A REVIEW OF ENERGY MODELS No. 4 — JULY 1978

J.-M. Beaujean and J.-P. Charpentier, Editors

RR-78-12 July 1978

Research Reports provide the formal record of research conducted by the International Institute for Applied Systems Analysis. They are carefully reviewed before publication and represent, in the Institute's best judgment, competent scientific work. Views or opinions expressed therein, however, do not necessarily reflect those of the National Member Organizations supporting the Institute or of the Institute itself.

International Institute for Applied Systems Analysis A-2361 Laxenburg, Austria

Jeanne Anderer, editor Linda Samide, composition Martin Schobel, graphics

Printed by NOVOGRAPHIC Maurer-Lange-Gasse 64 1238 Vienna

Copyright © 1978 IIASA

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system, without permission in writing from the publisher.

PREFACE

This review is the fourth in the IIASA series of publications reviewing energy models. This work is related to the project, Comparison of Energy Options: A Methodological Study, carried out jointly by the United Nations Environment Programme and IIASA. The series has been set up to aid the student of the energy problem in his literature search for a tool applicable to his set of problems and to avoid duplication of efforts.

The present review contains only 14 models. There is a tendency toward modification and actualization of existing models, and research institutions are, understandably, reluctant to provide them in incomplete form. A list of the institutions and individuals contacted is appended to this report.

We hope that this review will stimulate contacts and collaboration between specialists. For a continuation of this series readers are invited to provide the editors with abstracts of their energy models.

- Jean-Pierre Charpentier, A Review of Energy Models: No. 1-May 1974, Revised September 1976, RR-74-10, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1976.
- Jean-Pierre Charpentier, A Review of Energy Models: No. 2-July 1975, RR-75-35, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1975.
- Jean-Michel Beaujean and Jean-Pierre Charpentier, eds., A Review of Energy Models: No. 3—December 1976, Special Issue on Soviet Models, RR-76-18, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1976.

SUMMARY

Fourteen new models are presented in this review; their classification is shown in the table below. Of type A there are four models; of types C, E, and F, three each; of type B, one model and none of class D.

The preceding three reviews of energy models have clearly shown that there are few energy models linking energy systems to the overall economy and even fewer models combining demand and supply consistently. In the present review there are three models of these types: the Swedish model developed by Carl Bergström et al.; Coal 1 by R. Naill; and the model of the refining industry in Belgium by Franz Jomaux.

Models' Classification

Areas of Application		National	International
Energy System	One kind of fuel	A 4	B 1
(energy is the main problem)	Several kinds of fuel	C 3	D 0
Linkage between energy and general economy		E 3	F 3

List of Models

Country	No.*	Title and Author	Class
Belgium	B401	Study of the Optimal Structure of the Belgium refining industry Franz Jomaux, Faculté Universitaire Catholique de Mons	А
Canada	CDN401	Optimal Sales Policy for Canadian Natural Gas Ross C. Richards, Energy Models Div., National Energy Board	В
Japan	J401	A Simulation Model for Study of the Dynamic Behavior of Crude Oil Production in Middle East Oil Exporting Countries Teruyasu Murakami, Nomura Research Institute	F
Mexico	M401	"Mexico"National Energy Model J. Lartigue G., University of Mexico	E
Netherlands	N401	Mining Industry Model IRC-004 J.W. Brinck, IRC-Brinck International Resources Consultants B.V.	А
New Zealand	NZ401	A Planning Model of New Zealand's Energy Industry B.R. Smith, P.D. Lucas and B.A. Murtagh, Victoria University and Ministry of Energy Resources	С
Sweden	S401	An Energy Forecasting Model for Sweden Lars Bergman, Clas Bergström, and Anders Björklund, Economic Research Institute, Stockholm School of Economics	E
Turkey	T401	Energy System Planning Mini-Model I. Kavrak, Bogazici University	С
UK	GB401	Demand for Energy Forecasting Model G. Kouris, University of Surrey	F
UK	GB4O2	Model for Estimating Price Increases Due to Higher Costs of Petroleum and Other Imports E.W. Henry and S. Scott, Quarterly Economic Commentary	E

^{*}Numbers refer to abstracts of the models stored on the IIASA computer.

Country	No.	Title and Author	Class
USA	USA401	A Regional Linear Programming Approach to the United States Energy System P.J. Nagarvala, G.C. Ferrell and L.A. Olver, Bechtel Corp.	A
USA	USA402	COAL 1: A Model of the United States Energy System Roger Naill, Thayer School of Engineering, Dartmouth College	A
USA	USA403	The Energy Supply Planning Model M. Carasso and J.M. Gallagher, et al., Bechtel Corp.	С
EC	XX 401	Evaluation of Power Station Installation Policies F. Conti, G. Graziani and C. Zanantoni, Commission of the European Communities	F

The Model		A regional linear programming approach to the United States energy system. (USA401) P.J. Nagarvala, G.C. Ferrell*, and L.A. Olver, Bechtel Corporation, San Francisco, California, 1974.	
Subject and Goal		The model is concerned with optimal regional flows and the utilization of different energy forms, with an emphasis on coal and clean coal energy. The model permits interfuel substitutability, and includes a wide range of existing and developing technologies. It develops a methodology for the planning and analysis of complete energy systems from mining and extraction through energy conversion and transportation, environmental considerations, and energy demand.	
System Descrip		The model deals with a regional US energy system that currently emphasizes the coal and coal-based energy sectors. The model constructs and analyzes optimal systems of energy utilization based on regional descriptions, energy supplies, transportation networks, regional characteristics and availabilities of energy conversion facilities, environmental control techniques, and energy demands. The model is data driven and capable of creating and analyzing a wide variety of energy system descriptions.	
	Time	Single time period. Model runs may be made for each time period of interest. The model has been applied for the years 1980 and 1985.	
Area	Space	Flexible. The US, or any chosen subregion included in the model boundary, may be disaggregated as desired. The model has been applied to the US for a five- and a sixteen-region breakdown.	
Modelir Technic	-	This is an optimization model that uses linear programming and extensions. The model creates and/or manages the LP matrices and submatrices, using input data and logical information tables. It calculates feasible and optimal primal/dual solutions, and generates a hierarchy of output reports. The technique has user interactive capability and flexible interface capacity.	
Input I	Data ational	The user specifies regions, year, supply and demand categories, transportation options, energy conversion technologies, maximum interfuel substitution levels, technical and economic logical structures, and the optimization objective.	
Physical		The following are required by region: coal reserves; mining capacity by coal price and coal category; availability and price of domestic and imported natural gas and crude; import and export of coal and electric power; demand by energy formelectric raw coal, gas, crude, and refined products. When regional data are unavailable, algorithms are developed to disaggregate US level information as necessary.	
Technical		The required data are the economics, physical capacities, and efficiencies of energy technologies, including coal transportation (rail, unit train, waterborne carrier, and slurry pipeline); oil and gas pipelines; electric transmission; fossilfuel steam-electric power plants (coal, oil, and gas); hydroelectric, nuclear, and other electric power generating facilities; coal synthetic facilities (gasification, liquefaction, solid); fluidized bed combustion; advanced fossil fuel systems.	
Resources and Environment		Energy resources including manpower, materials, and capital are not now, but may be, incorporated as accounting or constraining rows in the model structure. Water and capital resources have been investigated. Environmental residual emissions may be accounted for or constrained. SO_X emissions have been investigated and constrained.	
Economic		The objective function, which may be other than economic, includes the average single-time period cost of fuel supplies, and the cost of maintaining or constructing energy conversion facilities. Facilities scheduled to be in existence and additional facilities required by the model are differentiated.	
Output Opera	'Data ațional	A hierarchy of output reports showing input and output data for the optimal energy system for each year, region, and energy/economic sector.	
Physical		The optimal configuration of energy technologies to meet demands from available supplies subject to resource and environmental criteria.	
Resources and Environment		Energy-related resources (e.g., water, capital, etc.). Environmental emissions (e.g., SO_X).	
Economic		Economic input data and marginal costs for all constrained activities (e.g., coal mining capacity, SO_X emissions, regulations.	
Observations		The model may be used to determine regional implications of national energy scenarios. It contains a detailed coal resource and coal-energy technology data base. Energy supply and demand is disaggregated by region. Non-coal systems are managed exogenously at present. Interfuel substitutability is included, but no direct provisions are made for price/demand elasticities. (These may be analyzed iteratively.) Work is proceeding to expand the model to include endogenously all energy sectors, incorporating their resource and environmental implications. The model provides a methodology that may be used to assess the regional impact of various national energy scenarios and, by highlighting bottlenecks, may serve as a guide to RAD policymakers.	

^{*}Initial project leader; now associated with the University of California, Berkeley.

NETHERLANDS

The Mod	del	Mining industry model IRC-ØØ4. (N401)
		J.W. Brinck, IRC-Brinck International Resources Consultants B.V., P.O. Box 471, Alkmaar 1700, Netherlands, 1975/1976.
Subject Goal	t and	Valuation of mineral prospects, deposits, districts, and provinces in particular; and estimation and comparison of the mineral potential (inferred resources) of countries, continents, and the world, in general.
System Descrip		The estimation of mineral resources is based on the assumption of a log-binomial frequency distribution of element concentrations in the geologic environment. This distribution creates a probability field for mineral deposits of different size-grade specifications, which determines the rarity of such deposits and thus their average exploration costs. Their size and grade determine the average required capital investment and exploitation costs as well as the optimum production capacity to be installed for a given minimum rate of return on invested capital. The assumption that the frequency distribution of the concentrations will logistically approach a theoretical or practical concentration barrier, as proposed by DE WIJS (1975), can be tested and evaluated.
	Time	All economic estimates are made on the basis of current technology and historical cost-price relations for the moment that a fully equipped deposit should enter into production.
Area	Space	Unspecified. Local and regional conditions are compared with global conditions (individual deposits and global resources).
Modelin Technic	•	The probability field of global resources of a mineral commodity is calculated from mineral deposits in different price categories (reserves, marginal and submarginal resources). Individual prospects, the results of geochemical surveys or estimates of a national potential, are compared with their global equivalents.
Input Data		The data requirements are empirical estimates or measurements of demonstrated reserve and other mineral concentration parameters, and cost of exploration and production as a function of size-grade specifications for mineral deposits. The standard economic parameters have been checked against production statistics of over 500 major and minor mines in the Western world, producing a wide variety of mineral commodities. Optionally, these parameters can be varied to comply with special conditions for individual deposits or prospects.
Output Data		The data requirements are as follows: global or local probabilistic distribution of mineral concentrations of different size-grade specifications and related production costs with respect to a statistically determined target price; estimates of inferred reserves and resources for a given geological environment; favorability index for deposits, exploration targets, or territories as compared with their global equivalents.
Observations		The model is the basic unit of a software package, being developed by IRC, that will be used for the direction and interpretation of mineral exploration activities. The computer programs and descriptions can be made available on a lease basis in the Honeywell-Bull Time Sharing System; on special request, they can be adapted to other computer systems.

USA

The Mo	del	COAL 1: A model of the United States energy system. (USA402)
		Roger Naill, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.
Subject and Goal		COAL 1 is a dynamic model of the US energy supply and demand system. COAL 1 is a policy model designed to help reveal the soundest policy combinations for insuring smooth transition, with minimum dependence on foreign oil and gas, from finite domestic fuel sources (coal, nuclear, oil, and gas) to ultimate sources (fusion, and solar).
System Description		The model reproduces the structure and behavior of the US energy system, conceptualized as four gross interacting sectors: oil and gas, electricity, coal, and demand. The model contains an appropriate structure to represent domestic fuel resource depletion, interfuel competition and substitutability, environmental effects of nuclear and coal development, competition for available energy capital, changes in coal industry labor supply, government regulation of alternative development options, and the role of energy imports.
		The following strategies for energy self-sufficiency are examined: business as usual; accelerated nuclear development; expansion of the coal industry; more rapid technological advances such as the implementation of retrofitted stock scrubbers, and synthetics development; changes in environmental and worker-safety standards; capital-stimulation and capital-allocation biases; and reduced growth in energy demand.
	Time	1970-2010.
Area	Space	USA as a whole.
Modeling Techniques		COAL 1 is an integration feedback model of the system dynamics variety developed by Jay W. Forrester at the Massachusetts Institute of Technology (see Industrial Dynamics, M.I.T. Press, 1961). The model consists of a set of equations expressed in the level-rate format of the DYNAMO simulation language. Nearly all input variables are endogenous to the overall model boundary, with the exception of foreign energy prices and domestic energy demand.
		Sensitivity analyses and policy evaluations are normally undertaken through simple changes in parameter values or in the tabularly expressed values of many model relationships.
		Several reference runs replicating the historical behavior of the whole US energy system, as well as individual sectors, have been completed. A variety of sensitivity and policy runs have also been conducted.
Input Data		Where available, COAL 1 employs cross-section, time-series, and other statistical evidence to formulate parameters, tabular relationships, and structural assumptions. Known relationships for which hard data are unavailable have been formulated by representation of "best-guess" estimates in tabular form. "Best-guess" estimates have been based on descriptive information obtained from expert opinion and from published sources.
Output Data		The model prints both tabular and graphic output in response to a run command. The two forms of output, available for both physical and financial variables, are recorded at previously designated intervals of time throughout a given run.
Observations		The model behavior to date suggests that no supply strategy can prevent either massive dependence on foreign imports or serious supply shortfalls before the year 2000, unless the growth rate of domestic energy demand drops significantly. Moreover, coal is preferable to nuclear power as an interim transitional fuel through the year 2010.

BELGIUM

The Model	Study of the optimal structure of the Belgium refining industry. (B401)
	Franz Jomaux, Faculté Universitaire Catholique de Mons, 151, chaussée de Binche, 7000 Mons.
Subject and Goal	The model studies the optimal structure of the refining industry in Belgium with a view to determining an optimum long-term investment program including the spatial repartition of equipment.
Modeling Techniques	Linear programming. The objective function is to minimize the total cost of transporting principal refined products to the place of consumption; total cost includes purchasing cost of crude, transport cost of crude by pipeline, refining cost, and transport cost of finished products.
	The constraints are: regional demands, technical refining constraints, the crude supplying structure, and quality standards for refined products.
	The variables are divided into primal: capacities of units to be set up in the various refining centers (strategical variables), and working rules of the various refining centers and distribution plan of refined products (tactical variables); and dual: marginal costs of finished products in the refining centers and in the consumption areas, and marginal costs connected with other constraints of the model.
Objectives	The study is the subject of a thesis outlined as follows: introduction and problem definition; description of the refining industry in Belgium; model of the refining industry (the model is of a single refinery with a spatial submodel including several refineries and their junctions with consumption points of a given area and a multiperiod submodel to tackle the seasonal demand variations); solution of the models on computer (matrix generation and LP code utilization); application of the spatial and multiperiod models to the Belgian situation of 1971; forecast of the optimal structure of the refining industry in Belgium for 1980 and 1985; and conclusions.

MODELS CLASS B

CANADA

The Mod	del	Optimal sales policy for Canadian natural gas. (CDN401)	
		Ross C. Richards, Energy Models Division, National Energy Board, Ottawa	
Subject Goal	and	To maximize discounted profit subject to Canadian requirements, US contract demands, export surplus calculation requirements, and pipeline capacity and/or deliverability constraints.	
System Descrip	otion	The model describes a linear programming allocation scheme from six supply areas to three markets maximizing discounted profit.	
Area	Time	For each year, 1972-2000.	
	Space	For Canada and the USA.	
Modelir Techniq	-	Linear programming. The model is set up to handle multiple time periods, using either yearly or multiyearly data. Variations in the surplus calculation are handled easily through the matrix generator.	
Input Data		-Cost of natural gas from each of the supply regions; -Selling price of natural gas in each of the demand regions; -Discount factor to be used in each period; -Canadian demand that must be satisfied; -US demand that must be satisfied; -Capacity and/or pipeline constraints from each of the supply areas; -Natural gas reserves in each of the supply areas; -Form of protection formula that will be used to calculate an exportable surplus.	
Output Data		-Run number, data source, protection formula used, date of run; -Sales in each period; -Pipeline potential and capacity throughputs; -Reserves available, protection needed, and surplus available for each period; -Cost, price, profit and discounted profit for each period in each demand region; -Both total profits and unit profits for each source for each demand region, both discounted and undiscounted; -Total optimum profit.	
Observations		A similar model also exists for crude oil. The main feature of the model is the handling of the surplus calculation using various formulae. The model includes a matrix generator, an out of core solution technique and a report generator which produces readable results easily.	

MODELS CLASS C

TURKEY

The Model	Energy system planning mini-model. (T401)
	I. Kavrak, The Energy Group, Boğazici University, Istanbul, Turkey.
Subject and Goal	The goal of the model is the planning of the energy sector. The optimal investment policy is determined, with the objective of maximizing overall energy utilization efficiency, or minimizing cost.
System Description	The system describes a network of energy converters grouped into three classes: primary, intermediate, and final conversions. Energy flows from sources, through converters, to the demand nodes. The variables (~140) are the energy flows in the network, and the aggregated capacities of all production and distribution plants at each time period.
Time	A time horizon of 15 years, with intervals of three years.
Area ————————————————————————————————————	The energy economy of Turkey.
Modeling Techniques	Linear programming model. The model's dynamic character is incorporated by linking each time interval to preceeding ones through decision variables. The rows (~200) are: energy flow balances; and demand, capacity capacity consistency, reserve, budget, and foreign funds constraints. The objective function(s) can be any one or a combination of the following: minimum cost, minimum primary energy, and/or maximum utilized energy.
Input Data	The model parameters are as follows: -Coefficients of energy conversion for all transformations of energy from one form into another, as well as those for transport and distribution; -Local and foreign components of the unit investment costs of all energy converters; -Prices of all fuels; -Reserves of indigenous energy sources; -Capacities of existing plants.
	Constraint coefficients for demand, budget, and technology are also supplied to the model.
Output Data	The output data corresponding to the variables defined above are as follows: -Amount and type of primary energy supplied to all plants and sectors at each time interval; -Amount and type of secondary energy generated at each plant at each time interval; -Amount of energy utilized by each demand sector at each time interval; -Amount of local and foreign funds spent at each time interval; -New capacity added at each time interval.
Observations	The model has been applied to Turkey for the period 1960-1975 in order to check the model's validity, and good results have been obtained. Results for the period 1976-1991 have also been secured. A much larger model of about ten times the size, and a modified mathematical structure are being developed.

USA

The Model		The energy supply planning model. (USA4O3)	
		M. Carasso and J.M. Gallagher, et al., Bechtel Corporation, San Francisco, California, 1975.	
Subjec Goal	t and	The model determines the time series requirements for specific physical and societal resources (capital, manpower, materials, and equipment) associated with the construction and operation of energy-related facilities needed to implement exogenously specified US national or regional energy programs in the 1976-1995 time frame.	
System Description		A national energy model of the USA, with a highly disaggregated description of the energy supply system composed of 66 energy supply facilities and 25 energy transportation facilities required to recover, convert, process, transport and distribute fuels (10) for direct utilization by consumers. Each facility type is a building block or "nominal facility", with an associated extensive data base on physical and societal resources required to construct and operate. The model focuses on the impact on these physical and societal resources data, both at the national and regional levels, of the various combinations of technologies required to implement future candidate energy programs.	
	Time	From 1973 to 1995 for fuels and facilities; from 1974 to 1985 for capital, manpower, materials, and equipment resources; annual time periods.	
Area	Space	National (USA) with fourteen regions, three of which are offshore supply regions. Eleven inland regions map directly into a nine-region U.S. Census Bureau breakdown. Expansion into global scope possible.	
Modeli Techni	_	A simulation model based on engineering estimates of physical relationships. Special emphasis was placed on developing a rather transparent planning model that proceeds from user-specified assumptions for major variables through a series of easily understood submodels to produce capital, manpower, materials, and equipment resource requirement results. User access to major decision points within each submodel is deliberately emphasized so that the model results represent information derived from simulation of policy decisions rather than a decisionmaking capability provided by the model. The model proceeds from an exogenous time-phased energy mix to calculated annual schedules of energy supply facilities required to come on-line. Based on user specifications, it locates the facilities in one of fourteen supply regions, allocates fuel derived from the facilities to the demand of the eleven land regions, and calculates transportation facilities required to accomplish this distribution. Finally, it calculates the annual requirements of capital, manpower, material, and equipment for each supply and transportation facility from initial commitment to plant startup and for operation throughout its economic life, for each fourteen regions and the country as a whole.	
Input Data User Speci- fied Data		User inputs control the major decision variables of the model; default values exist to supplement user inputs. These inputs are as follows: future energy mix, typically for the years 1977, 1980, 1985, and 1990; retirement rates for existing facilities; energy facility location coefficients; regional fuel demand coefficients; regional fuel balancing rules; and interregional transportation facility modal split coefficients.	
Physical Model Data		An extensive construction and operation data base has been developed by Bechtel Corporation on capital, manpower, materials, and equipment require ments for 91 energy-related facilities. For capital, there are 23 categories of data (two digit Bureau of Economic Analysis accounts); for	

Input Data Physical Model Data (continued)	manpower, 27 categories of engineers, craftsmen, and others; and for materials and equipment, 27 categories of major items that may significantly inhibit energy construction programs. In addition, similar but less detailed categories of operations data are included. However, the operations data are neither designed to be nor are they sufficient to establish full operating costs. Another category of data included in the model is energy system data, e.g., facility definitions (capacity, heat rates, thermal efficiencies, etc.); transportation system data (haul lengths, number of trips/year); and interregional distance.
Ecological Model Data	Provision has been made for including annual requirements for land, water, air, and water pollutants for the 91 energy-related facilities. However, the ecological data have not yet been incorporated into the model.
Output Data Physical	The data requirements are as follows: -Annual schedules of required startup schedules for 91 energy-related facilities, nationally and in 14 regions, for the period 1976-1995 (also commitment schedules nationally); -Flows over time that balance regional supplies and demands of fuels; -Schedules of capital, manpower, materials, and equipment: annually for 1976-1985, for construction and operation, for each of the 91 facilities (and for whole system), and for each of 14 regions (and for whole coun-

Ecological

try) for 1976-1985.

When the data are incorporated, they can provide the annual volumes of land and water requirements and effluent emissions.

Observations

The model couples development and organization of an extensive current industrial data base into a framework that gives the policymaker flexibility to test the sensitivity of national or regional total resource requirements to broad changes in energy policy variables. The model will help to study the feasibility of various energy policies, their implications, and their desirability. The model is being used in policy applications, and it is under continuing modification and development. Additional areas being considered are extension to a longer-range time horizon, disaggregation of the regional planning capability to the state level, and extension of the spatial boundaries to a global model.

MODELS CLASS E

The Mo	odel	Model for estimating price increases due to higher costs of petroleum and other imports.* (GB402) E.W. Henry and S. Scott
Subject and Goal		The model calculates the effect on sectoral prices of a rise in the price of imported fuels, especially oil, given certain assumptions.
System Description		The model covers 33 sectors of the economy in an input-output framework.
	Time	A static model that calculates the effects of fuel price rises in 1973/74.
Area	Space	Ireland.
Modeling Techniques		Input-output price model.
Input Data		The 33 sector 1968 input-output table for Ireland was disaggregated to give more detail, namely an "oil refining" sector was constructed, transport was disaggregated into five types of transport, and imports were broken down to give details of different fuel imports.
Output Data		For any level of price rise of imported fuel, sectoral prices and the new costs of final demands (e.g., the new cost of living) are given.
Observation		The model can only account for rises in price resulting from rises in costs, and cannot take into consideration demand-pull type price rises.

^{*}A description of the model appeared in the *Quarterly Economic Commentary* (March 1974), published by the Economic and Social Research Institute, Dublin, Ireland.

NEW ZEALAND

The Model	A planning model of New Zealand's energy industry. (NZ401)
	B.R. Smith, P.D. Lucas, B.A. Murtagh, Victoria University and Ministry of Energy Resources, Wellington.
Subject and Goal	The modeling objective is to formulate proposals for satisfying the country's forecast energy demands, subject to various technical and environmental constraints. These proposals specify the optimal fuel mix, capacities of the process plants and generating stations in the system as well as the energy resources required. The optimality criterion is usually that of least cost, but this can be altered. The model is to be used by the government energy planning agency (the Ministry of Energy Resources).
System Description	The model describes the annual operation of the country's energy system for various target years. It considers a wide range of energy sources, energy conversion processes, and utilizing devices. Energy demand is disaggregated into eleven consumer categories for each of two demand regions. The infrastructure of the energy system is taken into account as are the various distribution networks available to the energy industry
Time	Static model for a particular target year. (To date the model has been applied to 1985, 1990, and 2000.)
Area Space	New Zealand as a whole.
Modeling Techniques	Optimization model using linear programming and, less frequently, non-linear programming. The energy system is represented by sectoral submodels, some of which can be implemented separately. The following submodels are specified: electricity conversion; oil refinery; natural gas refinery; coal submodel; and distribution. These submodels, integrated with a demand structure, make up the LP model of the energy system. The LP formulation consists of 380 rows and 885 variables. Use is made of a matrix generator/report writer language to facilitate model construction and the presentation of results.
Input Data	For any given target year the input consists of approximately 3000 data elements; many of these are fixed for each year. The major parameters are: -bounds on energy resource availabilities; -bounds on capacities of units in the conversion processes; -levels of end-use consumer demand for each of the categories considered; -the infrastructure of the energy system; -coefficients of conversion and distribution losses; -costs of energy resources; -amortized capital costs and maintenance costs of both processing units and utilizing devices. Generally it is only for the first four classes of parameters that data values change from year to year.
Output Data	-Levels of each energy resource used; -The operation of the conversion and distribution processes in the energy system; -Optimal capacities of the process units and utilizing devices; -The quantity of each type of fuel supplied to both end-use and intermediate demands.
Observations	Reactions to the model suggest that it embodies sufficient detail, and still retains enough conceptual simplicity for the energy planners to be confident of using its results.

MEXICO

The Model		"Mexico"national energy model. (M401)
		J. Lartigue G., University of Mexico, Cd. Universitaria, Mexico, D.F., 1976.
Subject and Goal		The model forecasts both the energy supply and demand up to the year 2000, and the probable structure of a hydrogen-economy-based generation.
System Description		The model is concerned with the following: -The energy sector of Mexico, including national reserves; -The most probable development of the energy demand and its influence on the fertilizer industry; -The probable structure of the energy production, based on a hydrogeneconomy, including nuclear and other new sources.
	Time	1974-2000.
Area	Space	Mexico.
Modeling Techniques		-Analysis of the energy sector in 1974; -Statistical analysis of the development of population, gross national product, and energy consumption in order to forecast future energy demand; -Calculation of the energy content of national reserves; -Future model divided into natural resources, processes, products, and end uses illustrating qualitatively the relationship between them
Observations		Since the model is not quantitative, costs of energy are not explicitl considered.

SWEDEN

The Model An energy forecasting model for Sweden. (S401) Lars Bergman, Clas Bergström, Anders Björklund, Economic Research Institute at the Stockholm School of Economics. The National Swedish Industrial Board uses the model in connection with the long-term energy projections and analysis. Clas Bergström, Mats Hüjeberg, and Georg Saros at the Energy Division are responsible for the implementation and development of the model. The model investigates how the allocation of energy resources in the Swedish econ-Subject and Goal omy is likely to develop under various assumptions about primary energy prices, technological change, and overall economic and energy policy. System The model has the following properties: Description -The model solution is based on explicit assumptions about prices of different kinds of primary energy, the availability of technology, and the choice of strategy for implementing long-term policy goals. -The time horizon of the predictions is semi long term, that is, a time period long enough for various substitution processes to take place, but short enough that no fundamental change in the energy transformation technology could occur. -A consistent treatment of current production, that is, in every model solution there should be a balance between the supply and the demand for each commodity group. -A consistent treatment of investment, that is, in every model solution there should be a balance between gross savings and gross investments, with consideration given to both the demand and the capacity creating aspects of investment. -A proper treatment of prices, that is, the role of prices in the choice of technology and in the composition of final demand should be recognized. Thus, the model allows for ample substitution of different kinds of primary energy in the production of secondary energy; between energy and other input factors in house heating; and between more or less energy consuming final commodities. In addition, the model estimates the amount of several pollutants produced by the energy sector. Time A static model solved for a number of years, with a five-year interval between each year, up to the year 2000. Area Modeling Within a general equilibrium framework a number of submodels have been linked to a linear activity model based upon input-output data. These submodels are either Techniques econometric or programming models and utilize both observed and engineering data.

These submodels are as follows:

- a) The supply model for electricity and hot water is a linear programming model in which the present value of the total costs of meeting exogenously determined demands are minimized. The model utilizes engineering data.
- b) The supply model for refined oil products is also a linear programming model utilizing engineering data. The criterion to be minimized is the same as in the electricity and hot water supply model.
- c) The nonenergy commodity supply model is a multiperiod linear activity model based upon input-output statistics.
- d) The residential heating model is similar to models a) and b).
- e) The household consumption demand model is a so-called complete system of simultaneous demand equations, based upon observed data and estimated by means of econometric methods.

The figure below shows the general structure of the model.

MEXICO

The Mo	del	"Mexico"national energy model. (M401)
		J. Lartigue G., University of Mexico, Cd. Universitaria, Mexico, D.F., 1976.
Subject and Goal		The model forecasts both the energy supply and demand up to the year 2000, and the probable structure of a hydrogen-economy-based generation.
System Description		The model is concerned with the following: -The energy sector of Mexico, including national reserves; -The most probable development of the energy demand and its influence on the fertilizer industry; -The probable structure of the energy production, based on a hydrogeneconomy, including nuclear and other new sources.
Area	Time	1974-2000.
	Space	Mexico.
Modeling Techniques		-Analysis of the energy sector in 1974; -Statistical analysis of the development of population, gross national product, and energy consumption in order to forecast future energy demand; -Calculation of the energy content of national reserves; -Future model divided into natural resources, processes, products, and end uses illustrating qualitatively the relationship between them.
Observations		Since the model is not quantitative, costs of energy are not explicitly considered.

SWEDEN

The Mod	đel	An energy forecasting model for Sweden. (S401)
		Lars Bergman, Clas Bergström, Anders Björklund, Economic Research Institute at the Stockholm School of Economics. The National Swedish Industrial Board uses the model in connection with the long-term energy projections and analysis. Clas Bergström, Mats Hüjeberg, and Georg Saros at the Energy Division are responsible for the implementation and development of the model.
Subject Goal	and	The model investigates how the allocation of energy resources in the Swedish economy is likely to develop under various assumptions about primary energy prices, technological change, and overall economic and energy policy.
System Description		The model has the following properties: -The model solution is based on explicit assumptions about prices of different kinds of primary energy, the availability of technology, and the choice of strategy for implementing long-term policy goals. -The time horizon of the predictions is semi long term, that is, a time period long enough for various substitution processes to take place, but short enough that no fundamental change in the energy transformation technology could occur. -A consistent treatment of current production, that is, in every model solution there should be a balance between the supply and the demand for each commodity group. -A consistent treatment of investment, that is, in every model solution there should be a balance between gross savings and gross investments, with consideration given to both the demand and the capacity creating aspects of investment. -A proper treatment of prices, that is, the role of prices in the choice of technology and in the composition of final demand should be recognized.
		Thus, the model allows for ample substitution of different kinds of primary energy in the production of secondary energy; between energy and other input factors in house heating; and between more or less energy consuming final commodities. In addition, the model estimates the amount of several pollutants produced by the energy sector.
	Time	A static model solved for a number of years, with a five-year interval between each year, up to the year 2000.
Area	Space	Sweden as a whole.
Modelin	<u> </u>	Within a general equilibrium framework a number of submodels have been linked to a

Modeling Techniques

Within a general equilibrium framework a number of submodels have been linked to a linear activity model based upon input-output data. These submodels are either econometric or programming models and utilize both observed and engineering data. These submodels are as follows:

- a) The supply model for electricity and hot water is a linear programming model in which the present value of the total costs of meeting exogenously determined demands are minimized. The model utilizes engineering data.
- b) The supply model for refined oil products is also a linear programming model utilizing engineering data. The criterion to be minimized is the same as in the electricity and hot water supply model.
- the electricity and hot water supply model.

 c) The nonenergy commodity supply model is a multiperiod linear activity model based upon input-output statistics.
- d) The residential heating model is similar to models a) and b).
- e) The household consumption demand model is a so-called complete system of simultaneous demand equations, based upon observed data and estimated by means of econometric methods.

The figure below shows the general structure of the model.

Input Data Physical	The description of power stations, refineries, and house-heating systems is based upon engineering data; revised official input-output data are utilized for the res of the model.
Ecological	Emissions of different kinds of pollutants from power stations and refineries are specified as linear functions of the activity level in the processes in question.
Economic	In the general solution all prices (except those of energy resources) are endogenous To close the system, different assumed price paths for primary energy, capital, and labor are used.
Output Data Physical	The model forecasts Sweden's future use of energy resources subject to prices of energy resources, the energy policy, and technological change in the energy supply sector.
Economic	The model forecasts a path of energy prices in a state of equilibrium.
Observations	The household consumption model has been estimated with ten commodities. Within the limited framework of this submodel we have studied the sensitivity of allocation of private expenditure to changing energy prices. The linear programming submodels a, b, c, and d have been used to analyze resource allocation problems within each of these sectors.

MODELS CLASS F

JAPAN

The Model	A simulation model for a study of the dynamic behavior of crude oil production in Middle East oil exporting countries. (J401)
	Teruyasu Murakami, Nomura Research Institute, Japan, 1973.
Subject and Goal	The modeling objective is to study the behavior of crude oil production of Middle East oil exporting countries and to identify the effects of the alternative long-term economic and energy policies of consuming countries.
System Description	The model covers the international flow of oil and money between oil exporting countries and oil consuming countries. For the oil exporting countries, the following factors are considered: crude oil production, energy prices, government oil revenues, government budget, economic and social development investments, industrial development, infrastructure development, economic growth, population, petrodollars. For the oil consuming countries, the following factors are considered: economic growth, energy demand, conventional sources of energy, new sources of energy development, crude oil demand and supply gap, and oil balance of payment. The level of crude oil production influences the economic and energy policymaking in oil producing countries.
Time	1965-1985.
Area ————— Space	Iran, Saudi Arabia, Kuwait and other Middle East oil producing countries and Japan, the USA, and the European countries of the Organisation of Economic Cooperation and Development (OECD).
Modeling Techniques	A dynamic system simulation model using DYNAMO II. For the "hard" part of the system, regression equations based on relatively reliable statistical data are used. The "soft" part includes information compiled from reports of economists, engineers, government officials based on research and interviews in some OPEC countries and in Japan.
Input Data	Input data include annual growth rate of GDP in each consuming countries growth rate of the export price index of industrial commodities in OECD countries; energy supply from tar sand, shale oil, gasificated coal, liquid natural gas, methanol, nuclear energy; average capital output ratio; government participation ratio to oil industries of oil exporting countries.
Output Data	Output data include crude oil production; government oil revenue; government expenditure by recurrent, development and military budget; oil exports; non-oil exports; producers' goods imports; consumers' goods imports; GDP of Iran, Saudi Arabia and Kuwait; energy supply by various energy sources; oil imports; accumulation of deficit of current and basic account with oil exporting countries; crude oil demand supply gap of consuming countries.
Observations	Since the model has only three country submodels of Middle East oil exporting countries, there is a need to increase the number of country submodels. Reliable statistics of oil exporting countries have not been utilized in the development of the models. More disaggregation of each country submodel is expected.

EUROPEAN COMMUNITY

	Evaluation of power station installation policies. (XX401)
	F. Conti, G. Graziani, C. Zanantoni, Commission of the European Communities-JRC-Ispra (Varese), Italy.
Subject an Goal	The model describes the consequences of alternative power station installation policies which satisfy a given electrical energy demand and load duration curve. The installed power of the various power plant types is obtained as a function of time. Fuel consumption and services are calculated as are investment and running costs.
System Description	The model deals with the evolution in time of the electrical power system. In particular attention is focused on the mix of power plants that satisfies the given electrical energy and load demand. The yearly electric energy demand over the period considered is given as input. The load diagram of the demand is also given; its shape can change during the period under investigation, both because of a change in the consumption spectrum and because of the development of some types of energy storage: a maximum of five load diagrams are foreseen corresponding to five time intervals. The plants are subdivided according to a number of age groups (a maximum of ten) affected by different maximum utilization. Age group are grouped in sets on which the allocation procedure of the stations in the load diagram is based. The first group sets refer to the running-in period, when the stations are not able to work at their maximum numerical utilization. The intermediate group sets refer to the equilibrium period and usually cover the largest fraction of the plant life. The last group-sets are relative to the running-out period of the plant life, when the station's availability decreases. The energy produced by each plant type is given as an input explicitly or calculated on the basis of the constraints imposed to the system. The two main constraints are the generating capacity doubling time, accounting for the difficulties of the industry in coping with a rapid increase of production; and the availability of artificial fissile material such as Plutonium or Uranium-233 produced by other nuclear station
Ti Area —	ne 30 to 55 years
	ace The European Community as a whole.
Modeling Techniques	This is a simulation model programmed for the IBM 370/165 computer in Fortran language (TOTEM computer program). In a certain year N the program, using the input data and the results of calculation of the previous year, proceeds as follows—It allocates "unavoidable" plants in the load diagram. The area corresponding to these plants is subtracted from the load diagram. As a result, the load diagram shape for the competitive plants is modified. -It allocates the existing competitive plants into the modified load diagram. Due to the age-factor history, the maximum energy produced by the existing plants changes every time-step. The allocation procedure has to be repeated each year. The allocation procedure is carried out starting from the peak toward the diagram base. This is possible by assuming that any new plant works at base-load during the first year of its life. Once this step is completed, a check on the fuel requirements is performed. -Determination of new plant installation needs. If necessary, new plants are installed according to the energy needs. At the end of plant installation, the following steps are performed: calculation of the value of the reserve, and calculation of the energy required by the pumping stations. Once the calculation of the whole period under investigation has been completed, the energies and power capacities of all plant types are known for every year. Fuel demands and productions, relative to inventories and energy production, and the costs can thus be determined.
Input Data	For each type of power station the physical and economical characteristics are given, e.g., fuel consumption, fuel inventory, plant cost, fuel fabrication and reprocessing costs, and such delays as mine enrichment, plant fabrication, plant storage, core residence, cooling, reprocessing. The cost of fuel can be constant or can vary with time.
Output Dat	The code can perform many calculations, based on the basic evaluation concerning the number of power stations existing per year, type and age-group and their utilization hours it calculates. For each year can calculate the consumption of various types of fuel, the fuel inventory due to new installations, and running costs, and capital investments. The expenditures can be actualized, the discount rate being one of the input data. Taking into account the various delays, the code evaluates the ore requirements, the separative work and consequently the enrichment plant capacity required, the capital investments as a function of time, etc.
Observatio	The model takes no account of location problems of plants and consumption centers and of related transmission and distribution problems. A separate model has been

		_
The Model		Demand for energy forecasting model. (GB401)
		G. Kouris, University of Surrey, Guildford, Surrey, England, 1975.
Subject and Goal		The aim of the study is to build an aggregate energy demand model on economic a priori criteria. The inadequacies of small samples and time series data are overcome by considering the EC as one country with a number of geographically different provinces (member countries). This assumption yields more realistic estimates of the major determinants of energy demand. These, in turn, are used for forecasting the energy requirements of the entire EC area in the year 1980.
System Description		The consumption of primary fuels in eight Common Market countries is pooled in order to obtain one set of homogeneous demand elasticities. The main short run determinants of energy demand are: income, price, and temperature. Since the model is applied on a pooled sample its time specification applies to the intermediate run. A detailed subdivision of this sample reveals a number of structural problems which make the stability of the model over time a function of these problems.
Area	Time	Econometric estimates for the period 1955-1970. Test of the predictive power of the model up to 1974 and forecasts up to 1980.
	Space	Italy, Netherlands, Denmark, France, FRG, Belgium/Luxembourg, UK.
Modeling Techniques		Econometric techniques. The main equation of the model is firstly tested on time series data for each EC country and secondly, a covariance transformation of it is applied on a pooled time series—cross sections sample. The possible feedbacks from energy to GDP are investigated through a two equation model where the energy function is supplemented by a production function of the Cobb-Douglas type. This formulation is estimated via a two stage least squares technique. All equations are linearized by a double logarithmic transformation.
Input Data		Time series of quantities (in metric tons of coal equivalents), incomes (GDP), relative fuel prices, average yearly temperatures, and number of employees in employment, for each EC country over the period 1955-1974.
Output Data		Income, price, and temperature elasticities for each country and for EC in total. Test of the stability of the energy function for the "crisis period" 1971-1974 and forecast of the 1980 EC energy requirements.

Appendix

Institutions and Individuals Contacted

AUSTRIA

Bundeskammer der gewerblichen Wirtschaft Biberstrasse 10 1010 Vienna

Dr. Josef Richter
Dr. Werner Teufelsbauer

Österreichisches Institut für Wirtschaftsforschung Arsenal Postfach 91

1103 Vienna Dr. H. Kramer Dr. Karl Musil

Technische Hochschule Wien
Karlsplatz 13
1030 Vienna
Prof. L. Bauer
Dr. Tintner, Institut f

Dr. Tintner, Institut für Ökonometrie

Rechts- und staatswissenschaftliche Fakultät der Universität Wien Universitätsstrasse 7 1010 Vienna

Prof. Dr. G. Bruckmann

Österreichische Elektrizitätwirtschaft-AG Am Hof 6A 1010 Vienna Mr. K. Fessl

Österreichische Studiengesellschaft für Atomenergie Ges.m.b.H. Lenaugasse 10 1082 Vienna

Prof. Hans Grümm

Steweag Leonhardgürtel 10 8010 Graz Mr. R. Lehner ÖEWAG-Verbundgesellschaft Am Hof 6A 1010 Vienna Dipl. Ing. Pober

Schweizer Botschaft Prinz-Eugenstr. 7 1030 Vienna Dr. V. Sohenk

Bundesministerium für Wissenschaft und Forschung Währingerstr. 28 1090 Vienna Ministerialrat Dr. W. Franck

M. l'attaché Scientifique près l'Ambassade de France Palais Lobkowitz Lobkowitz Platz 1010 Vienna

ARGENTINA

CPC Latin America
Cerrito 866
Buenos Aires
Dr. Andre van Dam, Director of
Planning

Fundacion Bariloche
Casilla de Correo 138
San Carlos de Bariloche
Prov. de Rio Negro
Dr. Amilcar Herrera

BELGIUM

European Institute for Advanced Studies in Management 20, Place Stephanie 1050 Brussels Mr. Göram Edsbäcker Bureau de Plan 47-49, Av. des Arts 1040 Brussels Mr. M. de Falleur

Université Libre de Bruxelles Terhuspsesteenweg 166 1170 Brussels

Prof. H. Glesjer

Union des Exploitations Electriques en Belgique 4, Galérie Ravenstain 1000 Brussels Mr. R. Groszmann, Director

Cabinet du Ministre des Affaires Economiques 23, Square de Meêus 1040 Brussels Dr. J.P. Hansen

Faculté des Sciences Economiques et Sociales 8, Rampart de la Vièrge 5000 Namur

Mr. M. Jaumotte

Administration de l'Energie Ministère des Affaires Economiques 49-51, Avenue de Trèves 1040 Brussels

Mr. P. Markey

S.C.I.E.N.C.E.
177, Avenue Louise
1050 Brussels
Mr. Manfred Siebk

Mr. Manfred Siebker, Managing
 Director

Département d'Economie Appliquée (DULBEA) Université Libre de Bruxelles 50, Av. F.D. Roosevelt 1050 Brussels

Prof. J. Waelbroeck

BULGARIA

Energoproekt bul. Anton Ivanov N. 56 Sofia

Mr. Kamenov

Mr. Luben Petkov

The National Center for Cybernetics and Computer Techniques 8, Slavjanska Street Sofia

Eng. Vanio Mitov

Centre Scientifique de Planification des Modèles Mathématiques et des Prévisions du Développement Social et Economique 58, rue Alabine

Mr. I.V. Peitchev

Comité d'Etat de Planification Institut Scientifique de Planification Economique et de Recherche 7 Noemvri I Sofia

Institut Economique Académie des Sciences de Bulgarie ul. Axakov N. 3 Sofia

Institut Scientifique Institut du Commerce Extérieur Sofia

CANADA

Sofia

Department of Energy, Mines and Resources

299 Carling Ave.

Ottawa, Ontario KlA OE4

Dr. R.P. Charbonnier, Chief
 Energy Research and Development

Dr. F.W. Gorbet
Dr. I.A. Stewart

Mr. C.E. Zwicker, Economic
 Studies Division

Economic Council of Canada P.O. Box 527

Ottawa, Ontario KlP 5V6

Mr. John Dawson, Director

Mr. M.C. McCracken

Ministry of State for Science and Technology

Ottawa, Ontario

Mr. J.T. Bradley

Mr. H. Flynn, Policy Advisor

Ministry of State for Science and Technology Technological Forecasting and Technology Assessment Division Ottawa, Ontario

Dr. J.R. Whitehead, Special Advisor, Office of the Secretary

Dr. A.R. Demirdache, Director

National Energy Board 473 Albert Street

Ottawa, Ontario KlA OGl

Mr. M.A. Crowe, Chairman

Mr. G.T. McLoughlin

Mr. R.C. Richards, Industrial
 Models Division

Mr. E.R. Stoian, Operations
Research Branch

Mr. J.M. Treddenick, Chief Econometrics Division

Department of Economics
University of British Columbia
2075 Westbrook Place
Vancouver, B.C.

Dr. Paul G. Bradley Prof. John Helliwell

Office de Planification et de Développement du Québec Université de Sherbrooke Sherbrooke JIK 2RI

Mr. Paul L.H. Camirand

Faculté des Sciences de la Gestion Université d'Ottawa Ottawa, Ontario KlN 6N5 Prof. J.G. Debanne

Planning Branch
Treasury Board Secretariat
160 Elgin Street
Ottawa, Ontario K15 OR5
Dr. A.R. Dobell

University of Calgary Calgary, Alberta Mr. R. Hamilton

Atomic Energy Control Board 107 Sparks Street Ottawa, Ontario KlP 5S9 Mr. D.G. Hurst Dean of Engineering Science
University of Western Ontario
Richmond Street North
London 72, Ontario
Prof. A.I. Johnson

McGill University
Montreal, Quebec
Mr. J.D. Khazzoom

Policy Planning and Evaluation Directorate Environment Canada Ottawa, Ontario KlA OH3 Mr. McCauley

Science Procurement
Department of Supply and Service
Ottawa, KlA OS5
Dr. Peter Meyboom, Director
General

Fuels Research Centre c/o 555 Booth Street Ottawa, Ontario KlA OGl Mr. D.S. Montgomery

Intergovernmental Committee on Urban
 and Regional Research
36 Wellesley Street West
Toronto, Ontario M4Y 1G1
 Mr. Marc Morin, Executive Director

Science Council of Canada
Ottawa, Ontario
Mr. J. Mullin, Deputy Executive
Director

Economic Council of Canada P.O. Box 527 Ottawa, KIP 5V6 Mr. André Raynauld

Geological Survey of Canada
Edmonton, Alberta
 Dr. K.J. Roy

University of Alberta Edmonton, Alberta Dr. J.T. Ryan Dept. of Political Economy University of Toronto Toronto, Ontario Prof. Leonard Waverman

Air Pollution Control Directorate
Environment Canada
Ottawa, Ontario KlA OH3
Mr. S.O. Winthrop, Director
General

Legislative Library Legislative Bldg. P.O. Box 6000 Fredericton N.B. E3B 5Hl

CYPRUS

The Planning Bureau Nicosia

Mr. I. Aristidou

CZECHOSLOVAKIA

Institute of Fuel and Power
Federal Ministry for Technical
Development
Slezska 9
Prague 2

Mr. V. Bruha

Mr. D. Vaverka, Vice Director

Power Research Institute Partyzanska 7a Prague 7

Mr. Milos Drahny, Csc.
Mr. Imrich Lencz, Csc.

Econometric Laboratory Czechoslovak Academy of Sciences Politickych veznu 7 Prague 1

Mr. Jiri Bouska

Energy Economy Section
Energy Research Institute
Nahrou de 19
Prague 10
Mr. Bohuslav Cabicar

Most Branch
Research Institute for Fuel and
Energy Economics
Most

Mr. E. Goldberger

Research Institute of Mining, Economics and Energy Vladislavova 4 Prague 1

Mr. V. Kraus

Energy Development Department Federal Ministry of Fuel and Energy Stepanska 28 Prague 1

Mr. M. Marval, Head

Research Institute of Statistics and Accounting Sokolovska Prague

Mr. Jaroslav Podzimek

Computing Research Center Dubravska cesto Bratislava

Mr. D. Stratil

Committee for IIASA of the Czechoslovak Socialist Republic Slezska 9, Vinohrady Prague 2 Dr. Tibor Vaško

DENMARK

The Niels Bohr Institute Blegdamsvej 17 2800 Copenhagen Mr. Sven Bjørnholm

Det Økonomiske Rad Nørre Voldgade 68 1358 Copenhagen Mr. Peter Erling Nielsen

Danmarks Statistik Input-Output Dept. Sejrøgade 11 2100 Copenhagen Mr. Bent Thage Institute of Economics University of Aørhus NDR Ringgade Universitetsparken 8000 Aørhus

Mr. J.E. Yndgaard

EGYPT

Dept. of Natural Resources African Institute Cairo University Cairo

Dr. Samir I. Ghabbour

FEDERAL REPUBLIC OF GERMANY

Institut für Elektrische Anlagen und Energiewirtschaft Technische Hochschule Aachen 51 Aachen

> Mr. R. Bieselt Prof. Mandel

Mr. Gerd Modemann Mr. Paul Winzke

Kernforschungsanlage Jülich 517 Jülich 1

Mr. D. Elsinghorst

Mr. W. Meier

Mr. S. Rath-Nagel

Mr. A. Voss

Kernforschungszentrum Karlsruhe Postfach 3645

75 Karlsruhe 1

Mr. G. Friede

Mr. Dieter Sellinschegg

Institut für angewandte Systemforschung und Prognose Hochschule Hannover Haus #39 5000 Hannover

Dr. Hartmut Bossel

Zentrum Berlin für Zukunftsforschung e.V. Giesebrechtstrasse 15 1 Berlin 12

Prof. W. Dreger

Max-Planck-Gesellschaft zur Erforschung der Lebensbedingungen der Wissenschaftlichtechnischen Welt

Riemerschmidstrasse 7

813 Starnberg

Prof. Carl Friedrich Frhr. von Weizsaecker

Deutsches Institut für Wirtschaftsforschung Königin-Luisestrasse 5 1 Berlin 33

Mr. M. Liebrucks

Institut für Stadt- und Regionalplanung Technische Universität Berlin Strasse des 17. June 135 1 Berlin 12

Dr. Helmut Maier

Lehrstuhl A für Mechanik Technische Hochschule Rodabruchstr. Hannover 3

Prof. E. Pestel

British Petroleum Postfach 1030 2 Hamburg

Dr. K. Repenning

Forschungsstelle für Energiewirtschaft Am Blütenanger 71 8 München 50

Prof. H. Schäfer

Energiewirtschaftliches Institut Universität Köln Albert-Magnus-Platz 5 Köln 41

Prof. H.K. Schneider

Institut für Siedlungs- und Wohnungwesen der Universität Münster Am Stadtgraben 9 44 Münster

Prof. R. Thoss

R.W.E. Kruppstrasse 5 43 Essen Dipl. Ing. H. Tröscher Energy Analysis and Projections Bundesministerium für Wirtschaft Villemomblerstr. 76 53 Bonn

Ministerialrat Heinrich Quante

FINLAND

Statistical Office Neste Oy, Kaivokatu 10A Helsinki 10 Mr. K.O. Huuskonen, Head

Imatran Voima Osakeyhtiö
B.P. 138
Helsinki 10
Prof. Antero Jahkola

Study Group for Economic Research on Energy Bank of Finland

Hameenkatu 2 A2 Turku 50

Mr. M.A. Jaakonaho

Economic Planning Centre Erottaja 15 A Helsinki 13

Mr. Erkki Laate

Research Institute of the Finnish Economy Kalevankatu 3B

Mr. Kaarlo Larno, Managing Director

Industrial Department
Energy Policy Branch
Ministry of Trade and Industry
Aleksanterinkatu 10
Helsinki 17

Mr. I.H. Lavanius, Chief Inspector

IBM Finland Helsinki

Helsinki 10

Mr. Tor Nyman

Economic Department Ministry of Finance Fabianinkatu 8 Helsinki 13

Mr. Lars-Erik Öller

Technical University Helsinki

Mr. Seppo Salo

FRANCE

Délégation Générale á l'Energie 35, rue Saint-Dominique 75007 Paris

M. Y. Girard, Chargé de Mission

M. Renon

Institut Economique et Juridique de l'Energie Université de Grenoble - I.R.E.P. Domaine Universitaire de St. Martin d'Hères B.P. 47 - Centre de tri

38040 Grenoble Cedex

M. J. Girod

M. J.M. Martin

M. Ramain

Institut National des Sciences et Techniques Nucléaires

91 Gif-sur-Yvette

M. E. Bauer

Prof. Fourgeaud

Prof. Ville

Electricité de France 2, rue Louis Murat 75008 Paris

M. Marcel Boiteux

M. Bernard, Service des Etudes Economiques Générales

M. Breton, Service des Etudes Economiques Générales

M. Gouni, Chef Service des Etudes Economiques Générales

M. Robert Janin, Chef Adjoint Service de la Production Thermique

M. Lacoste, Cabinet du Président Directeur Général

M. Louis Puiseux, Service des Etudes d'Economiques Générales

Ecole Nationale Supérieure des Mines Paris

M. M. Allais

Ecole Polytechnique
7, Bd. Flandrin
75016 Paris
M. Jacques Attali

B.I.P.E. 122, av. Charles de Gaulle 92 Neuilly Mr. Aujac

CEPREMAP
140, rue du Chevaleret
75013 Paris
M. Bessière

Direction de la Prévision
Ministère des Economies et des
Finances
9, rue Croix des Petits Champs
75001 Paris
Mr. D. Blain, Chargé de Mission

C.F.P.
5, rue Michel Ange
75016 Paris
 M. Chevet

I.F.P., Dept. Economie
l, av. de Bois Préau
92502 Rueil Malmaison
M. C. Debackere

Directeur des Etudes Economiques et Financières Banque de Paris et des Pays-Bas 3, rue d'Antin 75002 Paris M. Jean Denizet

Rapporteur Général de la Commission de l'Energie 18, rue de Martignac 75007 Paris M. Destival

C.E.R.E.N.
1, rue Caumartin
75009 Paris
 M. Dourille

Université de Grenoble 38040 Grenoble Cedex M. F. Finon SEMA
Marketing et Modèles de Décision
16 rue Barbés
92128 Montrouge
M. Godet

I.N.S.A.
20, av. Albert Einstein
69621 Villerbanne
 M. Hamelin, Directeur Général

Service de la Statistique 83, Bd. de Montparnasse 75006 Paris M. Hebert

Institut Géodynamique Université de Bordeaux III Avenue des Facultes 33405 Talence M. Humbert

Charbonnages de France B.P. 396 O8 9, av. Percier 75360 Paris Cedex M. Ippolito

CNES 129, rue de l'Université 75007 Paris Prof. Levi, Président

Direction de la Prévision 6, avenue de l'Opéra 75001 Paris Prof. Edmond Malinvaud

Centre d'Etudes Supérieures d'Economie Pétrolière I.F.P. B.P. 18 92502 Rueil Malmaison

M. J. Masseron, Directeur

Institut Polytechnique
B.P. 15 - Centre de Tri
38040 Grenoble Cedex
Prof. Nguyen Khac Nhan

Departement des Programmes Commissariat à l'Energie Atomique 29-33, rue de la Fédération 75015 Paris

M. Pierre, Chef

E.L.F.-E.R.A.P. rue Nelaton
75015 Paris
M. Ploton

Centre Universitaire Dauphine Place de Lattre de Tassigny 75016 Paris Prof. Roy

Agence pour l'Economie de l'Energie 30, rue de Cambronne 75015 Paris M. Syrota

Departement des Programmes Commissariat à l'Energie Atomique 29-33, rue de la Fédération 75015 Paris

> M. L. Thiriet, Chargé des Etudes Economiques Générales

GERMAN DEMOCRATIC REPUBLIC

Institut für Energetik Torgauerstr. 114 7024 Leipzig

Mr. P. Hedrich

Dr. Kahn

Mr. K. Lindner

Mrs. U. Reymann

Academy of Sciences of the GDR Leipziger Strasse 108 Berlin

Prof. Hans Mottek

Hochschule für Ökonomie Berlin Dunckerstrasse 8 1157 Berlin-Karlshorst Prof. J. Rudolph

Braunkohleindustrie Grossräschen

Brennstoffinstitut Freiberg/Saxon

Energieversorgungsbetriebe Leipzig

Erdölarbeitungsindustrie Schwedt Ogreb-Institut für Kraftwerke Cottbus

Ogreb-Institut für Kraftwerke Vetschau

Staatliches Unternehmen der Elektroenergieversorgung Berlin

GREECE

Centre of Planning and Economic Research Hippokratous 22 Athens 144

Mr. C. Aronis

Institute of Economic Research Hippokratous 22 Athens 144

The Director

Entreprise Publique d'Electricité de Grèce

4, rue Aloupekis Athens

> Mr. C. Delis, Chef du Service de Planification Economique

Entreprise Publique d'Electricité de Grèce

4, rue Aloupekis Athens

Mr. A. Samaras

Director of Planning Services Ministry of Coordination 3 Amerikis Street Athens

HUNGARY

Econometric Laboratory Central Statistical Office Keleti Karoly u. 5-7 Budapest II

Mr. M.L. Halabuk Ms. Katalin Hulyak National Board for Power and Fuel Economy Marko utca 16 1955 Budapest

Mr. P. Erdosi
Mr. G. Goldvary
Mr. Patyi Karoly

Computer Centre of National
Planning Office
Amgol u. 27
1149 Budapest
Mr. G. Gekecs, Department Chief

Systems Engineering Institute INFILOR Budapest

Mr. K. Kelemen

Institute of Economics
Hungarian Academy of Sciences
Nado utca 7
Budapest V
Prof. Janos Kornai

Dr. F. Rabár Laboratory for Information Processing Budapest; currently at IIASA

Hungarian Electricity Board Iskola 13 1011 Budapest

Mr. T. Zettner, Managing Director

ICELAND

National Energy Authority
Laugavegur 116
Reykjavik
Mr. Jakob Björnsson, Director
General

INDIA

Indian Statistics Institute
502 Yojana Bhavan
Parliament Street
New Delhi
Prof. T.N. Srinivasan

IRELAND

Economic and Social Research
Institute
4, Burlington Road
Dublin
Mr. E.W. Henry

Mr. E.W. Henry Mr. S. Scott

Department of Finance Economic Development Branch 72-76 St. Stephen's Green Dublin 2

ISRAEL

Ministry of Development Tel Aviv Mr. J. Vardi

ITALY

ENEL, Ufficio Studi e Ricerche via G.B. Martini 7 OOlOO Rome

Mr. F. Boselli Prof. Learnini Prof. Valtorta

ENEL

via Valvossori Peroni, 77 20133 Milan

Mr. P.L. Noferi
Mr. L. Paris
Mr. Giorgio Quazza

Mr. Omero Comellini c/o CNEN-PRV via Arcoveggia 56 Bologna

Facolta di Scienze Politiche via Zamboni l 40135 Bologna Mr. Francesco Del Monte

MI. Flancesco Del Monte

FIAT
Corso Marconi
10100 Torino
Mr. Dario Monti

Ente Nazionale Idrocarbone OOlOO Rome

Mr. V. Paretti

Istituto di Fisica Tecnica Milano

Prof. Mario Silvestri

Istituto Studi Programmazione
 Economica

OOlOO Rome
 Dott. Sillitti

Biblioteca ENEL Compartimento di Milano via Carducci l

JAPAN

Milan

The Institute of Energy Economics 28 Mishikubo Sakuragawa-Cho Minato-Ku Tokyo

> Mr. Yukio Sekiya Dr. Mitsuo Takei, Manager Research Division

College of Engineering Seikei University Kichijoji-Kita Musashino-Ski Tokyo - 180 Prof. Takao Hoshi

The Japan Atomic Power Co. Otemachi Bldg. No. 6 1-Chome Otemachi, Chiyoda-Ku Tokyo

Dr. Ruykichi Imai

Prof. H. Katsunuma 27 Shinanomachi Shinjuku-Ku Tokyo

Central Research Laboratory Mitsubishi Electro Corp. 2-3 Morunouchi 2-Chome Chiyoda-Ku Tokyo

Dr. Fusao Mori, Chief Engineer

Faculty of Economics University of Tokyo Bunkyo-Ku Tokyo

Prof. Hirofumi Uzawa

MALTA

Department of Applied Economics The Royal University of Malta Msida

Mr. S. Busuttil

MEXICO

Planificacion y Desarrollo de Sistemas Florencia No. 39-102 Mexico 6, D.F. Dr. M.A. Cardenas

Cia de Luz y Fuerza del Centro
Melchor Ocampo 171-407
Mexico 17, D.F.
 H. Jorge G. Duran, Subjefe de
 Planeacion

NETHERLANDS

Erasmus University Rotterdam

Mr. J.A. Hartag Mr. P.R. Odell

Mr. K. Bez Cornelis Danckerlsstr. 35 Rotterdam 14

Mr. J. Boon Lange Kleiweg 5 Rijswijk

International Resources Consultants
 B.V.
Alkmaar

Mr. J.B. Brinck

Analytisch Chemisch Lab. Croesestraat 77A Utrecht

Dr. W. van Gool

Centraal Bureau voor de Statistiek 428 Prinses Beatrixlaan Voorburg

Mr. G. Goudswaard

Econometrisch Institut Centre for Development Planning Burg. Oudlaan 50 Rotterdam 3016

Prof. T. Kloek

Technical University
Insulindelaan 2
Eindhoven

Prof. O. Rademaker

Economisch en Sociaal Institut Vrije Universiteit Amsterdam de Boelelaan 1105 Amsterdam

Dr. R. Rote

Centraal Planbureau
van Stolweg 14
's-Gravenhage
Mr. Marcus J. Stoffes

Technische Hogeschool Julianalaan 134 Delft

Prof. Timman

Prof. Jan Tinbergen 31 Haviklaan The Hague

Nijverheids Organisatie T.N.O. Juliana van Stolberglaan 148 Postbus 297 The Hague

Prof. J.J. Went

Dept. of Economics Municipal University of Amsterdam Amsterdam

Prof. P. de Wolff

Institut voor Actuariaat an Econometrie der Universiteit Nieuwe Achtergracht 170 Amsterdam

NORWAY

Planning Division Ministry of Finance Akersgt 42 Oslo

Mr. Per Schreiner

Mr. Odd Solbraa, Deputy Director

Central Bureau of Statistics of Norway Dronningens gate 16 P.B. 8131 Oslo 1

Mr. Odd Aukrust

University of Oslo Institute of Economics Boc 1071 Blindern, Oslo 3 Prof. L. Johansen

POLAND

Planning Commission Pl. 3 Krzyzy Warsaw

Mr. D. Deja, Chief of Section
 Department of Fuel and Energy
Mr. S. Hatt, Division for Economic
 Analysis

Scientific Centre for Energy Problems Central Mining Institute (OEK) Pl. Gwarkow l Katowice

Mr. Z. Falecki, Director

Dept. of Nuclear Power Institute of Nuclear Research Swierk k. Otwocka Warsaw

Mr. W. Frankowski, Head

Institute for Projecting and Building of Mines Academy of Mining and Metallurgy Mickiewicza 30 Krakow

Mr. M. Hajdasinski

Institute of Applied Cybernetics Polish Academy of Sciences Warsaw KRN 55

Mr. J. Holubiec, Head of
 Department

The Polish Academy of Sciences c/o Academia Palazza delle Scienze 2 Vicolo Doria OO187 Rome

Prof. Jerzy Kolubiec

Polish Academy of Sciences Palace of Culture and Science Warsaw OO 901

Prof. Roman Kulikowski

Instytut Energetyki Mysia 2 Warsaw OO 496

Mr. R. Nowakowski, Head of Laboratory

Instytut Planowania Plac Trzech Krzyzy 5 Warsaw 15

Prof. Dr. Krzusztof Porwit

PORTUGAL

Companhia Portuguesa de Electricidade Av. Infante Santo 15 Lisbon I

Mr. R.J. Minotti da Cruz Filipe Mr. A. Leite Garcia

Presidencia do Conselho Junta Nacional de Investigacao Cientifica e Tecnologica Lisbon

Mr. J.M. Santos Mota

RUMANIA

International Center for Methodology for Future and Development Studies University of Bucharest Bucharest 8

Dr. M.H. Botez, Director

Le Comité d'Etat du Plan Calea Victoriei 152 Bucharest

Mr. Jankovitch

Institut de Recherches d'Energétique Industrielles et de Projets d'Outillages Energétiques Bucharest

Mr. M. Petcu

Centre de Statistique Mathematique de l'Académie des Sciences Calea Grivitei 21 Bucharest 12

Mr. M.I. Sacuiu, Secrétaire Scientifique

SOUTH AFRICA

Paulhof Minnaarstraat Privaate bag X213 Pretoria OOOl Mr. P.W. Stark, Secretary for Planning

SPAIN

Institut du Développement Economique Antigua Universidad de Alcala de Henares

Madrid

Mr. R. Vazquez Candame, Secrétaire

Comisaria del Plan del Desarrollo Economico y Social Castellana 3 Madrid Mr. Espi

SWEDEN

Government Committee for Energy
Forecasting
Munkbron 11, ltr, EPU
11128 Stockholm
Mr. Mats Höjeberg, The National
Swedish Industrial Board
Mr. E.S. Ben Salem, Chief

The National Institute of Economic Research Nybrokaien 13 Stockholm Mr. K.H. Aberg

University of Gothenburg Vasaparken 41125 Gothenburg Mr. Göran Bergendahl

Secretariat for Economic Planning The Swedish Ministry of Finance Riddarhustorget 7-9, Fack 10310 Stockholm 2 Mr. B.O. Karlsson

Cabinet Office
Delegation on Energy Policy Fack
10310 Stockholm
M. Hans Lönnroth

SWITZERLAND

Battelle Research Institute 7, route de Drize 1227 Geneva Prof. E. Fontela

Mr. Claude Masseti

Université de Fribourg

Institut de Mathématiques Appliqueés de l'Ecole Polytechnique Fédérale 33, avenue de Cours 1000 Lausanne Prof. Blanc

Institut für angewandte Wirtschaftsforschung
4000 Bale
 Prof. R. Bombach

Institut für Wirtschaftsforschung an der ETH
Universitätsstr. 14
8006 Zürich
Prof. B. Fritsch

University of Zürich Rämistr. 71 8000 Zürich Prof. Schelbert

Centre d'Econometrie
Faculté des Sciences Economiques
et Sociales
6, rue de Saussure
Geneva
Prof. L. Solari

TURKEY

Turkish Electricity Authority TEK, Planlama ve Koordinasyon D. Necatibey Cad. 36 Ankara

Mr. M.O. Tarkan

UNITED KINGDOM

Department of Energy Thames House, Millbank London SWIP 4QJ Mr. A.D. Johnson Mr. P.J. Jonas

Department of Trade and Industry Thames House, Millbank London SWIP 4QJ Mr. F.W. Hutber

University of Cambridge
Cambridge CB2 3RQ
Dr. R. Eden, Cavendish Laboratory
Department of Applied Economics

University of Sussex
Falmer
Brighton, Sussex BN1 9RF
Prof. Freeman, Science Policy
Research Unit
Dr. Geoffrey Heal

U.K. Atomic Energy Authority
11 Charles II Street
London SW1 4PQ
Mr. L.G. Brookes

Northern Ireland Joint Electricity
Authority
12, Manse Road
Castlereagh, Belfast BT6 9RT
Mr. D. Burnet

British Petroleum Britannic House Moor Lane London EC2Y 9BU Mr. M.W. Clegg

Energy Group
Queen Mary College
Mile End Road
London El 4NS
Prof. R.J. Deam

Reactor Group
U.K. Atomic Energy Authority
Risley, Warrington, Lancs.
Mr. C.E. Iliffe

Central Electricity Generating
Board
Sudbury House
15 Newgate Street
London ECl
Mr. F.P. Jenkin

Programmes Analysis Unit Chilton, Didcot, Berks. OX11 ORF Dr. Jones

Department of Economics
University of Surrey
Guildford, Surrey GU2 5XH
Prof. G. Kouris

Department of Systems Science City University St. Johns Road London

Prof. P.D. McPherson

System Analysis Research Unit Department of the Environment 2 Marsham Street London SW1P 3EB Mr. Peter Roberts Energy Analysis Unit C.I.I. Building 100 Montrose Street Glasgow G4 OLZ Dr. M. Slesser

Operation Research Society
Nevill House
Waterloo Street
Birmingham B2 5TX; currently at IIASA
Mr. R.C. Tomlinson

UNITED STATES OF AMERICA

Electric Power Research Institute 3412 Hillview Avenue Palo Alto, California 94304

Mr. Frank Alessio Dr. R.T. Crow Dr. Sam H. Schurr Dr. Chauncey Starr

Harvard University
Cambridge, Massachusetts O2138
Prof. Robert Dorfman, Dept. of
Economics
Prof. Hendrik Houthakker, Dept. of
Economics
Prof. Dale Jorgenson, Dept. of
Economics
Prof. Wassily Leontief, Littauer
Center
Prof. A.S. Manne, Littauer Center

Institute for Energy Analysis
P.O. Box 117
Oak Ridge, Tennessee 37830
 Mr. McPherson
 Mr. David Reister

Dr. Ernest G. Silver Mr. Charles E. Whittle

of Management

Massachusetts Institute of Technology
Cambridge, Massachusetts O2139
Prof. Morris Adelman, Dept. of
Economics
Dr. M.L. Baughman, Energy Analysis
and Planning Group
Mr. Robert E. Brooks
Prof. Franklin Fisher, Dept. of
Economics
Dr. J.H. Hollomon
Prof. Gordon Kaufman, Sloan School

Prof. P.W. MacAvoy, Sloan School
of Management
Prof. Robert Solow, Dept. of
Economics
M. R. Treitel, Center for Policy
Alternatives
Prof. David White, Energy
Laboratory

Rand Corporation 1700 Main Street Santa Monica, California 90406 Mr. Kent P. Anderson Mr. William E. Mooz

Stanford University
Stanford, California 94305
Prof. Thomas J. Connolly,
Dept. of Mechanical
Engineering
Prof. George B. Dantzig, Dept.
of Operations Research
Prof. Dr. Bert G. Hickman, Dept.
of Economics

Thayer School of Engineering
Dartmouth College
Hanover, New Hampshire O3755
Prof. D. Meadows
Dr. R.J. Rahn

University of Pennsylvania
3718 Locust Street
Philadelphia, Pennsylvania 19104
Mr. F.G. Adams, Dept. of
Economics
Prof. Lawrence R. Klein, Dept.
of Economics

Yale University
New Haven, Connecticut 06520
Dr. W.D. Nordhaus, Dept. of
Economics
Dr. Martin Shubik, Cowels Foundation for Research in Economics

International Research and Technology
 Corp.
1225 Connecticut Ave. W
Washington, D.C. 20036

Mr. Robert Ayres

Drexel University
Philadelphia, Pennsylvania 19104
Mr. H.L. Brown

Stanford Research Institute Menlo Park, California 94025 Mr. E.S. Cazalet

Cornell University
Ithaca, New York
Dr. L.D. Chapman

Texas A & M University College Station, Texas 77843 Dr. Earl Cook

American Petroleum Institute 1801 K Street N.W. Washington, D.C. 20550 Mr. E.A. Copp

Office of Energy Policy National Science Foundation 1800 G Street N.W. Washington, D.C. 20550 Mr. P.P. Craig

Resources for the Future, Inc. 1755 Massachusetts Ave. N.W. Washington, D.C. 20036 Dr. J. Darmstadter

Rensselaer Polytechnic Institute Troy, New York 12181 Dr. J.G. Ecker

Dept. of Economics North Carolina State University Raleigh, North Carolina 27607 Mr. E. Erickson

University of Wisconsin-Madison Madison, Wisconsin Dr. W. Foell

Charles River Associates, Inc. 16 Garden Street Cambridge, Massachusetts O2138 Mr. Laurel Friedman IBM - Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York
 Dr. Ralph Gomory

Pennsylvania State University University Park, Pennsylvania Mr. DeVerle P. Harris

Dept. of Applied Science Engineering and Systems Division Brookhaven National Laboratory Upton, Long Island, New York 11973 Dr. K. Hoffman

Department of Economics University of Colorado Boulder, Colorado 80302 Dr. Charles W. Howe

Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830
Dr. Robert A. Herendeen

United States Senate
Washington, D.C.
Mr. M. King Hubbert

Data Resources
Lexington, Massachusetts O2173
Mr. E.A. Hudson

System and Energy Group
TWR Inc.
1 Space Park
Redondo Beach, California 90278
Mr. Gerald W. Johnson

Dept. of Chemistry
Kent Laboratory
University of Chicago
5727 S. Ellis Ave.
Chicago, Illinois 60637
Dr. Thomas Long

Case Western Reserve University Cleveland, Ohio Prof. M. Mesarovic

Office of Engineering
U.S. Agency for Int. Dev.
Dept. of State
Washington, D.C.
Mr. John H. Rixse

University of California Berkeley, California Mr. Stephen Rosenthal

Westinghouse Electric Co. Pittsburgh, Pennsylvania Mr. P.F. Schweizer

National Bureau of Economics 575 Teech Square Cambridge, Massachusetts O2139 Mr. Jeremy Shapiro

Dept. of Psychology Carnegie-Mellon University Pittsburgh, Pennsylvania 15213 Prof. Herbert A. Simon

California Institute of Technology Pasadena, California 91109 Prof. Vernon L. Smith

Dept. of Economics Virginia Polytechnic Institute Blacksburg, Virginia Mr. R.M. Spann

Data Resources Inc.
29 Hartwell Ave.
Lexington, Massachusetts O2173
Mr. P.K. Verleger, Jr., Senior
Economist

Executive Office of the President New Executive Office Bldg. Washington, D.C. 20503 Mr. James A. Walker

Cowles Foundation Library 30 Hillhouse Avenue New Haven, Connecticut 06520

Decision Sciences Corp.
Jenkintown, Pennsylvania

UNION OF SOVIET SOCIALIST REPUBLICS

Academy of Sciences
State Committee for USSR
Council of Ministers for Science
and Technology
11 Gorky Street
Moscow

Dr. Ivanov

Dr. Kichatov

Dr. Nikolai Kourochkin

Dr. Kuzovkin Dr. Minaev

Acad. M. Styrikovich

The Computing Centre
State Planning Commission of the
Ukrainian SSR
Kiev, Ukrainian SSR
Mr. S.A. Avramenko

G.M. Krzhizhanovsky State Research Institute of Energetics Academy of Sciences of the USSR Leniuskij pr. 14 Moscow

Mrs. I.N. Bessonova

Institute for Cybernetics
Academy of Sciences of the Ukrainian
SSR
Kiev, Ukrainian SSR

Prof. V. Gluskov

Institute of Control Problems Profsojuznayo 81 Moscow V 485

Dr. Yuri F. Kichatov

Scientific Research Institute of
Economic and Economic-Mathematical
Planning Methods
Gosplan, BSSR
1 Slavinskogo
Minsk 23

Dr. V. Medvedev

Central Economic Mathematical Institute Belgrade
Dept. of Economics Mr. 3
2nd Yaroslavskaya ul 3
Moscow Institute

Dr. A.I. Mekibel

Academy of Sciences 40 Vavilov Street Moscow B-333

Prof. N. Moiseev

Institute Energosetiproject Moscow

Dr. A.S. Nekrasov

State Planning Committee of the Latvian SSR 11 Gorky Street Moscow

Dr. Raman, Chairman

Institute of Economics
Academy of Sciences of the
Ukrainian SSR
Kiev, Ukrainian SSR
Prof. S. Yampolsky

YUGOSLAVIA

Economic Institute Kennedyer trg 7 Zagreb

Dr. R. Lang

Dr. Drago Vojnic, Director

Prof. S. Obradovic Svetog Nanma 14 Belgrade

Elektrotechnicki Fakultat Zagreb Trg Marsala Tita 14 Zagreb

Prof. Hrvoje Pozar

Research Centre of the Faculty of Economics of the University Trg Revducije 11 Ljubljana

Prof. V. Rupnik

Director in Zeps Internacionale brigade No. 1 Belgrade

Mr. Simonovic

Institute for Industrial Economics Trg Marsala Tita 16/11 Belgrade

Mr. Todorovic

Institut de l'Electricité Zagreb

Mr. B. Udovicic

INTERNATIONAL AND REGIONAL ORGANIZA-TIONS

Commission of the European Communities Direction of Energy 200, rue de la Loi 1040 Brussels

> Mr. L. Corradini Mr. R. De Bauw Mr. Van Scheepen

International Atomic Energy Agency Division of Nuclear Power Kärntner Ring 11 1010 Vienna

Mr. Rurik Krymm
Mr. Polliart
Mr. T.J. Roberts

Organisation for Economic Cooperation and Development (OECD)

2, rue André Pascal 75775 Paris Cedex 16

> Monsieur Laading, Chef, Division de l'Energie Direction de l'Industrie et de l'Energie Prof. K. Oshima, Director for Science, Technology and Industry

M. Potier, Central Analysis and Evaluation Unit Environment Division

Organization of the Petroleum Exporting Countries (OPEC)
Dr. Karl Lueger-Ring 10
1010 Vienna

Mr. Cherif Faidi

Mr. Mahjoob A. Hassanain

Mr. Dicky Darsono Soemiatno

Research and Planning Division
United Nations Economic and Social
Commission for Asia and the Pacific
(ESCAP)

Sala Santitham

Bangkok 2

Mr. Ryokichi Hirono

Dr. Marzouk, Deputy Director

International Bank for Reconstruction and Development (IBRD)
1818 H Street N.W.
Washington, D.C. 20433
 Prof. Hollis Chenery

International Federation of Institutes
 for Advanced Study (IFIAS)
The Nobel House
P.O. Box 5344
10246 Stockholm
 Mr. Per Lindblom

United Nations Economic Commission for Europe Palais des Nations 1211 Geneva 10 Mr. Brendow M. F.R. Brusick Mr. H.G. Dirickx Mr. C. Lopez-Polo

Dr. R. Rubin, Direction Genérale de la Recherche de la Science et de l'Education

United Nations Industrial Development Organization (UNIDO)

P.O. Box 837 1011 Vienna Dr. Y Cho

DI. 1 CHO

Mr. Becker-Boost

Mr. Helmut Neu, Head Direct Conversion Division EURATOM-CCR Ispra, Varese

RELATED IIASA PUBLICATIONS

Energy Systems. W. Häfele. (RR-73-001) \$3.00 AS45. (MICROFICHE ONLY).

A Review of Energy Models: No. 1 - May 1974. J.-P. Charpentier. (RR-74-010) \$4.60 AS80.

An Incentive-Tax Model for Optimization of an Inspection Plan for Nuclear Materials Safeguards. A. Suzuki. (RR-74-O19) \$3.00 AS45. (MICROFICHE ONLY).

A Review of Energy Models: No. 2 - July 1975. J.-P. Charpentier. (RR-75-035) \$5.60 AS100.

Transport and Storage of Energy. C. Marchetti. (RR-75-038) \$2.50 AS45.

The Carbon Cycle of the Earth--A Material Palance Approach. R. Avenhaus, G. Hartmann. (RR-75-045) \$1.50 AS30.

An Extension of the Häfele-Manne Model for Assessing Strategies for a Transition from Fossil Fuel to Nuclear and Solar Alternatives. A. Suzuki. (RR-75-047) \$3.00 AS45. (MICROFICHE ONLY).

Modeling of the Influence of Energy Development on Different Branches of the National Economy. Yu.D. Kononov. (RR-76-Oll) \$3.00 AS45. MICROFICHE ON-LY.

A Review of Energy Models. No. 3 (Special Issue on Soviet Models). J.-M. Beaujean, J.-P. Charpentier, editors. (RR-76-018) \$3.00 AS45. (MICROFICHE ONLY).

Software Package for Economic Modelling. M. Norman. (PR-77-021) \$5.40 AS95.

Food and Energy Choices for India: A Model for Energy Planning with Endogenous Demand. K.S. Parikh, T.N. Srinivasan. (RR-77-024) \$2.50 AS45.

The Bratsk-Ilimsk Territorial Production Complex: A Field Study Report. H. Knop, A. Straszak, editors. (RR-78-002) \$14.00 AS195.

A New Approach in Energy Demand. Part I: Methodology and Illustrative Examples. J.-M. Peaujean, B. Chaix, J.-P. Charpentier, J. Ledolter. (PP-77-004) \$3.00 AS45. MICROFICHE ONLY.

Please cite publication number when making an order. See inside back cover for order information.