ult) < f(t) u(t) > 0 (17)

and

min H2(xit),k(t))

~p(t+1)B(t) + A (t)D(t) > b(t) A(t) > 0 (18)

linked by the primary (1) and dual (9) state equations with

boundary conditions (2) and (10).

So, any of the "static" duality relations or LP optimality
conditions [1,2,7] for the pair of the dual LP problems (17) and
(18) linked by the state equations (1), (2) and (9), (10) de-
termine the corresponding optimality conditions for the pair of
the dual DLP Problems 1 and 2. Such conditions have been formu-
lated above; in a similar manner the following important optimal-

ity conditions are obtained.

Theorem 3.2. (Mazimum principle for primal Problem 1).
For a control u* to be optimal <n the primal Problem 1,
it 1s necessary and sufficient that there exists a feasible
process {A*,p*} of the dual Problem 2, such that for t =
0,1,...,T-1 the equality
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max H, (p*(t+1),u(t)) = H,(p* (t+1) ,u* (1))

holds, where the maximum s taken over all ul(t), satisfying
the constraints (3), (4) and A*(t) Zs the optimal dual var-
table in the LP problem (18).

Theorem 3.3. (Minimum principle for dual Problem 2). For
a control A*¥ to be optimal in the dual Problem 2 it is nec-
essary and sufficient that there exists a feasible process
{u*,x*} of the primal Problem 1, such that for t = 0,1,...,T-1
the equality

min H, (x*(t);A(t)) = Hy (x* (£) A% (L))

holds, where the minimum is taken over all A(t), satisfying
the constraints (11), (12) and u*(t) <s the optimal primary
variable in the LP problem (17).

These theorems can also be obtained by using the correspond-

ing optimality conditions for discrete control systems ([5].

L,

Examples

In this section, duality relations for some typical examples

will be given.

1. Problem 4.1. (without constraints on the state vari-

ables) We consider Problem 1 for which constraints are given

only on the control variables.

D(tyu(t) < f(t)
- (19)

u(t) > 0 (t =0,1,...,T-1)

This is a special case of a DLP problem which reduces to

T static LP problems

max H1(p(t+1),u(t))
u(t)

subject to constraints (19), where Hamilton function H1 is
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defined from (14) and dual state variables p(t+1) are directly

computed from

]

p(t) p(t+1)A(t) + a(t) ,

p(t) = a(t) (t = T=1,...,1,0) .

So, the dual controls {i(t)} are not used in this case.

2. Problem 4.3. (with given left and right ends for the

trajectory) In Problem 1 let both ends of a trajectory be fixed:
x(0) = x0 , x(t) = xT .

In this case, the boundary conditions (10) for dual Problem 2

should be replaced by
p(T) + A(T) = a(t)
and the term )\(T)xT added to the dual performance index (13).

3. Problem 4.3. (with summary constraints) Let the

constraints for Problem 1 be given in the form

T-1
1 [G(E)x(t) + D()u(t)] < £ , u(t) > 0 . (20)
t=0

Although this case can be reduced to the canonical form of
Problem 1 by introducing a new set of state equations [5], it is
interesting to formulate the dual problem directly for the case
(20). Only one dual control variable, A, must be introduced

here. Thus, the state equations (9) are replaced by
p(t) = p(t+1)A(t) - AG(t)
with boundary conditions (10) and constraints

~p(t+1)B(t) + AD(t) > 0 , A >0

The dual performance index becomes
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3,00 = p(0)x? + Af

and the Hamilton function

T-1
Hy(A) = xf - & ] G(t)x(t)
t=0

The coincidence conditions of the Hamilton function's

values (Theorem 3.1) in this case are:

T-1
I Hy(p(t+1),u(t)) = H,(A)
t=0

4. Problem 4.4. (with time delays) Problems with time
delays are very important as they arise in many practical cases.

We consider here the problem with delays on control variables:

H
x(t+1) = A(E)x(t) + z B(t-m.) u(t -m.) (21)

(t=0,1,...,T-1)
with given initial conditions;:
x(0) = x (22)

0 0
u(-mu) =u (-mu),...,u(—m1) =u (—m1) (23)

where { m1,...,mu} is some given ordered set of integers.

The constraints on variable are supposed to be given in the

form (3), (4) and performance index by
Jy(w) = a(T)x(T)
where T > mu

The dual problem for this case will be as follows.

To find a dual control ) = x{(T—1—m1),...,A(T—1-m ).
n
A(T-1),--.,A(O),...,A(—mp)} and a corresponding trajectory
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p = {p(T),...,p(0)}, satisfying the state equations (9) with

(10) and constraints

p(t+1+mj)B(t) - 2 (t)D(t) < 0

lIt~T12

j=1

(0 < t < T-1-m,)
P(1)B(—mj) - A(-mj)D(—mj) <0 (3 = 1,...,1)

which minimize the performance index

0 H
3,00 = p(Ox" + ]

] x(—mj)uo(—mj)

1

The DLP problems with time delays on state variables can

be considered in a similar way (cf. [5]).

5. Conclusion

The duality relations and the resulting optimality condi-
tions stated above have a clear economic interpretation (partly
given in [8]). These conditions provide a basis for the con-
struction of numerical methods. A straightforward implementation
of the optimality conditions leads to iterative methods (see
references in [3]). The duality relations are used in finite-

step methods, which are considered in the following parts.
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II. THE DYNAMIC SIMPLEX METHOD: GENERAL APPROACH

1. 1Introduction

Methods for solving general linear programming (LP) are now
well developed and have resulted in an extensive field of appli-
cations [1,2]. Dynamic linear programming (DLP) is a special
class of linear programs for planning and control of complex
systems over time [3-6]. DLP applications tend to be too large
to be solved by general LP methods. These applications have
been hampered by lack of universal DLP computer codes. The few
DLP problems that are solved are limited in size. They are solved
by treating them as static problems and using for their solution

standard LP codes (see, for example, [4,6]).

As DLP problems are principally large-scale, this "static"
approach is limited in its possibilities, and the development of
efficient algorithms specially oriented to dynamic LP problems
continues to be needed. 1In recent years, methods for DLP have
been proposed which make it possible to take into account the
specific features of dynamic problems (e.g. [7-9]).* But exten-
sion of the most effective finite~step method -- the simplex
method for solving LP -- to the dynamic case yet has to be im-
plemented although there have been a number of proposals by

Dantzig and others.

The dynamic simplex method as presented here was first sug-
gested in [10,11]. 1In this approach, the main concept of the
static simplex method -- the basis -- is replaced by a set of local
bases, introduced for the whole planning period. It allows a
significant saving in the amount of computation and computer core.
It permits the development of a set of finite-step DLP methods
(primal, dual and primal-dual) which are the direct analogues of

the corresponding static finite-step methods.

This paper consists of two parts: the first part describes

the proposed approach; the second part presents the separate

*See also references in [3].
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procedures and the general scheme of the algorithm as well as

the connection with the basis factorization approach.
Consider the DLP problem in the following form.
Problem 1.1. Find a control
u = {u(0),...,u(r-1)}
and a trajectory
x = {x(0),...,x(T)} ,
satisfying the state equation
x{(t+1) = A(t)x(t) + B(t)u(t) (t=0,1,...,T-1) (1.1)

with initial condition

0

x(0) = x (1.2)
and constraints

G(t)x(t) + D(t)u(t) = f(t) (1.3)

u(t) > 0 > (£t =0,1,...,T-1) (1.4)

which maximize the objective function

Jl(u) = a(T)x(T) . (1.5)

Here the vector x(t) = {x1(t),...,xn(t)} defines the state of
the system at step t in the state space En, which is assumed to
be the n—-dimension euclidean space; the vector u(t) = {u1(t),
...,ur(t)}ezEr (r-dimension euclidean space) specifies the con-
trolling action at step t; vectors xo, f(t) and the matrices
A(t), B(t), G(t), D(t), respectively are of dimensions (nx1),
(mx 1) and (nxn), (nxr), (mxn), {(mxr), and are assumed to
be given. In vector products, the right vector is a column, the

left vector is a row.
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There are a number of modifications of Problems 1.1 which

can either be reduced to this problem [12,13] or the results

stated below may be used directly for their solution. For exam-

ple, constraints on the state and control variables can be sep-

arate; state variables may be nonnegative; state equations in-

clude time lags; the objective function depends on the whole

sequences {u(t)} and/or {x(t)}, etc. [(3,121).

Along with the primal Problem 1.1, use will be made of its

dual [12].
Problem 1.2. Find a dual control
A= {A(T=-1),...,2(0)}
and a dual (conjugate) trajectory
p={p(M,...,p(0)} ,
satisfying the costate (conjugate) equation
p(t) = p(t+1)A(t) - A(t)G(t) (t=T-1,...,1,0)
with boundary condition
p(T) = a(T)
and constraints
p(t+1)B(t) - A(t)D(t) < O (t=T-1,...,1,0)
which minimize the objective function

o T=1
Jy () = p(0)x” + J A(t)f(t)
t=0

(1.

(1.

(1

.1

.9)

Definition 1.1. A feasible control of the DLP Problem 1.1

is a vector sequence u = {u{(0),...,u(T-1)} which satisfies with

some trajectory x = {x(0),...,x(T)} conditions (1.1) to (1.4).
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An optimal control of Problem 1.1 is a feasible control u*,
which maximizes (1.5) subject to (1.1) - (1.4).

Feasible dual control x and optimal dual control A* to the
dual Problem 1.2 are defined in a similar way.

Let U = ErT; u = {u(0),...,u(r-1)} €U be the control space
of Problem 1.1. In the control space U Problem 1.1 can be re-

written as follows [13].

One can obtain from the state equation (1.1), that

x(t) = ¥(£,0)x(0) + J ¥(t,t+1)B(t)ulr) (1.10)

where

¥Y(t,t) = A(t=-1) = A(t-2)--+A(T) (0 < 1 < t=-1) ’

|
—

Yit,t)
I is the identity.

By substituting (1.10) into (1.3) and taking into account

(1.2), we obtain the constraints on controls u, given in explicit
form:

t

I W(t,Du(1) = h(t) (1.11)

=0

u(t) >0 , (t=20,...,T-1)

Here

W(t,7) = G(t)¥(t,t+1)B(1) (t > 1) ,

W(t,t) = D(t) , h(t) = £(t) - G(£)¥(t,0)x°

The matrices W(t,1) are of dimension {(m xr) and vectors h(t)

are of dimension (mx 1).

The objective function (1.5) will be rewritten, respectively,

in the form
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T-1 0
Jy(u) = ] c(tult) + g(0)x , (1.12)
£=0
where
Tty = quesnB(t) .

Here vectors g(t) are generated recursively by

q(t) q(t+1)Aa(t) (t = T-1,...,0)

q(T)

al(T)

Denoting the constraint matrix of (1.11) by W (dimension is
mT x rT), we can reformulate Problem 1.1 in the following equi-

valent form.
Problem 1.1la. Find a control u, satisfying the constraints
Wu = h u>0 ,
which maximizes the objective function
J,(u) = cu

Here u = {u(t)}; h = {h(t)}; ¢ = {c(t}} (£t =0,1,...,T-1) and 31
differs from J; by the constant q(O)xO.

It is evident that the sets of optimal controls for Problem

1.1 and 1.1a are the same.

Now the general scheme of the simplex method as applied to

Problems 1.1a will be described.

Let u be a feasible control; we shall define the index sets

1]
"

I(u) {(i,t)|ui(t)>0;i 1,...,r;t=0,...,T-1}

I (u)

(i, 0 fu () =054

1,e0e,xr;t=0,...,T=-1}

I = I(u) VTI(u)
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Denote also the columns of matrix W by wi(t) (i=1,...,r;

t=20,1,...,T-1; wi(t)ezEmT. In this case the constraints (1.11)

can be rewritten as

” 1z:)e[wi(t)ui(t) = h ; ui(t) >0

Definition 1.2. A basic feasible control of Problem 1.1 is

a feasible control u, for which vectors wi(t), (i,t) €I(u), are

linearly independent.

A nondegenerate basic feasible control is a basic feasible
control u, for which vectors wi(t), (i,t) € I(u), constitute a

basis in EmT.

The basis of a basic feasible control u is a system of mT lin-
early independent vectors wi(t), which contains all vectors wi(t),

i(t) eI(u).

As usual without any loss in generality we can assume that
Problem 1.1a (1.1) is feasible and that any basic feasible control

is nondegenerate [1].

Denote by IB(u) the set of indices corresponding to the

basic vectors wi(t); I,.(u) is the set of indices corresponding

N
to the remaining vectors wi(t) of matrix W. Let

Ug

fo; ()] (1,8) I}

uy = {ui(t) (i,t) IN(U)} ’

and m(t) is the number of basic components of a basic control u

at step t. Evidently

T-1
J m(t) = mT

t=0
Then, any basic feasible control may be represented as

u = {uB,uN}, with ug > o ., ug =0
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Denote by WB the matrix with columns wi(t), (i,t)EEIB(u) (basic
matrix). Then ug = W;1h.

Let wj(t1),(j,t1)EEI, be an arbitrary column vector of W,
then

wj(t1) = Wij(t1) ’ (1.13)

where vector vj(t1) = {Vij(t1,T)}, (i=1,...,m,17=0,...,T-1)

has dimension mT.
Define
zj(t1) = chj(t1) .

Thus, we can rewrite

cj(t) = q(t+1)bj(t)
(1.14)
T-1
zj(t) = Tzo q(T+1)BB(T)Vj(t,T) .

Here bj(t) is a column of the matrix B(t); the matrix BB(T)
is generated by the basic columns bi(r), (i,T)GEIB(u) of the
matrix B(t); (j,t)e1I.

The direct application of the simplex method to Problem 1.1

(1.1a) gives the following basic operations:

1. The computation of the sign s or zj(t) - cj(t) for all
(j,t) €I, to determine whether an optimal control has been found;
that is the case when zj(t) - cj(t) > 0 for all j and t. If yes,
the algorithm terminates with a printout of the optimal solution.
If not, then

2. the selection of the vector to be introduced into the
basis, that is selection of a vector with a value of zj(t) -
cj(t) < 0. Let the pair of indices associated with this vector

be (j,t1).
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3. The selection of the vector to be removed from the
basis. The pair of indices associated with this vector will be

denoted by (£,t If (2,t,) cannot be found, the algorithm

).
2
terminates with a printout of information of how to generate a

class of feasible solutions such that J1(u)+ +w, If not, then

4. the basis and basic feasible control is updated. The

new basic feasible control u(1) = {ué1),0} is defined by
d Dy =l (0 - ev (t, 1) (s., 1) € I (u)
s, ‘1) T Ug T 0%, ‘17T irT B
1 1 1.
J
uj§1)(t1) = o, (1.15)
dMy =0 1 £ Gty (i,7) € I, ()
i 7 J. 1717 ’ N 7

where the outgoing pair of indices (E,tz) is given by the value

60 which is calculated from

ug (1)
(g,t)) = arg-min — % (1.16)
v, (ty,0>0 %y (t£q.7)
S. 1.
lj J
(s;h1)El(U)
and eo by
u. (t,)
6 -2 °

0 ij(t1,t2)

The numbers zj(t) are usually computed from zj(t) = ij(t),

where X = {Xi(T), (i,1)€1_(u)} are simplex multipliers for the

B
basis WB:

A= cwl)

BYs (1.17)

The general scheme cons.dered above is in practice ineffective
for the solution of Problem 1.1 (1.1a) when the dimension of the
matrix W is large. Besides, the input data are usually given in
the form of Problem 1.1 rather than in the form of Problem 1.1a
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and no exploitation has been made of its special structure.
Therefore the simplex procedure directly designed for the solu-
tion of Problem 1.1 will be described.

2. Local Bases

The matrices D(t) (¢t = 0,...,T-1) of constraints (1.3) will
be assumed to have the rank m. This assumption is not restric-
tive because one could always insert, if necessary, additional

artificial columns, as in the static case, see [1].

Let us denote %(0) = f(0) - G(O)xo. Then constraints (1.3)
can be rewritten as

D(0)u(0) = E(0) . (2.1)

In accordance with our assumption we can choose m linearly
independent column-vectors di(O) of the matrix D(0). Denote

these columns by DO(O) and the rest of D(0) by D4(0). Thus

D(0) = [Dy(0):D; (0)] .

As determinant |D0(0)| #0, the constraints (2.1) can be re-
written in the form

u, (0) = 951(0)§(0) - D61(0)D1(0)u1(0) , (2.2)

where components of the vector uO(O) GEnlcorrespond to the matrix

DO(O) and components of the vector u1(0) egt™ correspond to the
matrix D1(0).

The partition of the matrix B(0) is carried out similarly
to that of the partition of D(0): B(0) =[B0(0);B1(0)], Therefore

x(1) = A(0)Yx(0) + BO(O)uo(O) + B1(0)u1(0) . (2.3)
Substitution (2.2) into (2.3) yields
Y

x(1) = x*(1) + B 0)u1(0) ' (2.4)
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B (0) = B1(0) - BO(O)D0 (0)D1(0) '
x*(1) = A(0)x  + B (0)u3(0) ,

ud(0) = py'(0)£(0)

e consider a step t, 0<t<T-1. Let

D(rya(t) = () (2.5)
Bty = (ee)BT (£ - 1;D(1)] (2.6)
t) = (@, (k- Dyu(e)]” (2.7)
F(e) = £(t) - c()x*(t) . (2.8)

In (2.6) to (2.8), the matrix B (t - 1) and vectors G, (k- 1),

x*(t) are

below.

defined from recurrent relations, which will be obtained

By construction, the matrix D(t) contains m linearly inde-

pendent columns ai(t). The matrix formed by these columns will

be denoted as 60(t); the matrix from the rest of the columns --

as D, (t).

1

Hence

Or

where

Thus, (2.5) can be rewritten as

0 0 1
D(t) = [Dy(t);D,y(t)]
~ _ =1 A P | ~ ~
uO(t) = Dy (tyf(t) - D, (t)D1(t)u1(t) . (2.9)
Gy (t) = Qg(e) - 2(e)a, (8) (2.10)
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uo(t)=ﬁ (Y2 (t)y |, (2.11)

L=d
-~
]
o
~
o

(t) . (2.12)

Let

1

x(t) = x*(t) + B (t-1)ﬁ1(t—1) , (2.13)

where x*(t) and B1(t - 1) will be defined later.
By substituting (2.14) into state equation (1.1), we obtain
x(t+1) = A(t)x*(t) + B(o)a(e) , (2.18)
where
Bt) = awB't-1:BO)] (2.15)

the vector 1(t) is defined by (2.7).

Considering the representation

B(t) = [By(0):B,(0)1

T

0
a(t) = [ﬁo(t);ﬁ1(t)]

and substituting (2.10) into (2.14), we again obtain equations
(2.13) for the next step t + 1:

x(t+1) = x*(£+1) + B

(£)a, (8,

where

At)x*(t) + B

x
*
o+
+
-
]

O(t)GS(t) , (2.16)

B (t) = B (¢) - ﬁo(tm(t) . (2.17)

Initial conditions for (2.14), (2.5) are
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x*(0) = x(0); a(0) = u(o) ,

B(0) = B(0) , D(0) = D(0) . (2.18)

The specific of such a representation of Problem 1.1 is a
recurrent determination of control u(t), that is, using (2.7)

we obtain

d1e) = 16, (-1 u@]’ (2.19)
= 13, e-2) uy =N, u® = oo = [0 0,0 (e (),
cee s (6=1) ue))”

where the vector ut_i(i) is formed from those components of the

control u which are recomputed from a steo i to the step t by
virtue of the procedure which was described above. The relations
(2.19) show that the vector u(t) may include components ui(r)

from preceding steps t=t-1,...,1,0.

Consider now the last step

D (T—‘I)ﬁO(T—‘I) + D

0 (T-1)u1(T—1)=f(T—1)

1

where ﬁo(T-1) is a nonsingular matrix. Let

131(T—1)

|
o
-

(2.20)
then

(-1 = By lr-nEr-1 . (2.21)
Determining the value of the vector ﬁCT—1)=[ﬁ00r—1),ﬁ1CT-1)]T
from (2.20), (2.21), one can compute the values of feasible con-
trol {u(t)} for a given set of local bases {ﬁo(t)}(t==0,1,...,T-—1).

This procedure will be called Procedure 1.

Definition 2.1: The set of m linearly independent columns
ai(t) of the matrix D(t) is called the local basis at the step t
(t=0,1,...,T-1).
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The set of all indices (i,t) associated with the components
of local basis matrix ﬁo(t) (t = 0,...,T-1) will be denoted by
Io(u), and its complement with respect to I will be denoted by
Io(u).

Theorem 2.1: Let a control u be computed from Procedure 1

for a given set of local bases {60(t)} with boundary econditions

Ggr-1 = 6 (r-nE@-1
d,(T-1) =0 '
and let
ui(t) >0 for all (L,t) € IO(u) .

Then 1 18 a basic feasible control and

u = {ug,ug}
{u; () | (1,t) €Iy(w)} .

Yp

uN

{u; () | (1,t) €T5(w)}

Proof: Let W0 be the matrix which is generated by the col-
umns wi(t) of the constraint matrix W, associated with variables
Go(t), that is,

Wo = |lw, () || (i,t) € Ij(u)

By construction, W0 is a square matrix of dimension of mT x mT.

For proof of the theorem, we shall need the following asser-

tion.

Lemma 2.1: The matrizx W0 is nonsingular 1f and only 1f the

matrices ﬁo(t)(t==0,1,...,T - 1) are nonsingular.
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Proof: Sufficiency. The procedure of computing {ﬁo(t)}
described above is a block modification of the Gauss method [14]
where pivot blocks are matrices ﬁo(t). The Gauss algorithm trans-
forms the matrix W, to an upper block triangular matrix with

60(t) on its diagonal:

DO(O) *
~ * 0
D0(1)
W =
0 .2
0 Dy (t) *
_ DO(T‘— 1)
wnere nonzero elements of WO are denoted by «.
The Gauss algorithm does not change the rank of the original
matrix [14]. In fact, the relation
{|w0|‘ = '\DO(0)| |D0(T-1)| (2.22)
holds, where |w0| is the absolute value of the determinant of a
matrix wO' The relation (2.22) implies that, if matrices ﬁo(t)
(t=0,1,...,T-1) are nonsingular, then the matrix W is also
nonsingular.

Necessity: Suppose that k iterations of the Gauss algorithm

have been done and Wg is a matrix obtained after k iterations:

6O(k-1) ,,
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Here Wk is a submatrix, generated by elements of wk which are out-

0 0
side of pivot rows and columns of previous iterations. 1In this

case, the relation (2.22) should be replaced by

A

A ~k
|Bg0)| ... |D (k=11 | Wyl

1wl | - 0

The first block-xrow of ﬁg

trix D(k) cannot generate any nonsingular square submatrix ﬁo(k)

is [B(k);0]. Suppose that the ma-

of dimension m. This implies that the rows of the matrix D(k)

are linearly dependent and the matrix ﬁg

Then |W,| =0, which contradicts the assumption of the lemma.

is singular with |ﬁg|= 0.

Thus, if the matrix W, is nonsingular then at each step of

0
the Gauss algorithm a nonsingular matrix Do(k) can be constructed.

This completes the proof of the lemma.

The proof of the theorem now follows directly. By defini-~
tion, matrices ﬁo(t)(t==0,...,T-1) are nonsingular, which im-
plies that the matrix W, is also nonsingular and vectors wi(t),

0
(i,t) EIO(u), are linearly independent.

It follows from Procedure 1 that
u; (k) =0 for all  (i,t) € io(u) .

As ui(t)_zo for all (i,t) EIO(u), then in accordance with defini-
tion 1.2 u is a basic feasible control. This completes the proof

of the theorem.

The proof of Theorem 3.1 shows that Procedure 1 permits
operations no? with the inverse W;1 of dimension mT xmT but with
T inverses D0 (t) of dimension m xm. Hence, Procedure 1 is basic
to this approach. However, as will be seen further, it is not

used explicitly.

In fact, as follows from the proof of the theorem, only
basic submatrices of matrices D(t) should be handled in the al-
gorithm. Besides, there is no necessity to compute local bases
at each iteration, only the updating of some of the T local bases

is needed.
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3. Control Variation

In accordance with Theorem 2.1, the basis wB is equivalent
to the set of local bases {ﬁOB(t)}. Therefore, our aim is to
develop the simplex operations for solution of Problem 1.1 rela-
tive to the set of local bases {ﬁOB(t)}.

For a given basic feasible control u= {uB,uN}, let us fix
the pair of indices (j,t1) €I such that the corresponding column
dj(t1) of the matrix D(t1) is not in the basis, that is, (j,t1)
EIN(u) .

We first consider the procedure for selection of the column
dj(t1) to be introduced into the basis, that is, into the set of
local bases {ﬁOB(t)}. In accordance with Section 2, the con-
straints (1.3) at step t can be written as

B (t)u

0B

op(t) + Dyg(e)u, o (t) = 2(t) (3.1)

where

|
w2
o

[DOB(t)7D1B(t)]

[a

uB(t) >0

1]
c>
o

OB(t);um(t)]

Here the subscript B denotes submatrices and vectors as-
sociated with a given basis wB or {ﬁOB(t)}.

Let a vector GSB(t1) €e™ define representation of the vec-

tor dj(t1) in terms of column~-vectors of the matrix DOB(t1)’ that
is,

am1

~ ¥
Dos

VOB(t

1) = (t1)dj(t1) . (3.2)

Taking into account (3.2), we can rewrite (3.1) as

N A K N A~ 2
DOB(t1) [uoB(t1)-6vOB(t1)] + D1B(t1)u1B(t1) + Gdj(t1) = f(t1) (3.3)

where 6 is a real number.
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It is evident that the equality (3.3) is true for any value
of the parameter 6. It follows from (3.3) that a new control

ue(t1) is introduced at steo t1:

Cep = [ epiifen] T,
where
LA’gB(tﬂ = g (tg) - 8VgR(ty)
wlp e = G (e (3.4)
@t = 10,...,8,...,017

By substituting the control ﬁe(t1) in state equation (2.14),

we obtain
xe(t1+1) = x(ty+1) - ey* (e e 1), (3.5)

where

* 1 ~
x(t1 +1) X (t1 +1) + BB(t1)u1B(t1) P

* fay Ak (306)
y* (e + 1) = Bop (£)¥8, (e ) - by

Substituting (3.5) into formulation (2.5) of constraints (1.3),

we see that they will be true if
A ~8 * _
Dplty + Nup(ty +1) - 86t + Ny (£, +1) = E(t1+1) . (3.7)

Let us express the vector -G(t1 +1)y*(t1 + 1) in terms of
column vectors of the matrix 60B(t1 +1):

A% _ _~-1 *
VOB(t1 +1) = DOB(t1 +1)G(t, + 1y (t1 +1) . (3.8)
Considering (3.8), the equality (3.7) can be rewritten as

~ A A%k
DOB(t1 +1) [uOB(t1 +1) - GVOB(t1 + 1ﬂ
~ ~ _ *
+DJB(t1+1)u1B(t1+1) 6G(t1+1)y (t1+1)

=%(t1 +1)
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We see that the introduction of the compensating term into
the equality (3.7) is equivalent to the introduction of a new

control ﬁe(t1 +1) at step t, +1:

~0 _ .~ . A0 .56
u'(t, +1) = [uOB(t1+1)'u1B(t1+1)'uN(t1+1)] '

where

~B oA ok
uOB(t1+1) = uOB(t1+1) eVOB(t1+1)

~8 oA
u1B(t1+1) = u1B(t1+1) (3.9)
ﬁg(t1 +1) =0

Thus, the variation of the control (3.4) at step tyr where
vector GSB(t1) is defined by (3.2), induces a variation of con-

trol (3.9) at the next steps t=t.,+1, t, +2,...,T-2 with

1 1

v¥

t (0 = -Bplineny* (0 . (3.10)

Vectors y* (1) are satisfied to the following difference

equation:
y*(r+1) = A(D)y* (1) + Byp(1)95, (1) (3.11)

where vectors GSB(T)(T= t1+ 1,...,T-1) are defined from (3.10)

and vector GgB(t1) is defined from (3.2).

Now we consider the last step:

B_(T - 1) [ﬁ (T -1) - 0¥ (T-1)]- 8G(T - )y*(T - 1)
B B B (3.12)
= f(T-1)

As u=={uB,0} is a basic feasible control, then by virtue of

Theorem 2.1, the matrix 6B(T-—1) is nonsingular and

DB(T—1) = DOB(T-1)
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Therefore (3.12) yields that

~ _ . ~ _a-1 ~ o
vB(T 1) = vOB(T 1) = DOB(T 1NG(T - 1)y

*

T-1)

By construction, the structure of vector GB(T-—1) is simi-

lar to the structure of vector GB(T -1). Hence, define a vector:

GB(T-1) = [V1B(T-2),VB(T-1ﬂ (3.13)

where vector vB(T - 1) is associated with the variation of vector

uB(T-1), vector G1B(T-2) is associated with the variation of
vector u1B(T -2):
G% (r-2) = G, (T-2) - 6V, (T -2)

1B 1B 1B

To satisfy the constraints at step T - 2, the additional term
(T-2)v, (T~-2) must be compensated by the additional vari-

(T -2):

~6Dp .

ation v

1B

(T - 2) of control a

0B 0B

(T - 2) ~e[€z* (T - 2) —G;B(T—Z)J ,

(T-2) =u 0B

Ge
0B 0B

where

~1 a1 ~
VOB(T -2) =D, (T~-2)D

0B B

1p (T =2V, (T -2) = ¢, (T _.2)G1B(T_2)

1
0B

*

0B (T-2). As in the case of

Let v, (T-2)=%*_(Tr-2)-%

0B
(2.7), we can write

v (T - 2)

B [VOB(T-Z),V1B(T-2ﬂ

) (3.18)
[V1B{T - 3) vy (T - 2)]

By induction, we find that in order to satisfy the constraints
(1.2) for all 8 and t=0,1,...,T-1, we must define
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ﬁB(T-n[GB(T-n -eGB(T-n] - 8G(T-1Ny*(T-1) = £(T-1)

Bop (1) [y (1) = 8 (032 (1) =90 (1)1 + B (1) [B,5(0) = 69,5 (T)]

- 0G(y* (1) = B(1) if t 41 <T<T-2

~ A Nk A1
Dog (t1) hgg(ty) 8 (0 (£ - 9] (£,0)]

+ D1B(t1)[u1B(t1) -6V1B(t1)] + edj(t1) = f(t1) (3.15)

Bog (T [, (1) +eG;B(T)1 + By p(0) [,5(0) - 69, (0]

=f(m if 0<T<t,-1 .

The vectors G;B(T)must satisfy the following relations:

A% _ _ _n-1 _ _ * - - 5 _

VOB(T 1) = DOB(T NG(T=-1)y (T -1) VB(T n o,
~ & _ _a-1 * . _
VOB(T) = DOB(T)G(T)y (t) 1if t1 +1<t<T-2 ,

A* _ /\_1
Vop(tq) = DOB(t1)dj(t1) .

The vectors G;B(T) satisfy the relations (0 <T<T=-2):
Voo = 52 0D, ()%, (1) = 9 (T)V, (T
o (™) = Dgp 1B 1p{™) = #g(Tvg(T)

Thus the variation GOB(T) of control GOB(T)(I’=O,1,...,T -1)

is defined by:

- —A* -
(T-1) = VOB(T 1,

_ ~x A1 . _
(1) = v (1) = vo (1), 1f £+ 1<1<T-2 (3.16)

0B

VoB

VoB

>

(1) (ty , if 0 <1<t

VoB 1 -

Using (3.12) and (3.13) we can define the values of vectors
{VB(T)} associated with the variation of control {uB(r)}. Thus,
if a new column wj(t1) associated with a column dj(t1) is intro-

duced into the basis W then the variation of a basic feasible

BI
control {uy,u.} is defined by (cf. (1.15)):
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~

(t) - ev (1) . (3.17)

Ge (1) = 1
0B 0B

0B
We shall refer to the determining of the variation {Ge(r)}

of a feasible control {u(t)} as Procedure 2. The variation{ﬁe(rﬂ

is satisfied to the constraints (1.1) to (1.3) of Problem 1.1 by

definition. As {u(1)} is a feasible control, then the constraints

(1.4) will also be satisfied for sufficiently small 6 > 0. Hence

the control {Ge(r)} is feasible if 0<6 ieo. The value of ¢

0 is
defined by relations (cf. (1.16)):
uoi(T)
(/Q'ltz) = arg—min ’r—)— H (3-18)
Voi LT
o - Uy (£))
=
vol(tz)

where the minimum if taken over all (i, 1) GIO(u),GOi(r) >0 and

uoi(r), voi(r) are the i-th components of vectors uOB(T), VOB(T).

The equality (3.18) follows from (1.4) and (3.16); minimum
in (3.18) 1is achieved at single pair (l,tz) in the nondegenerate

case.

Let us now define the variation of trajectory {x(t)}. Con-
sidering (3.5), (3.13) and (3.15), we find that the variation of
trajectory xe(T)==x(T) -8y(t)(t=1,...,T) will be defined by

— ¥
y(T) = y (T) (3.19)

y(t+1) = y*(t+1) +B]‘3(T)G1B(r) (t=17-2,...,1,0)

where the vectors y*(1) =0 if 0<t<ty, and y¥(r+ 1) =a(my*(1)
A ~ .
+B0B(T)VOB(T), if t1+1iTiT—1.
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4. Objective Function Variation

The special feasible variation of a basic feasible control
has been built up in the previous section. Now we determine the
corresponding variation of the objective function (1.5) when a

column vector dj(t1), (j,t1) GIN(u) is introduced in the basis Ws-

In accordance with (3.19),

6

J. %) = a(T)x(T) - sa(T)y*(T)

1

Denote the variation of the objective function by

) = a3, = @ @ -a e = amytm @

where indices (j,t1) show that the variation has been caused by
introduction of the column dj(t1), (j,tj)(EIN(u) to the basis.
By substituting y*(T) from (3.11) with T = T-1 into (4.1),

we obtain

_ _ * _ ~ _ A* _
Aj(t1) = a(T)a(T-1N)y (T-1) + a(T)BOB(T 1)VOB(T 1) . (4.2)
Considering (3.16), (2.15) and (1.12), we rewrite (4.2) as
1 ~
Al(t,) = g(T-1)y*(T-1) + g(T=-1)B_(T-2)v,_(T -2
j 7) al )y ( ) al ) By Jvag ) .3
+ Q(T)BB(T-1)VB(T -1,
where BB(T-1) is the matrix generated by basis columns of the
matrix B(T - 1), variation vB(T-—1) is associated with basic com-

ponents of the vector uB(T -1).

By substituting
y*(T-1) = AT -2)y*(T-2) + B (T-2)v8,(T-2)

into (4.3) and again using (1.12), we obtain

q(T-2)y*(T-2) + q(T-1)ﬁOB(T-2)GBB(T-2)

+ q(,T-1)B;(T-2)G- (T - 2) + g(T)B

B
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Considering (2.17) and (3.16), we can express Aj(t1) in the

form

—_ -— * - - 2 - S -
Aj(t1) = qgq(T=-2)y (T-2) + g(T 1)BOB(T 2)VOB(T 2)

+ q(T - B (T =2)¥,5,(T=2) + qQ(T)Bg(T - Dvy(T-1) .
Hence and from (2.15) it follows that

AL (t

50 = q(T -2)y*(T-2) + q(T = NBL(T - 2)V (T - 2)

+ q(T)BB(T— 1)VB(T-‘I)

Eventually by induction we obtain for all (j,t1) EIN(u):

T=1
Aj(t1) = T_ZO q(r+1)BB(T)VB(T) - q('k:1 +1)bj(t1) . (4.5)
One can see that vectors VB(T)(T= 0,1,...,T=-1) are a solu-

tion of the equations system (1.13). The solution is obtained by
means of the compact inverse matrix Procedure 2, which is analo-

gous to Procedure 1 of basic feasible control computation.

Comvaring (4.3) and (1.14), we can write

T-1
zj(t1) - cj(t1) = TEO qlt+ 1) Bg(t)vy (1)

Aj(t1)

q(t1-+1)bj(t1)

Using the dual Problem 1.2, we can now obtain another form
for the definition of the objective function variation Aj(t1).
This form corresponds to (1.17) and is more convenient in prac-

tice.

By substituting the expression GBB(T -1) from (3.10) at

T=T-1 into (4.2), one can obtain
_ _ *m _ a _nva~lm _ * o
Aj(t1) = a(T)A(T-1)y (T-1) a(T)BOB(T 1)DOB(T NGT-Ny (T-1) .

Define a vector A(T -1) as A(T - 1) =a(T)By, (T - DBy (T - 1).
Then Aj(t1) =p(T-1)y*(T - 1), where the vector p(T-1) is com-
puted from dual state equation (1.6) with boundary condition
(1.7) at t=T~-1.
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By induction we obtain

Aj(t1) = A(t1)d.(t ()

j 1) - plt +1)bj(t

1 ) . G.ty) €1

1 N

where

B -1
M) = p(t+ DB (£)B,(¢) (4.6)
and the variables X(t), p(t + 1) satisfy the dual state equation

(1.6) with boundary condition (1.7).

Theorem 5.1: Vectors {A(t)} computed from (4.6), (1.6) and
(1.7) are the simplex-multipliers for the bastis Wy.

Proof: It is sufficient to show, in accordance with the de-
finition of simplex-multipliers [1], that vectors )(t) satisfy
the dual constraints (1.8) as equalities for basic indices; that
is,

p(t+1)bj(t) - A(t)dj(t) =0 , (j,t) € IB(u) .
For this, let us consider the constraints (1.8) of the dual

Problem 2.1 relative to the current basis W_ of the primal Prob-

B
lem 1.1. They can be written at t=0 as

A(O)DB(O) = p(1)BB(0) . (4.7)

As a nonsingular matrix 605(0) can be generated by columns
of the matrix DB(O), then (4.7) can be rewritten as

~

A(0)Dy5(0) = p(1)By,(0)

B = 0B
A(0)D,5(0) = p(1)B L (0)

Now we obtain

A S I -
P(1) [Bog (02553 (00D, (0) = Bop (0] = 0
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or, in accordance with (2.17),
1
p(1)BB(0) =0 . (4.8)

Using the state equations (1.6), the conditions (4.8) can be re-

written as
1 1
P(Z)A(1)BB(0) - A(1)G(1)BB(0) =0

Hence and from (1.8), we obtain for the next step,

Am1

A1) = p(Z)BOB(1)DOB(0)

By induction,

a1
Alt) = plt+ 1)ﬁ0B(t)DOB(t)
holds for all t=1,2,...,T -1, where matrices EOB(t) and ﬁ;;(t)
are defined in Section 2. This completes the proof.
Define Procedure 3 by formulas (4.6), (1.6), and (1.7). Pro-

cedure 3 allows computation of the values of simplex-multipliers

{X(t)} for the current basis WB.

It should be noted that for computing both the values of
vectors {A(t),p(t+ 1)} and the values of vectors {ul(t),x(t)},
. P | A A 1
one can use the same matrices DOB(t), D1B(t)’ BOB(t), and BB(t).

5. Conclusion

As has been shown above, the basis Wy of dimension mT x mT
of the equivalent Problem 1.71a can be replaced by the system of
T local bases {60B(t)} of dimensions mxm. In this case, all
simplex overations (primal, dual solutions, pricing, etc.) can

be effectively implemented using this system of local bases.

On the other hand, the original Problem 1.1 can be considered
as a structured linear programming problem with constraints (1.1)

to (1.4). The basic matrix B for this problem has dimension
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(m+n)T x (m+n)T. One can easily see that the basic control

B’uN}’ determined from Procedure 1 of Section 2 with the

corresponding trajectory X, is a basic solution for linear pro-

u={u

gramming Problem 1.1.

The separatce operations and the whole algorithm of the

dynamic simplex method will be considered in the next part.
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II1. THE DYNAMIC SIMPLEX METHOD: A BASIS FACTORIZATION APPROACH

1. Introduction

In this part, separate operations and the general scheme of
the dynamic simplex-method will be described. An illustrative
numerical example and the theoretical evaluation of the algorithm
are given. In conclusion, we consider briefly important exten-
sions of the algorithm (non-negative state constraints, time de-

lays in state and control variables, etc.).

For convenience, we repeat the statement of the problem be-
low [1].

Problem 1.1: Find a control u={u(0),...,u(t-1)} and a
corresponding trajectory x={x(0),...,x(T)} satisfying the state
equations

x(t+1) = A(t)x(t) + B(t)u(t) (1.1

with initial condition
x(0) = x° (1.2)

and constraints

G(t)x(t) + B(t)u(t)

]

f(t) (1.3)

\
[=)

u(t) (1.4)

which maximize the objective function

Jq(u) = al(T)x(T) . (1.35)

Here we use the same notations as in Parts I and II.

Problem 1.1 can be considered as some "large" linear program-
ming problem with constraints (1.1) to (1.4). The constraint
matrix of Problem 1.1 has a staircase structure and dimension
(r+n)T x (m+n)T; decision variables are {u,x} ={uk(t),xi(t +1)
(k=1,...,r; i=1,...,n; t=0,...,T-1)}.
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We shall denote a basic feasible solution of Problem 1.1 by

{uB,x} (the free variablés x are always in a basis). Evidently,

ug is a basic feasible control in the sense of Definition 1.2

(11.

2. Basis Factorization Approach

The method which was considered in [1], can be interpreted
as some basis factorization approach to Problem 1.1's solution.

Below we describe the method in these terms.
We need the following assertion.

Theorem 2.1: [2]1: Let a non-singular square matrix F be par-

titioned into blocks

H P fm
F=|...... | (2.1)
Q . & fin

where H is a non-singular matrix.

Then F is represented as the product of upper and lower

triangular matrices in the form

m n

_ H:o I
F=F-uU-= [..:...] . {fﬂ:.?.}m , (2.2)
Q:c 0 :I Jin ’

. . n

where
-1 -

C=R-QH P , lc| # 0 , ¢ = H Tp , (2.3)

I, and I, are the identity matrices of appropriate dimensions;

the inverse of each of the factors ig readily obtained and their
product yields the inverse of F:

g l4m" Tpe Tor™! -5~ !

F . R R . (2.1)
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Theorem 2.1 is not stated in [2] in exnlicit form, but di-

rectly follows from results given in [2].

We now apply the theorem to Problem 1.1. The basis matrix

B of Problem 1.1 has the same structure as the constraint matrix:
DB(O)
BB(O) -I

G(1) DB(1)
A1) By (1) -I

B = . (2.5)

G(T-1) DB(T-1)
A(T-1) BB(T-1) —{J

where I is the identity matrix of dimension n xn, DB(t) and BB(t)

are submatrices, formed by basic columns of the constraint matrix.

As the rows of DB(O) are linearly independent, one can choose

m linearly independent columns in the matrix DB(O). These columns

generate the matrix BOB(O).

By column EermutaEion, we can transform the matrix DB(O) and
obtain DB(O) =[D0B(0);D1B(0)], where D1B(0) is the submatrix, con-
sistinngf the columns of the matrix DB(O) which are not in the
matrix DOB(O).

The column permutation of the matrix DB(O) implies the corre-

sponding partition of the matrix Bp(0): By(0) =[By,(0);B, (0)].

In accordance with Theorem 2.1, one can show that the matrix
B is expressed as

B = B.U (2.6)

where U0 is the upper triangular matrix whose dimensions conform
with those of B.
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l

In the matrix UO’ the dimension and location of the matrix
6. (0) = D1 (0)D,_ (0)
B 0B 1B

coincide with the dimension and location of the matrix 618(0) in

B. The matrix EO is obtained from the matrix B through replace-

ment [693(0);619(0)] by [Dyg(0):0] and B ;(0) by
BB(O) =B1B(0) -BOB(0)¢B(0)-

In ?he matrix EO’ we permute the submatrix -I and the sub-
matrix BB(O). Then we permute the submatrices G(1) and A(1) in

the matrix B, and the submatrix ¢B(0) in the matrix Uy resvectively.

0
By analogy with (2.6), we can write that EO =§1V0, where

V0 is the upper triangular matrix of the matrix EO dimension:

_1

1
-BB(O)

1 _ ~ A~
BB(O) = B1B(0) - BOB(0)®B(0) ’
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and

603(0) |
(0) -I
(1) G(MBYO) DBy (1)
A(T) A(1)Bl13(3) By(1) -I
G(2) Dy(2)
A(2) By (2) -I

0B

W
li

“G(r-1) D, (1-1)
L A(T—1)BB(T—1) -I

The dimension and location of the matrix —B1(0) in V., coin-

B 0

cide with the dimension and location of the matrix B;(O) in EO‘

The matrix §1 is obtained from B. by the replacement of submatrices

0
[-1:Bl(O)] by ([-I:0] ,
1
[G(1) :0:D (1] by [G(1) :G(1)BL(0) :D (D]
1
[A(1) : 0 :BB(1)] by [A(1) :A(1)BB(0) :BB(1)]

In accordance with Theorem 2.1, a matrix, obtained from the
matrix 51 by cutting out the rows coinciding with the rows of sub-
matrices DOB(O) and BoB(O) and by cutti?g out the columns coin-
ciding with the columns of submatrices DOB(O) and G(1), is non-

singular. Consequently, the rows of the matrix
[G(1)B(0) : D_(1)]
B ° "B

are linearly independent, and by column permutation, this matrix

can be reduced to the form

o

1 = B -
[G(1)Bg(0) : D (1)1 = [Byy(1) : B, (D1
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where the matrix ﬁOB(1) is nonsingular and the matrix 61B(1) is
generated by columns [G(1)B;(0) :D(1)], which are not in the ma-
trix DOB(1).

The matrices

1 A A
[A(1)Bg(0) :BL (D] = [Byg (1) : By (1]

and ¢B(0) in matrix UO’ as well as the matrix -BB1(0) in the ma-

trix v are partitioned similarly.

0!

Proceeding in a similar way, we obtain

= _ * _ * -
B =BV, sUp 5 +on-- VoUp = B7U (2.7)
where
POB(O)
Byg(®) -I R
G(1) ?OB(”
R A1) BOB(1) -I
B = . (2.7a)
G(T—1)?0B(TL1)
L A(T—1)B0B(T-1) -I |
where 60B(t)(t==0,...,T - 1) is a square non-singular matrix of

dimension mxm and is formed either by columns of the matrix D(t)
or by some columns of matrices D{(t)(1=0,...,t-1), which are re-
computed to step t during factorization process. Evidently, the

matrices 6 (t) (t=0,1,...,T-1), obtained in such a way, coin-

0B
cide with the local bases, which were defined in {1].
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The matrices U, and Vt (t =

t
1 0

0

. 0...-gt"

0,1,...,T-2)

L0...0 .0, 2J(0)...0...

are
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where ¢i(t) and —Bg(t) correspond to those basic control variables

uB(i), which enter local basis D Location of rows of sub-

; : o (3)-
matrices ¢1(t) and —Bg(t) correspond to the location of rows of

. ~ . *
submatrices DOB(t) and BOB(t) in B .

We denote the non-zero columns in the right corners of the
matrices U_ and V_ by ¢B(t) and B;(t):

t t
= [otH! j T-1
op(t) = log " (£) «.. 5(%) ... & (t)]
1 - r_nttl _nd _aT=1
BB(t) = B,y (t) ... -Bj(t) ... B, (t)]

By construction, these matrices are defined from

It

A= ~
¢B(t) DOB(t)D1B(t) ‘ (2.8)

]
BB(t)

B1B(t) - BOB(t)¢B(t) . (2.9)

One can see that these matrices conform with the matrices
defined by fomulas (2.12) and (2.17)in [1].

Taking into account the permutation of basis columns in the

factorization process, we can write the basic variables as
fug,x} = {Ugp(0),x (1), Agp (1), ..., 4 (P-1),x(T)}

where vector ﬁOB(t) corresponds to matrix D._(t) (£=0,1,...,T-1).

0B
At each simplex iteration, it is necessary to solve three

system of linear equations for:
(1) determination of a basic solution;

(2) computation of coefficients {v,y} which are the repre-

sentation of the incoming vector

) = (0,...,0,&5 () by ()0, ..., 0)T

in terms of the basis;

(3) determination of the simplex-multipliers.
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Now we describe these procedures for factorized representation
of the basis. We single out the following procedures: the pri-

mal solution, the dual solution; pricing and updating.

3. Primal Solution

Vector X==(uB,x) is calculated from the solution of the sys-

tem
UX = BV, ... U X=>b , (3.1)

where b is the constraint vector of Problem 1.1.

Denote

*
X = UX ;

then the calculation of the vector X reduces to subsequent solu-
tion of two systems of linear equations in forward and backward

runs:

B*x* = b , (3.2)

Ux = x* . (3.3)

The solution of (3.2) is determined by recurrent formulas:

O 3 _ a=1 * =
uOB(t) = Dy (B) (£(£) - G(£)x" (t)) (t=0,...,T~1) ,

* - * ~ ~ % _ _

x (t+1) = A(t)x" (t) + BOB(t)uoB(t) (t=0,...,T=-1) , (3.4)
x*(0) = x(0)

The system (3.3), considering (2.3), can be written as

-1 -1 *
X =Uy ... Vo oX
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- -1 .
£ and Vt are obtained

from the matrices Ut and Vt by simply changing the signs of the

elements which are above the main diagonal. Therefore the solu-

It is easy to see that the matrices U

tion of the system (3.3) reduces to the recurrent formulas:

x(T) = x*(T) ,
a(T - 1) = u*(T-1 |,
(3.5)
* t-1 T-1 . .
(1) = x*e) + 7 (Bl(e) 010,505, (e=T-1,...,1)
i=0 j=t
) " t  T-1 5 .
ugn (t) = 0Xo(t) - [o3 (t) : 0104, (), (£=T=-2,...,0)
0B 0B izo j=§+1 i 0B

Here the notation [Bi(t) : 0] and [¢i(t) : 0] denote that the ma-
trices Bi(t) and ¢1(T) are augmented by zeros, if necessary, so

that the matrices conform with multiplying.

The coefficients

Yj(t1) = (veg 0,y (1), v (1) .oy (T))

which represent the vector Yj(t1) in terms of the basis, are cal-

culated from the solution of the system
BY, (t,) = Y. (t
SR 3

On the forward run, we find the vector sequence (v*,y¥):

~

* —
VOB(t) =0 ,
y*e+n =0, (£=0,...,t,-1)
~xk _ a~1
Vopity) = Dogltylds (e (3.6)
* _ oz ~ %
y (t,I +1) = BOB(t1)V0B(t1) _bj(t1) '
o — _a=1 *
Vop (t) = ~Dyg(t)G(E)y™ (£)

y¥e+ 1) = Ae)y*(v) + By (8)V3L (), (e=t,+1,...,T-1)

1
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On the backward run, we find vector sequence (v,y);

yi(T) = y*(T) ,
*

Vo (T= 1) = vog(T-1)
t=1 T-1 | R
y(e) = y*(e) + [ ] (B](t) : 019, (D), (3.7)
1=0 J=t (E=T-1,...,1) ,
bopt = St - £ T el o
vag () = v (v) - [¢3(t) : 01v,,(])
0B 0B iZ0 j=t41 T 0B

(t=T7-2,...,0)

For given sequences 4 and v, the pair of indices (!L,tz) which

correspond to the outgoing vector, is defined by

u, . (1) 4., (£,)
8, = min GOl(r) - OOQ(tZ) (3.8)
(i, 1) 0i 0L ' "2
GOi(T)>0
4, Dual Solution
We define (n+m)T-vector g ={),P} as
c, = 7B (4.1)

where B is a basis matrix (2.5) and cg = {0,...,0,a(T)}. From
(4.1) and representation (2.7) of the basis matrix B, we can cal-

culate the simplex-multipliers {ix,p}={x(0),p(1),. ..., A(T~-1),p(T)}

in a similar way using the same matrices ﬁOB(t) and ﬁag(t) :
p(T) = a(T)
- o ~=1 om
A(t) -P(t+1)B0B(t)DOB(t); (t=T7-1,...,0) (4.2)

o
N
1]

p(t+ DA(L) - A(B)G(t), (t=T-1,...,1)
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One can see that the formulas (3.4) to (3.7) are the explicit
expression of Procedure 1 [1] for determination of basic variables
and coefficients, expressing a column not in the basis by the
basis columns. The formulas (4.2) for determination of simplex-

multipliers coincide with the formulas of Procedure 3 [1].

5. Pricing
The pricing procedure is now constructed straightforwardly.
To price out a vector dj(t) which is not in the basis, we use

formulas [1]:
AL (t) = a(t)ds(t) - p(t+1)b. (t) (5.1)

where the simplex-multipliers A (t) and p(t+1) are defined from
(4.2).

It should be noted that the method requires only partial
pricing: that is, to determine X(t1) and p(t,+1), which are needed
for pricing out the nonbasic components of vector u(t,), one has
to calculate vectors A(t) and p(t+1) only for t = T-1,T-2,...,
t,+1. These computations require only a part of the basis inverse
representation, in particular, only a few of the local bases.

In a standard approach it is generally not possible to compute
part of the components of the simplex-multiplier vector without

computing the whole vector.

6. Updating
The pricing procedure of computing the values Aj(t) for vec-

tors dj(t), (3,t) GIN(u), which are not in the basis allows us
to define the vector to be introduced into the basis and the vec-

tor to be removed from the basis.

Let dj(t1) be the ingoing column vector and aoz(tz) be the
outgoing column vector. Here dj(t1) is the j-th nonbasic column
of the matrix D(t1) and aoz(tz) is the ¢-th column of the matrix

Doglty) s O <ty t,<T -1,
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Replacing the vector dj(t1) by the vector aOQ(tz) implies
the updating of the old system of local basis {ﬁOB(t)} by a new
system of local bases {6OB(t)}'.

As in the case of the static simplex method, the updating
procedure must be done efficiently as it constitutes the main

effort of each iterative cycle of the algorithm.

In the dynamic simplex method, we operate with the system
of inverses {ﬁaé(t)(t= 0,1,...,T-1)} of local bases. Hence the
efficiency of the method will be directly defined by the updating

scheme of the inverses {ﬁaé(t)}.

The main complications of the updating procedure in the
dynamic case is the fact that, first, the updating of a local
OB(T)
(T=t+1,...,T-1) and that, second, the outgoing vector aol(tz)
may belong to the local basis BOB(tz) at another step t2, t2#1ﬁ.

basis at step t can change the subsequent local bases D

The theorem below gives a sufficient condition when the
replacement of a basis column in a local basis BOB(t) does not

change the other local bases.

Theorem 6.1: The replacement of the i-th column in a local

basis D, (t) does not change the other local bases, i1f the i-th

0B
row of the matrix ¢B(t), where QB(t) defined by (2.8), vanishes.
Proof: When we replace the i-th column in the matrix ﬁOB(t),
then in accordance with (2.7), the updating of the matrix ¢B(t)
will be similar to the updating of the inverse 65;(t)' that is,
the i-th pivot row of the matrix is added to the other row with

some coefficients [3].

Therefore, if the i-th row of the matrix ¢B(t) is zero, the
matrix ¢g(t) will not change. In accordance with (2.9), the
matrix Bé(t) does not change either. Considering the construc-

tion of matrices D t) at next steps, we find that all subsequent

(
~ 0B
local bases DnB(t) (t=t+1,t+2,...,T-1) also do not change.
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Consequence _6.1: If an element ¢ij(t) of the matrix ¢j(t)

is zero, then the replacement of the i-th column in the local

basis 60B(t) does not change the j-th column in the matrix B;(t).

Now let us consider the interchange of the &-th column of

local basis 60B(t) with a column of local basis BO (t+1) and

. ; A=
find how the inverses DOB B(T)

(t=t,...,T~1) are updated at this interchange. For this, we

(1) and matrices QB(T), B

need the following theorem.

Theorem 6.2: Let the k-th column of submatrix [g] of the ma-
triz F in (2.1) be interchanged with the L-th column of submatriz
[;] and let the element P of the matriz ®==H-1P be not zero
(pivoting element). Then, denoting the updated submatrices in F

as H', Q', P' and R', the following relationg hold:

(i (H )' = EH (6.1)

where Ep 18 an elementary {(mxm) column matrix with elements of

the non—-zero k—th column:

.
il . .

n, = - —— (i=1,...,n, 1#k)

1 49}

n :L

kKo 9y

. - v T

(ll) ¢ = uk‘bl 1 # L, 4)2 = [T]1:---,T1m] ’ (6.2)
€ =g, (6.3)

where Qi 18 the i-th column of ¢, E, is an elementary (nxn) row
matrix with elements of the non-zero L-th row equal to _¢2i
(i=1lﬂ-'ln);

1

(iii) C'= CE; (6.4)

-1 . , .
where E, is an elementary (n xn) row matriz with elements of

the non-zero L-th row:



n. = - KL

i 29

n = - —L

. 2%
Proof:

mulas in the
permutations

f‘ =FT, where

1 1

As T | = T, then F_

l
N

TF

-1

~59~

Formulas (6.1) and (6.2) are the basis updating for-
simplex method ([3].

Now, to prove (6.3): the column

of the matrix F can be written as a matrix product

Taking into account the partitioning

of the matrices and using Theorem 2.1, we obtain

0...0...0
et - l0...1...0| ®©
0...0...0]
k
0...0...0]
= -|0. 1 .0
0...0...0]
The relation (6.4) follows

the proof of the theorem.

PC + 0 C
‘1
2
",i
oc™! 4 0 =gyt
[— '1
directly from (6.3). This completes
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Now let ¢Qq(t) #0 be the pivoting element of the matrix
?B(t)' which correspond to the g-th component of the vector
uOB(t +1). According to T?eorem 6.2, at the interchange of the
2-th column of the matrix DOB(t) with the g-th column of the ma-
trix ﬁ1B(t), the inverse 66g(t) is updated by premultiplying on
the elementary matrix. The elementary matrix has dimension m xm
and differs from the identity matrix by the &-th column with

components [3]:

$iq (1) ‘ .
n, = - $;§TET (i=1,...,m; i#2)

The column permutation in matrices ﬁOB(t) and §1B(t) is car-
ried out in a similar way. The matrix Bé(t) is updated according

to Theorem 6.2 as

1 v ol
[BB(t)] —BB(t)Eq ’ (6.5)

where E_ is an elementary row matrix, which differs from the iden-

tity matrix by the g-th row with components

¢, (t)
i ,
Ei(t) = W ’ i#q
£.(t) = - ! i=
i hq® 4
Define now the updating of the inverses BS;TT)(T‘=t +1,...,

T-1).

Theorem 6.3: Let ¢Qq(tj #0 be the pivoting element of the
matriz QB(t) (which corresponds to the g-thn component of veetor
uOB(t +1)).

Then at the interchange of the L-th column of SOB(t) with

the q-th column of D t+ 1) the following relations hold:

OB(
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~—1 . _ o=1a=1 .

[DOB(t+1)] = Lq DOB(t+1) (6.6)

[BOB(t+1)]' = BOB(t+1)Lq (6.7)
T | -1

[og(t+ 1)) —Lq Nq+Lq ¢B(t+1) (6.8)

where Lq 18 an elementary row (m xm) matrix, which differs from
the unit matrix by the gq-th row, and Nq 18 a matriz, which differs

from the zero matrixz by the q-th row.

The matrix B;(t+1) 18 not changed at this permutation, neither
are all the subsequent local bases ﬁOB(T) and matrices ¢B(T),
1
BB(T) (t=t+2,...,T-1).

Proof: Taking into account the structure of the matrices

6 (t+ 1) and ﬁB(t-+1), we can write (after column permutations):

~ _ 1 .
DB(t-+1) = [G(t-+1)BB(t-+1), DB(t+-1)] (6.9)
= [DOB(t-+1); D1B(t-+1)]
and
~ _ 1 .
BB(t-+1) = [A(t-+1)BB(t-+1), BB(t-+1)] (6.10)
[BOB(t+1), B1B(t+1)]
Considering (6.9) and (6.10), we obtain
[DOB(t+1)]'[D1B(t+1)]' _ DDB(t+1) D1B(t+1) Lq N
A Y ' 2 E (6.11)
[Bog(t+ 11" [Byg(t+1)] Byg(t+1) Big(t+ 1|0 1

Here [ﬁB(t-+1)]', [ﬁB(t-+1)]' are the updated matrices cor-
responding to the new basis; Lq is the elementary row (m xm)
matrix; Nq is the{m xk) matrix; I is the identity matrix of dimen-
sion (k xk).
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The right matrix in (6.11) is built up as follows: the ma-
trix Eq in (5.5) is enlarged up to dimension (m+k) x (m+ k) in
such a way that in the added part the main diagonal contains
units and all the remaining added elements are zero; then the
elements of the g-th row are permuted in accordance with the
columns permutations of the matrix 6B(t-+1), when it is parti-

tioned on the matrices 6OB(t-+1) and ﬁ1B(t +1).

Multiplying the right-hand matrices in (6.11) and taking
into account their partitioning, we obtain (6.6) and (6.7). Be-

sides,

D (t+1)1"' = D (E+1)N_ + D, (t+1)
1B 0B a 1B (6.12) .
[B1B(t+ it = BOB(t+1)Nq + B1B(t+1)
According to (2.9), we have
1 '\ _ R " nA ' ~=1 VIR 1
[Bgt+ D))" = [Byg(e+1)" = [Byg(e+ 1] [Dg(t+ D' D5+ 1] (6.13)
Substituting (6.6) and (6.7) into (6.13), we obtain
1 f _ 2 A _x -1
[BB(t+1) = BOB(t+1)Nq + B1B(t+-n BoB(t+1)LqLq
/\_1 ~ 1 ~
x DOB(t+1) (DOB(t+ .)Nq +Digle+M)
_ 2 _a o | ~
= B1B(t+1) BOB(t+1)DOB(t+1)D1B(t+1)
1
—-BB(t+1) .
The matrix B;(t-+1) is not changed, therefore all the sub-
sequent local bases BOB(T) and matrices ¢B(T), B;(T)(T='T+ 2,00,

T - 1) are not changed.

Finally, taking into account (6.6) and (6.12}, we obtain
(6.8):

v e 1 -1
[4>B(t+1)] = [DOB N +1L ¢B(t+1)

(E+ D1 Byye+ D) = LN+ 1
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This procedure we shall call the interchange of the &-th
column of the matrix ﬁCB(t) with the q-th column of the matriz
DOB(t+-1).

Now let us consider the interchange of the 2-th column of
the matrix ﬁOB(t) with some column of the matrix 6OB(t*),

t* > t+1.

In the 2 row of the matrix ¢ (t), let the first non-zero
element ¢2 (t) correspond to the ba51c variable, which is recom-

puted to the local basis D (e* }, and all elements ¢£l(t) corre-~

0B
sronding to the variables which are recomnuted to local bases
D B(T), t<T <t*, equal to zero. Now we partition the matrices

¢B(t) and B1B(t) into two parts:

¢B(t) = [o(8); 2,(8)]
B B(t) = [B11(t); B12(t)] ; (6.14)
1 _ 1 . 1
BB(t) = [By(t): By(t)]

Let the columns corresponding to the variables which are re-
computed into the local bases D (T), t <t<t*, enter the matrix
¢, (t) (B11(t)), B (t)), and the remalnlng columns enter the matrix
¢2(t) (By,(t), B;(t)).

Then, in accordance with (6.5) and consequence 6.1, the ma-
trix B}(t) does not change at the interchange of the g-th. column
of the matrix DOB(t) with the g-th column of the matrix ﬁ1B(t).
The matrix B;(t), which is defined from (6.14) is transformed in

accordance with the formula
iBl(e)1' = el(p)E
2 2 k '

where k is the number of the column of the matrix ¢2(t) which
contains the element ¢ q(t). The order of matrix El is equal

to the number of columns of matrix B (t).

Let the k-th column of matrix ¢2(t) correspond to the k-th
component (6.9), (6.10), the columns of matrices
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G(t+1)BJ(t) and A(t+1)B,(t)
do not enter the matrices

DOB(t-+1) and B,_(t+ 1)

0B

Therefore the matrices BOB(t-+1), 8 _(t+ 1) do not change.

0B

Let us partition the matrices ¢j(t+1), B;(t+ 1) and B, (t+ 1)

1B
into two submatrices

®B(t-+1) = [¢1(t-+1), ¢2(t-+1)] ;
1 _ 1 1 .
BB(t-+1) = [B1(t-+1), Bz(t-+1)] ;
1 A ~
B1B(t+1) = [B11(t+1), B12(t+1)]

The columns of the matrix ®B(t-+1), which correspond to the same
basic elements as the columns of the matrix ¢Z\t), enter the

matrix ¢2(t +1).

In accordance with the partitioning, the matrices ¢1(t +1)

and B (t+ 1) are not changed by the column permutations.

11

The matrices ¢,(t+ 1) and B t+ 1) are updated by formulas

2! 12

[, (t+1)]' = ¢ _(t+ 1)E

’
2 2 k (6.15)
» | I—
[B12(t+1)] —1312(t+1)Ek
As
~1 _ A A
Bz(t+1) = B12(t+1) - BOB(t+1)<I>2(t+1)
then, taking into account (6.15), we obtain
[B)(£+1)]' = Bl (t+ 1)E (6.16)
2 2 k .

Similar reasoning is valid up to the step t*. Thus, the
OB('r) with k-th

column of the matrix ﬁOB(t*) causes changes neither in the local

interchange of the g-th column of the matrix b
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bases ﬁOB(T) nor in the matrices ﬁOB(r) (r=1:+1,...,t* -1); the
matrices éz(r) and B;(r) are updated by formulas (6.15), (6.16)
if t+l=1(t=t+1,t+2,...,t%-1).

At step t*, part of the columns of the matrix G(t*)B;(t* -1)
enters the matrix ﬁOB(t*). Therefore, the updating of the matrices
at this step reduces to the case considered above.

This procedure we shall call the interchange of the L-th

column of the matrix D (t) with the k-th column of the matrizx

- i OR
DOB(t*), where t* > & +1.

The procedures of column permutation of the matrices ﬁOB(t)
and 60B(t*) (t* >t + 1) allow Es to describe the updafing proce-
dure of the o0ld local bases {DOB(t)} into new ones {DOB(t)}'.

When a vector aOQ(tz) is replaced by a vector dj(t1), two
cases are possible.

Case_1: L2

In this case, the 2-th row of the matrix ¢B(t) contains a

nonzero pivot element. 1In fact, the index of tne outooning vari-

able is defined by the relation (3.8). Hence the %-th component
of the vector QOB(tz) is not zero.

From (2.8) and (3.7), we find that
Voplty) = ~0g(t)yplty) if &, <ty

Therefore, the %-th row of the matrix @B(tz) contains at

least one non-zero element.

Let the pivot element correspond to the j-th component of

vector uOB(t2 + 1),

Replace the 2-th column of the matrix 60B(t2) by the j-th
column of the matrix DOB(tZ-fr). This interchange does not change
the basic solution. Therefore, if t2 +T <t1,
ings are true and we can proceed with the interchanges. 1In re-

the above reason-

sult, we obtain the following case.
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Proceeding with these subsequent interchanges, we remove the
outgoing vector into such a local basis DOB(t3), t33_t1, which

satisfies the condition of Theorem 6.1.

If such t3

going column into the last local basis ﬁOB(T-1).

<T -1 does not exist, then we replace the out-

In turn, the outgoing column can be replaced in the local
basis DOB(t3).

Let the outgoing vector be the f£-th column of the matrix
60B(t3)' Before introducing the vector dj(t1) into the basis,
it is necessary to recompute it at the step t3.

In result we obtain

Ak _ o~=1

vOB(t1) = DOB(t1)dj(t1) ‘
* _ _ ~ A%
y¥(Eg+1) = by (£)) + Byy () gn (£

(0 = -Bimaemyt(n (6.17)
y¥(r+1) = a(my*(n) + ﬁOB(r)ozb(T) ,

T=t, +1, t, + 2,...,t

1 1 3

In these formulas, the new local bases {ﬁOB(t)} are used.

The above considered updating of the ingoing column d.(t1)

*
og(t3)

A

is possible as the %2-th (pivot) element of the vector ¢

is not zero.

In fact, the 2-th element of the vector QBB(t3) is not zero,
in accordance with (3.8) and the updating formulas (6.17) coincide
with the formulas (3.6) and (3.7).

In accordance with (2.8) and (3.7)

Top(ty) = Ooplty) = ep(t) @ (£ .

94— . . ~ — oF*
But as the th row of the matrix ¢B(t3) vanishes, Vog(t3) 001(t3)

#0. Thus a new set of local bases is obtained.
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7. General Scheme of the Dynamic Simplex Method

Let at some iteration there be known: {68;(t)}’ the inverse
bases; {ﬁOB(t)}, the basic feasible control; {x(t)}, the corre-
sponding trajectory; {A(t),p(t)}, the dual variables (simplex-

multipliers).

As in the static simplex method, one can introduce artifi-
cial variables at zero iteration if necessary. In that case,

the zero iteration local bases are the identity matrices.

In accordance with Sections 3 to 6, the general procedure

of the dynamic simplex method comprises the following stages:

1. Choose some pair of indices (j,t1), for which Aj(t1) <0,
(j,t1) EIN(u), where Aj(t1) are defined from Section 5. Usually,
a pair (j,t1) with maximal absolute value of Aj(t1) is selected.
If all Aj(t1)<30, {(j,t) GIN(u), then we have an optimal solution
of the problem.

2. Define sequences of vector coefficients {v,y} from (3.6) and
(3.7).

Find the indices (l,tz) for the outgoing column from (3.8).
If all Goi(t)_io, then, the solution is unbounded.

4, Compute the new basic feasible control {u'(t)}:

(1) = 8¥, (1), (1,1 € I
ui (1) =46 ) = Gaty)
0 7 (ilT) S IN(u)r (ilT) # (J’t1) .

5. Update the local bases:
a) set t = t2

b) if t>t then go to stage e);

1’
c) select the non-zero element in the pivot row of the
matrix QB(t). (The index of the vivot row equals the

index of the outgoing column).
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d) let the pivot element of the matrix ¢B(t) correspond
to the component of the basic control, which was re-

computed into the local basis at step t+ 1. Then

- interchange the variables between local bases
DOE(t) and DOB(t-fT)

- set t>rt+1
- go tostage b;
e} if t=T-1, then go to stage g;
f) if the pivot element of ¢B(t) is nonzero, go to c;

g) replace the column to be removed by the column to

be introduced into ﬁOB(t).

6. Compute the dual variables {X,p} from (4.2). Go to stage 1.

It should be noted that only an outline of the algorithm is
given here. The concrete implementation of the algorithm depends
on the specifics of a problem, the type of computer, the strategy
used as to which column selected and introduced into (or removed

from) the set of local bases, etc.

8. Degeneracy

It was assumed above that all basic feasible controls were

nondegenerate.

This assumption was necessary in order to guarantee that for
each successive set of local feasible bases, the associated value
of the objective function is larger than those that precede it.
This guarantees that we will reach the optimal solution in a

finite number of possible sets of local feasible bases.

For the degenerate case, there is the possibility of compu-
ting a 60 at step 3 of the method, for which eo = (0. Therefore,
the selection of a vector to be removed from and a vector to be
introduced into the set of local bases will give a new basic
feasible control with the value of the objective function being

equal to the preceding one. Theoretical examples have been con-
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structed to show that in this case cycling of the procedure is
possible. 1In practical examples this has never happened (with
one possible exception). 1In order to protect against this possi-
bility, a special rule for selecting the outgoing column can be

introduced to prevent cycling in the case of degeneracy.

Here we can use the method of overcoming degeneracy of the
simplex method [3]. For this we need the columns of the inverse
8! (see (2.5)). The j-th column y; of the inverse 8" is a solu-

tion of the system of equations:
By. = e. , (8.1)

where ej is the unit vector of dimension (m+ n)T with the j-th

component equal to one.

The system (8.1) can be solved by using the factorized repre-
sentation of the basis matrix, which is similar to the primal solu-

tion procedure (Section 3).

9. Numerical Example

Experimental results of tests with the algorithm and its nu-
merical evaluation will be described in a separate paper. Here
we consider an illustrative numerical example and give a theoreti-

cal evaluation (Section 10) of the method.

We consider the problem with scalar state eguations and con-
straints (that is, n=m=1). In this case, the dimension of the
“"global" basis matrix will be 2T x 2T, hence the corresponding
static LP problem is not a very trivial one for large T. Using
the dynamic simplex method, we do not need to invert the global
basis; what is more, we do not need, for a considered example,
to invert local bases either, because if m=1, the local bases

are simply numbers.

Problem: Given the state equations

x(t+1) = x(t) + u(t) - v(t) (t=0,...,4) (9.1)
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with

x(0) =0 (9.2)
where x(t), u(t), v(t) are scalars. Find {u(0),...,u{l)},
{(v(0),...,v(#)} and {x(0),...,x(5)} which satisfy (9.1), (9.2) and

constraints

x(t) + ult) + v(t) = £(v) (9.3)

u(t) >0 ; v(t) >0
where £(0) = 10; £(1) =5; £(2) =5; £(3) =10; £(4) = 5 and minimize
J = 10x(5)

The tableau form of the problem is given below

u(0) v(0) x(1) u(1) v(1) x(2) u(2) v(2) x(3) u(3) v(3) x(4) u(l) v(4) x(5)

-
Y
t
Y
t
-
i
SO O L O =

-
-
|
-
|
-
]
o

Thus, if we solve the problem by the standard simplex method, it

is necessary to handle with 10 x 10 "global" basis at each iteration.

Now we proceed by the dynamic algorithm. Let {u(o)(O),v(O)(O),
x 0 (1), x (0 2,09 (2),x (3),ul® (3),v O (3),x O 4y, v (O (u))
be the first basic variables. The corresponding local bases
ﬁOB(t) (t=0,...,4) are the following:
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B =1 ;32w =
By = -2 G = w0
2@ =1 P @ =u@
B0 =1 &0m =um
A(O)(u) - -2 ; ﬁég)(u) = v(3)
B sy = -2; 4P - v .

Note that control variable v(0) from step t = 0 enters
the local basis D(o)(1) at the next step t=1. BAs variable x(5)
does not enter the "global" basis on this iteration, it is necess-

(0) (5 which corre-

ary to introduce an additional local basis DOB

sponds to variable v(4).

The corresponding set of ¢B(t) and B;(t) (t=0,..,4) are the
following:

0) v _ . . 100) 0y _ _

280 =1 ;B0 = -2

o) =1 5 B0 = -2 (9.6)
{9 () =-0.5;

(0) 4. ,(0) 1(0 1(0) 1(0)
2% (s 0% (2), By Y1y, 8.9 (20, B'? (4) are zeros.

Using (3.4) and (3.5) for (9.1), (9.2) and (9.5), we obtain
the first primal solution:

|
o

w3y = 2.5 (9.7)
v@ (o) = 2.5 vy =25 v =5

u!®(0) = 7.5 @2 =

the value of objective function: x(o)(5)= 0.

As coefficients of the objective function for basic variables
are zeros, then all simplex-multipliers (according to (4.2)) are
also zeros. Therefore, we have all A, are zeros but

A(O)(x(S)) =-10. Hence, x(5) is to be introduced to the basis.
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Denoting coefficients v._(t) for variables u(t), v(t) and

OB
x(t) as a(t), B(t) and y(t) respectively, we calculate using (3.6)

and (3.7), that o9 (3) ==0.25; 8@ (3) =0.5; 6@ (4) =0.5;

Y(O)(u) =-0.25 the other a(o)(t), B(O)(t) and Y(O)(t) are zeros.
From (3.8)
(o) _ . 2.5 2.5 5 | __
b = MIny-5.25 7 9.25 ¢ 0.5 10

(it should be taken into account that {x(t)} are free variables).

Thus, x(1)(5) =6é0) =-10 and u(3) is to be removed from the basis.

The new primal solution will be the following

W) = 7.5 ; w12

I
o

vy = 2.5 ; vz =5

<M 0 x(1)(5)

|
[6;]

“Mm=s5 5 xMN@=5; P -= ) -10

’

Now old local bases (9.5) are updated. As variable u(3)
leaves the basis, we have to interchange variables u(3) and v(3).
1 A - ) - 1 —'.A = 3
After interchange: DOB(B) =1, ¢B(3) =1; BB(3) =2; DOB(M) =2;
®B(4) =0.5.

Then u(3) and v(4) should be interchanged. Hence ﬁOB(u) =1;

¢B(N) =2; 60B(5) =U4. Finally, we replace u(3) by x(5), tnen
DOB(5) =-~1.

Thus, the updated local bases are

al1)

(1) -

Bog’ (0) = 1 By (3) = 1

5(1) (1) - _ 5410 4y =

By’ (1) = -2 Bog’ (4) = 1 (9.8)
£ (1) (1)

Dog (2) =1 Dyg (5) = 4

We can begin new iterations now. Using (4.2), the dual solu-

tion is obtained for local bases (9.8):
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pM(5) = 10 oM (3) = uo M1y = o

Ay = —10 A M 2y = wo AW 0y = o
oM () = 20 pM(2) =0 (9.9)
A3y = -20 AW 1y = o

From (9.9) and (5.1), & (u(s)) =-20; 2" (u(3)) = -60;

1
A( )(v(2))= 80, the other A(1) are zeros. Hence, variable v(2)

should be introduced into local bases. Calculating 8p for this

iteration, we find that 9é1)

the bases. As ¢é1)

=0 and u(2) should be removed from
(2) =0 and variables u(2) and v(2) are from
the same step t =2, only local basis 60B(2) at this step t=2
must be updated. 1In result, 605(2) =1 and the other local bases

have the same values as in (9.8). The new iteration yields
p? (5) = 10 p?)(3) = uo ) (1) = 0
2 4y = 2100 APy = -0 APy =0
p®) (1) = 20 02 (2) = 80 (9.10)
A2 3y =20 AP (1) = 80
and 42 (a(i)) =-20; 4 u2)) =-80; 8@ (vi1)) =180; 22 (w3
=-40; 23 (w(1)) =o.
Hence v(1) is introduced to the local bases, 6(3) =15 and
u(0) is removed from the local bases. At this iteration, the
local bases ﬁOB(O) and ﬁOB(1) are updated. 1In result, we obtain
v 0) = 10 Wm0 Py =3

, (9.11)
Dy =-10 xP@=-25 xP@3)=-s5

v 3) =65 v @y =130

P w =120 x5 = -250

(3), (3)

(2) =80; p 3 (1) =160; 1) (1) =-80; A
(3)(

(0) =-160, the

t) are the same as in (9.10). All values

and p
other p(3)(t) and A
of A(3)

solution.

(+) are negative now. Therefore, (9.11) is an optimal
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10. Evaluation of Algorithm

Above we considered an illustrative numerical example which
is not so easy to solve by hand using the conventional "static"
simplex method, but is very simple to handle by the dynamic al-

gorithm.
Now we give some theoretical evaluation of the dynamic sim-
plex method.

As can be seen from Section 7, for realization of the al-

gorithm it is sufficient to operate only with the matrices

~ ~ 1 _ _
Dog(t)i Qp(t), Byg(t), Bglt), G(t), Aa(t) (t=0,1,...,T-1).
Theorem 10.1: The number of columns of matrices ¢B(t) and

Bé(t) does not exceed n.

Proof: Let 2T steps of the factorization orocess be carried

out.
Then the formula (2.7) can be rewritten as
B = B2t-1vt-1Ut-1 . e VOU0 .
On the main diagonal of the matrix §2t-1 there is the sub-
matrix

DOB(t) D1B(t)

(t)

o>

(t)

=}

0B 1B

The columns of the submatrix F are linearly independent as

the matrix B is nonsingular. Conseguently, the number of

2t-1
columns of matrices D1B(t) and §1B(t) cannot be larger than n.

Hence, one can obtain the statement of the theorem.

The matrices ﬁag(t), ﬁOB(t), G(t), A(t) have dimensions
(mxm), (nxm), (mxn), (nxn) respectively. Therefore, the al-
gorithm operates only with the set of T matrices, each containing

no more than m or n columns.
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At the same time, the straichtforward application of the
simplex method to Problem 1.1 (in the space of {u,x} ) leads to
the necessity of operating with the basis matrix of dimension
(mMm+n)T x (m+n)T or of dimension mT xmT, if the state variables

are excluded beforehand.

Thus, in some respects, the dynamic simplex method realizes
a decomposition of the problem that allows a substantial saving

inthe number of arithmetical operations and in the core memory.

As was mentioned above, the DLP Problem 1.1 can be considered
as some "large" static LP problem and thus the simplex method can
be used for its solution. Let us find an upper estimation of a
number of iterations. At each iteration, the simplex method re-
quires no more than k2 multiplications for updating of the inverse,
where k is the number of rows of the basic matrix. Hence, the
total number of multiplications for the basis updating is no more
than (m-+n)2T2. To compute the coefficients which express the
column to be introduced into a basis in terms of columns of the
current basis, the simplex method requires some (m4—n)2T multi-

plications.

Now we shall evaluate the number of multiplications for the
dynamic simplex method. It was shown that at one interchange,
the local bases are updated by multiplication on the elementary
column or row matrix. The interchange of columns between two
neighboring local bases 60B(t) and BOB(t-+1) requires no more
than 3(m+n)2 multiplications. (The matrices 65;(t)’ ﬁOB(t),
oy (L), B;(t), ﬁ;;(t-+1), QOB(t-+1), ¢5(t + 1) are updated). 1In
the worst case, when the outgoing column from the local bases
ﬁOB(O) is entered into the local basis BOB(T-1), one needs T
interchanges. We assume that the average number of interchanges
is T/2. Thus the dynamic simplex method requires approximately
1.5(m-+n)2T multiplications for local bases updating per

iteration.

Calculation of the coefficients expressing the ingoing vector
requires about (m-kn)ZT multiplications. 1In addition, local bases
can be revresented in factorized form, thus enabling use of the
effective procedures of static LP [3].
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Solution of Problem 1.1 by the static simplex method requires
storage of the inverse of dimension (m+n)T x (m+n)T. The dynamic

simplex method requires storage of only T matrices of dimension
-1
0B

(t), éOB(t)) and T - 1 matrices of dimension mxn (®B(t))
and n xn (Bé(t))-

mxm (D

Thus, comparing the estimates of the static and dynamic al-
gorithms for solution of Problem 1.1, one can see that the volume
of computation and the core memory increases linearly with T for
the dynamic algorithm and by gquadratic law for the static algor-

ithm.

It is more important that only part of the local bases be
updated at each iteration. Therefore the dynamic simplex method
may turn out to be superior in comparison with a conventional
revised simplex algorithm not only because it offers a more com-
pact substitute for the basic inverse but also because it allows
the use of only a part of the basic inverse representation re-

quired at each iteration.

11. pual Algorithms

The introduction of local bases and techniques of their hand-
ling allows us to develop dual and primal-dual versions of the
dynamic simplex method. The main advantage of using the dual
methods is that the dual statements of many problems have explicit
solutions. The other is connected with the choice of different
selection strategies to the vector pair which enters and leaves

the basis.

In the primal version of the dynamic simplex method, there
are some options for choice of a column with the most negative
orice from all non-basic columns or from some set of these columns,
etc. But a column to be removed from the basis is unique in the

nondegenerate case.

Contrarily, in dual methods, there are options in the choice
of a column to be removed from the basis. It can be effectively
used in dual versions of the method. In oractical problems, local

bases {ﬁOB(t)} can be rather large, therefore vart of the local
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bases should be stored at the external storage capacities. Input-
output operations are comparatively time-consuming. Hence, to
reduce the total solution time, it is desirable to have more

pivoting operations with a given local basis.

Thus, the usage of different dual and primal-~dual strategies
allows us to adjust the algorithm to the specifics of the compu-

ter to be used and to the problem to be solved.

12, Extensions

The approach considered above is flexible and allows different
extensions and generalizations. Below, we describe briefly two
of them.

First, in Problem 1.1, the state variables x(t) are considered
to be free. The case when x(t) >0 or 0 <x(t) <a(t) can be treated
by the approach very easily. 1In fact, from the roint of view of
the computer implementation of the algorithm, it is better to

handle with the multiplicative form of the inverse of

D,_(t) 0
~ I )]
DOB(t) =

>

BOB(t) -I

rather than with ﬁg;(t), because the addition of the unit matrix
-I does not generate additional zeros in the "eta-file". If x(t)
are not constrained, then by handling with the inverse of 5OB(t)
we can consider the rows corresponding to low blocks of DOB(t),
that is, BOB(t) and -I,as free. In this case, all x(t) are in

the basis.

If x(t) >0, then the state variables x{t) should be handled
in the same way as control variables u{t) >0. In this case, not
all x(t) will be in the basis.

Evidently, this includes the case when both state and con-
trol variables have upper bound constraints. (The inclusion of

generalized upper bound constraints is also possible).
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The second case, which has many important applications, is
DLP with time delays. Instead of (1.1) and (1.3), we have in

this case

x(t+1) = \Z} A(t,-(\))x(t—'r\)) + E B(t,TU)U(t‘Tu)
\f)_ G(t,Tv)X(t'Tv) + ) D(t,TU)U(t—TU) (12.1)
u
= f(t)

with given values for x(t) and u(t-1) if t<0. Here {Tv}, {TU}

are given ordered sets of integers.

New submatrices will appear to the left from the main stair-
case of the diagonal of B* in (2.7a) (see Figure 1a and b).

X X X X X X
X X X XXX X XX
X X X XXX XX XXX
X X XX X XXX XXX XXX
X XX X X XX XXX XX
XX XX X XX XX XXX XXX
X X X X X X X XX XXX
XX XX X X XXX XXX XXX
a b c
Figure 1.

Because the main staircase structure is not changed in this
case (Figure 1), we can use the same procedure as in the case
without time delays. There will be only one difference. Now
local bases ﬁOB(t) will contain recomputed columns both from pre-
vious steps 71 <t and columns from time "delayed" matrices D(t,T)

T <t, which enter the constraints (12.1) at step t.

Thus, both of these important extensions of Problem 1.1 can

be handled by the algorithm almost without any modifications.
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The extensions considered above concern the extension of
Problem 1.1 within the DLP framework. It should be underlined
that the approach is also applicable to solve LP problems with
general structure (such as in Figure 1, if by x one means some
arbitrary matrix).

In this case, the approach will be related to factorization
methods considered in [4,5]).

13. Conclusion

The general scheme and basic theoretical properties of the
dynamic simplex method specially developed for solution of dyna-
mic linear programs have been described and discussed.

Theoretical reasonings show that this algorithm may serve as
a base for developing effective computer codes for the solution
of DLP problems. However, the final judgment of the efficiency
of the algorithm can be made only after a definite period of its
exploitation in practice.

It should also be very interesting to compare (both from the
theoretical and the computational point of view) the approach
given in this paper with the finite-step DLP algorithms based on
the Dantzig-Wolfe decomposition principle [6,7,8] and other
methods of solving structured LP problems [4-9].
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