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Preface

The aim of the IIASA Modeling Health Care Systems Task is to build a
National Health Care System model and apply it in collaboration with
national research centers as an aid to health service planners. The modeling
work is proceeding along the lines proposed in earlier papers by Venedictov
and Shigan [1] among others. It involves the construction of linked sub-
models dealing with population, disease prevalence, resource need, resource
supply and resource allocation.

The present paper is concerned with the development of the resource
allocation sub-model DRAM—disaggregate resource allocation model. It
describes the Mark 1 version of the sub-model which simulates the alloca-
tion by the Health Care System of a single resource between different types
of patients. This version was described briefly in an earlier paper by Gibbs
[2] which was written principally for health service planners and other
potential users of the model. The present paper is written for the scientific
or mathematical reader—the model’s assumptions are stated formally and
the algorithm for solving the model and some methods for estimating the
model parameters from empirical data are described in full. It is planned to
develop further versions of the sub-model to simulate the allocation of
several health care resources between patients for whom alternative modes
of treatment are permitted; this work will be described in future publica-
tions. A user’s guide to the computer programmes for the Mark 1 version
of the sub-model is described in a separate paper [10].

Recent related publications of the IIASA Modeling Health Care Sys-
tems Task are listed on the back pages of this Report.

Evgenii N. Shigan
Leader
Health Care Systems Task
May 1978
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Summary

Within the context of the IIASA Health Care System model the func-
tion of the resource allocation sub-model is to simulate how the HCS
allocates limited supplies of resources between competing demands. The
principal outputs of the sub-model should be the numbers of patients
treated, in different categories, and the modes and standards of treatments
they receive. The Mark 1 version of the sub-model is described in this
paper. It simulates the allocation of one resource within one mode of treat-
ment but it should be possible to use the approach to develop further ver-
sions to cover more general cases. The main assumption of the model is
that in allocating its resources the HCS attempts to optimise a utility func-
tion whose parameters can be inferred from data on past allocations. De-
pending upon the type of data that is available different procedures for
parameter estimation can be incorporated with the algorithm for solving
the model into a computer programme whose main inputs consist solely of
empirical data. The programme is fairly small and can readily be installed
on most scientific computer installations. The use of the sub-model is illus-
trated by a hypothetical application using hospital data from England.
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Abstract

Within the context of the IIASA Health Care System model
the function of the resource allocation sub-model is to simulate
how the HCS allocates limited supplies of resources between com-
peting demands. The principal outputs of the sub-model should
be the numbers of patients treated, in different categories, and
the modes and standards of treatments they receive. The Mark 1
version of the sub-model is described in this paper. It simu-
lates the allocation of one resource within one mode of treatment
but it should be possible to use the approach to develop further
versions to cover more general cases. The main assumption of the
model is that in allocating its resources the HCS attempts to
optimise a utility function whose parameters can be inferred from
data on past allocations. Depending upon the type of data that
is available different procedures for parameter estimation are
required. The procedures for parameter estimation can be incor-
porated with the algorithm for solving the model into a computer
programme whose main inputs consist solely of empirical data.
The programme is fairly small and can readily be installed on
most scientific computer installations. The use of the sub-
model is illustrated by a hypothetical application using hospital
data from England.






The IIASA Health Care Resource Allocation
Sub-Model: Mark 1

1. THE FUNCTION OF THE RESOURCE ALLOCATION SUB-MODEL

The aim of the IIASA Modeling Health Care Systems Task is
to build a National Health Care System Model and apply it in
collaboration with national research centers as an aid to health
service planners. As described in earlier papers by Venedictov
and Shigan [1] and by Gibbs [2] the research plan includes the
construction of linked sub-models dealing with population, dis-
ease prevalence, resource need, resource supply, and resource
allocation. This paper is concerned with the resource alloca-
tion sub-model which has been named DRAM--disaggregated resource
allocation model.

This chapter is concerned with definition of the attributes
that are required of DRAM for it to fulfill its role in the over-
all National Health Care System Model. In Chapter 2 a model for-
mulation is presented which meets some, though not all, of these
attributes; the model thus defined is referred to as DRAM Mark 1.
The formulation is given in terms of the allocation of hospital
beds but this is only an example of how the model may be applied;
the model is equally applicable to the allocation of other health
service resources. An algorithm for running DRAM Mark 1 is de-
scribed in Chapter 3. There are a number of parameters in the
model whose values may be estimated from empirical data. How-
ever it is likely that data availability will vary from one
country to another. Accordingly, in Chapter 4, three of the
most likely cases of data availability are considered and pa-
rameter estimation procedures are described for each case.
Illustrative model runs for two of the three cases are presented
in Chapter 5 using hospital data from England. Finally Chapter
6 suggests how further versions of DRAM might be developed in
the future so as to meet all, rather than some, of the required
attributes defined below.

The role of the resource allocation sub-model in relation
to the other sub-models is shown in Figure 1 and described more
fully in Gibbs [2]. Within this schema the function of the
resource allocation sub-model is to simulate how the Health Care
System (HCS) allocates limited supplies of resources between
competing demands. Accordingly it requires input data on demand
and supply.
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The demand inputs, which represent ideal or asymptotic
demands (to be defined more fully in Chapter 2), are as follows:

- the total number of individuals who could be offered
treatment, by category (from the morbidity and popula-
tion sub-models) ;

- the policies for treatment (i.e. the feasible modes of
treatment for each patient category--in-patient, out-
patient, domiciliary, etc.); and

- ideal standards of treatment for each patient category
and mode of treatment (e.g. the length of stay in hos-
pital for a given episode of illness).

The supply inputs consist of information on the amounts of
resources available for use in the HCS. These inputs can be
provided via a resource supply (production) sub-model or, failing
this, they can be provided direct by the user in the form of a
trial policy option for the provision of HCS resources. An il-
lustration of the latter form of input is given later, in Chapter
5.

It is assumed in the sub-model, as Rousseau [3] among
others has observed, that there is never a sufficient supply
of resources to saturate all the asymptotic demands for them.
Accordingly the sub-model represents the HCS as attempting to
achieve an equilibrium between supply and demand by adjustments
along three dimensions:

- the numbers of patients of different types who are
offered treatment,

- the modes of treatment offered, and
- the standards at which treatment is offered.

Because of the limited supply of resources the performance of
the HCS in these three respects falls short of ideal levels:

- a proportion of the morbidity in the population is
not treated,

- some patients are not treated in the most desirable
mode,

- patients are treated at less than ideal standards.

The degree of short-fall from the ideal levels varies between
types of patient and sectors of the HCS according to a set of
priorities and preferences which operate in the HCS.

The type of model that is suitable in this context is one
which simulates the way in which the HCS allocates resources by
means of a behavioural hypothesis which takes account of these



preferences and priorities. It is argued in an earlier paper
[4], which reviewed the literature on HCS resource allocation
models, that this behaviour simulation type of model is more
appropriate than either the classical econometric or optimi-
sation type. The formulation of a behaviour simulation model,
DRAM, is presented in the following chapter. The central behav-
ioural hypothesis is that the HCS allocates its resources so as
to maximise a utility function whose parameters can be inferred
from observations of past allocations. Like the models of
McDonald et al. in the UK [5] and Rousseau in Canada {[3], its
hypothesis implies that the actors in the HCS are striving to
attain some ideal pattern of behaviour within resource con-
straints.

2. MODEL FORMULATION

The model proposed here, DRAM, is a simplification of the
model of McDonald et al. [5]. Of the three main dimensions of
the HCS resource allocation process--patient numbers, treatment
modes and standards--which were described above and which are
included in the McDonald model, the initial, Mark 1, version of
DRAM includes only two--patient selection and standard attain-
ment. Thus DRAM Mark 1 can be applied to only one mode of treat-
ment at a time. However one of the advantages of DRAM Mark 1 1is
that its computing requirements are relatively light (for reasons
explained in the next chapter) so that it can be readily imple-
mented on different computers without using elaborate software
and so could be relatively easily applied in different countries;
(by contrast the McDonald model, in its current form, requires
relatively sophisticated software and a large computer in order
to solve the non-linear programming formulation). Being more
simple this model is also more transparent. Keyfitz [6], among
others, has argued persuasively that with a transparent model
the user can gain an insight into the workings of the model and
is then more likely to have confidence in its results than with
a "black box" model. It is planned, as explained in Chapter 6,
to develop further versions of DRAM which will both retain some
of the computational simplicity of DRAM Mark 1 and include the
third dimension of resource allocation--mode selection--which
is missing from DRAM Mark 1.

To simplify the exposition, DRAM will be presented here in
terms of application to the acute hospital in-patient sector,
but this application should be regarded merely as an example.
The essence of the model is the concept of the HCS achieving
an equilibrium by balancing the desirability of treating more
patients of one type against treating more of other types and
against the desirability of treating each type patient at a
higher average standard. Since this concept is equally valid
for many other HCS sectors (e.g. out-patient treatment) and for
several resources within each sector (e.g. physicians, beds,
nurses), DRAM is offered in the belief that it is widely appli-
cable.




The way in which the HCS achieves such an equilibrium has
been extensively researched. One finding, which has been so
frequently obtained (e.g. [7,8,9]) that the accumulated evidence
for it is by now overwhelming, is that for a wide range of clini-
cal conditions and specialties, both the number of admissions
and the average length of in-patient stay are elastic to the
supply of beds; that is to say the greater the supply of beds
the greater are both the numbers admitted and their length of
stay. Furthermore it appears that in none of the places studied
has the supply of beds reached the level at which in-patient
care is given to all individuals who seek it, at the ideal av-
erage length of stay.

The model, DRAM, represents how the HCS achieves an equi-
librium between numbers of patients and lengths of stay on the
one hand and bed supply on the other by means of a hypothesis
that the HCS attempts to optimise a utility function. Thus, Zf
this underlying hypothesis is sound, DRAM can not merely describe
past equilibria, as can classical econometric models, but it can
also, unlike classical econometric models, predict how the equi-
librium is likely to change in the future as a result of changes
in factors such as clinical standards, disease prevalence, and
the preferences and priorities operating in the HCS.

The formulation of DRAM, given below, is similar to that
of the model of McDonald et al. [5] but the methods for solution

and parameter estimation, given in the following chapters, are
different.

Definitions

Subscript

i = Patient category (e.g. disease type), i = 1,2,3,...,N.

Variables
X, = Hospital admission rate (cases per million population).
u, = Average length of stay (days).

1

Parameters

Xi = Ideal, maximum admission rate for patients needing
hospital treatment (to be defined more fully below).

U. = Ideal average length of stay (to be defined more
fully below).

¢ = Unit cost of a hospital bed-day.



Data

B = Number of hospital bed-days per million population
available for occupation, assuming a constant oc-
cupancy rate. (The model is applicable for the range
0 <B < g X,U0;.)

Hypothesis

The HCS chooses the X;, U; SO as to maximise a utility

function, Z, where

z =} g;(x;) + } x;h, (u)) (1)
i i
subject to
0 < X < xi , vyi ,
0 < u, < Ui , vyvi ,
and
) xju, =B . (2)

i

We will now define the components gi(xi) and hi(ui) of the

utility function. To do this we make the following assumptions:

i. gi(xi) and hi(ui) are monotonically increasing with

decreasing gradients.

ii. At the ideal admission rate, Xi, and the ideal length
of stay, Ui’ the marginal utility of increasing admis-

sion rate or length of stay equals the corresponding
marginal resource cost. This can be regarded as
completing the definitions of the Xi and Ui' An

important implication of assumptions (i) and (ii)
is that the HCS would not seek allocations for which
either x; > Xi or u, > Ui since in such cases marginal

utility is less than marginal cost.



iii. At the ideal length of stay, Ui' the contribution to

utility of treating extra patients of category i is
represented by the function gi(xi) alone, i.e.

h.(U.) = 0 and h.(u.) < 0 for u. < U.. Thus if we
it i 71 i i

consider the marginal utility of treating an addi-
tional patient at less than the ideal length of stay
we see from the additive nature of the utility func-
tion defined by equation (1) that there will be a
negative contribution, hi(ui)’ to be set against a

positive contribution, gi(xi); the values of the X5
and u which maximise total utility under the con-
straint (2) correspond to a point where these two
contributions exactly balance each other--this is
one aspect of the way in which we expressed the HCS
achieving an equilibrium between competing demands.
iv. The elasticities of admission rate, X; and length
of stay, u; ., with respect to marginal utility are
constant; let us denote the elasticities of the X,
by Ei and of the u; by Fi. The optimisation model

will lead to a solution in which the marginal utility
of treating additional patients or of increasing

length of stay equals the corresponding opportunity
cost. Thus we can also regard the Ei and the Fi as

the elasticities of the X4 and the uy with respect

to opportunity cost.

Let us now define the function gi(xi)' From assumption

(iv) we have

d(log x.)
= = -E, H
d(log giixi)) i

therefore

gi(xi) = Aix. .

To ascribe an appropriate value to Ai, the constant of integra-

tion, we invoke assumption (ii). Thus, since the marginal re-
source cost of treating an extra patient is CUi’ we have



g;(Xl) = cU ’
1/E,
A. = cU.X. '
i i
N -1/Ei
sk = oo (h
gi(xi) = CUi(Xi) .

Hence, except for a constant of integration which is not rele-
vant to what follows, we have

1—1/Ei

CUixi xi
gl(x]_) = 1T - 1/E. 1/El (q) - (3)

We can define the function hi(ui) in a similar way. From

assumption (iv) we have

-1/F.
h{(u.,) = B,u. T,
1 1 1 1

To determine the constant of integration, Bi’ we again

invoke assumption (ii). Thus, since the direct marginal resource
cost per extra day of stay is equal to c, we have

hi(Ui) =c .

From (iii) we have hi(Ui) = 0. Thus




-9~

1—1/Fi

. (ui
hy(u,) = - T 1-g i ()

The utility function is now fully defined. However we can
simplify the expression a little. Firstly note that c appears
as a multiplicative constant in each of the gi(xi) and hi(ui)

functions; by choosing to measure utility in the units of the
cost of a hospital bed-day we may divide through by c. Secondly
it is convenient to replace the elasticity terms by constants

oy and Bi where

and

™
[]

-(-h)

Since the E; and F, are expected to lie in the range between
zero and unity the ay and Bi will have positive values. The

model formulation is now complete and can be written as follows:

Choose the X; and u; to maximise the utility function, Z,

where
2 =) 9;(x;) + ] x;h(u) , (n
1 1
and
-0,
XU, (% .
1 1

and
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i
Ul ui
hl(ui) = 'B— 1 - (U—> ’ ¥ 1 ' (6)
i i
subject to
0 < x, < X, , ¥ i ,
i i
0 < ul < Ui ’ ¥ 1 B
and
] x.,u, =B . (2)
i’i

i

We have now formulated a model whose function is to
stmulate how the HCS allocates a given quantity, B, of hospital
bed-days. The user of the model has to supply an input value
for B and the model outputs, the X and us . then constitute a

prediction of the consequent HCS resource allocation behaviour,
conditional upon certain assumptions about the nature of this
behaviour. By running the model a number of times with differ-
ent values for B, the user can examine the consequences of a
number of planning options for hospital bed supply. Initially
at least, we regard the model parameters--both the ideal allo-
cations, the Xi and Ui’ and the priority power parameters, the

oy and Bi——as being properties of the behaviour of the actors

in the HCS and not under the direct control of the HCS planner.
Thus although we have adopted a hypothesis that the behaviour
of the actors in the HCS is of an optimising nature, we do not
assume that their objective function necessarily corresponds to
any objective function that the HCS planner might have. From
the point of view of the HCS planner and the model user, the
model is therefore of a simulotion type even though, as we shall
see in the next chapter, optimisation techniques are needed to
compute the simulation.

3. SOLUTION OF THE MODEL

In this chapter we describe a method for computing the simu-
lated HCS behaviour, in other words a method for determining the
values of the Xy and uy that maximise the utility function defined

by equation (1) for a given value of hospital bed supply, B.
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Computationally speaking this is clearly an optimisation
problem. The method presented below exploits some analytical
features of the model DRAM and employs the Lagrange Multiplier
technigue. The computations can be performed swiftly by a
fairly simple Fortran programme which can easily be transferred
from one computer installation to another. By contrast the
McDonald model [5] employs a sophisticated non-linear mathe-
matical programming algorithm which makes relatively heavy
computational demands that few computer installations can
satisfy. On the other hand the Mark 1 version of DRAM that is
presented here provides a less complete representation of the
HCS resource allocation process than the McDonald model. How-
ever it is hoped in the future to develop further versions of
DRAM that will provide as complete a representation of the
resource allocation process as the McDonald model and yet retain
the computational advantages of the method described below for
DRAM Mark 1.

In the normal way the constrained maximisation can be re-
written as an unconstrained maximisation using the Lagrange
Multiplier, A:

Maximise L = } gi(xi) + 7 x.h(uy) + A(B -3 xiui)
i 1 i

(7)
The optimality conditions are

W=O' vyi , (8)
and

Lo, wvi . (9)

i

From (9)

xihi(ui) - x, =0 ,

hi(ui) =X , since x5 > o ,

AVALFRAD)

u, = Uik . (10)
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From (8)

gi(x,) = Aag - h (u))

-(ai+1) y "

X, -1/(B.+1) U, u. B./(B.+
U(—-l—) = AU, A * gt AT ,
1\ i i

-(a,+1)

X. B./(B.+1)

(X—l) =61—[(B.+1>A1 i -1] ,
i i 1
-1/(ai+1)
1 By/(B;+1)
x, = X.(— | (B, + 1)) -1 . (11)
i 1 Bi i

A is obtained from substituting (10) and (11) in (2}, which
gives f(A) = 0 where

1/(ai+1) —1/(ai+1)

£()\) = -B + § X, U.B. . ' (12)
i

111 1

and

(o, +B.+1)/(B.+1) (a.+1)/(B.+1)
6. = (B, + Na 1 1 - 1 1
1 1

(13)

We now have in (10) and (11) analytic expressions for the
variables X, and uy in which the only unknown is X. To find X

we merely need to solve f(\) = 0. This cannot in general be done
analytically, but it is readily amenable to numerical solution
by the Newton-Raphson procedure. To prove this we need to ob-
tain an analytic expression for £ ()) and to demonstrate that
£(}) and £7(A) have suitable properties in the range of X which
is of interest.

First we recall that we are searching for solutions in
the ranges given by
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From inspecting (10) and (11) we see that these ranges imply
A > 1.

From (12) and (13) we may obtain the following analytic
expression for f£7()):

X.U, 1/(a.+1) -(a,+2)/(a.+1)
. _ ii i i i
£7()) = - 2 TTRES)] B 64 6, » (1)
i i
where
do.
_ i
% = &
a./(B.+1) o, + 1 (o.-B.)/(B.+1)
_ i i _ i i "i i
= (ai + Bi + 1) E;_I_T A
a./(B.+1) a, + 1 -B./(B.+1)
= 1 1 _ 1 i i
= A {ai + Bi + 1 E;_I_T A }

(15)

We can now establish that f(X) and f£°(A) have the proper-
ties required for using the Newton-Raphson process. First we
note that f£(A) and £°(X) are both continuous in the range A 2 1.
Second it can be observed, from (14), that £°(X) is negative
throughout this range since for X 2 1 both ¢i(k) and Bi(k) are

positive for all i (see (13) and (15)). Third, recalling the
fact that the model is applicable for B < z XiUi, we see from

i
(12) that f£(1) > 0. From these three facts it follows that
there is only one root, a real one, to £(A) = 0 in the range
A 2 1, and that this root can be found using the Newton-Raphson
process.

Accordingly a small computer programme has been written
to solve equation (12) by the Newton-Raphson method; it is
described in a separate paper [10]. Computational experience
[10] has shown that a good solution can be obtained in a small
number of iterations over a wide range of parameters and starting
values.
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4. PARAMETER ESTIMATION

In order to run the model we require values for the
following parameters:

- the X and Uy the ideal admission rates and lengths

of stay:

- the oy and Bi, the power factors of the functions

gi(xi) and hi(ui)‘
Three possible situations are considered in this paper:
Case 1: Exogenous estimates available for all parameters,

Case 2: Exogenous estimates available for none of the
parameters,

Case 3: Exogenous estimates available for the Xi and Ui

but not for the oy and Bi.

Although we need to consider Case 1 because of its theo-
retical importance we shall argue that it is unlikely to be
relevant in practice. Case 2 describes the practical situation
we expect to encounter in those countries where the HCS does not
have a strong degree of central planning. Case 3 is relevant
for those countries which do have a strong degree of central
planning of the HCS; here we may find that pilanning norms exist
which can serve as appropriate values for the Xi and Ui‘

This chapter is mainly concerned with describing methods by
which parameter values may be estimated for Cases 2 and 3 from
certain empirical data on past resource allocations in the HCS.
The computations for these methods can be carried out by simple
Fortran programmes. For the convenience of the model user the
programmes for parameter estimation have been incorporated with
the programme for solving the model, for given parameter values,
which was described in the previous chapter. Thus the corporate
programmes take the empirical data on past allocations as part
of their input set and provide the model solution, the simula-
tion results, as their output; the computed parameter values
are, in effect, intermediate quantities within the corporate
programme. Some illustrative runs of these programmes are given
in the following chapter using empirical data from England. A
complete user's guide to the programmes is given in a separate
publication [10]. We will now consider the process of parameter
estimation for each of the three cases.
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Case 1

Exogenous estimates of the Xi may be obtainable from a

combination of morbidity estimation and expert opinion on
hospitalisation rates, and estimates of the Ui from clinical

opinion. Indeed in some countries where there is a strong
degree of central planning in the HCS estimates of this type
are used within a formal planning process, as described in
Gibbs [2].

It is more difficult to see how exogenous estimates of
the oy and Bi might be obtained. It might be possible to esti-

mate the utility functions gi(xi) and hi(ui) directly by subjec-

tive judgements using methods such as those employed by Keeney
and Raiffa [11]. However, even if it were possible to obtain
estimates of all these parameters by means of subjective judge-
ments, the validity of using them in practice is open to ques-
tion. The problem is thet these subjective judgements define
the utility function of the individual giving the judgements
and there is no reason to suppose that this will correspond to
the utilety funection of the HCS. Thus the results of running
the model with parameter values of this type will describe a
theoretical allocation of bed~days that is optimal from the
individual's point of view but this will not, in general, cor-
respond to the resource allocation behaviour of the HCS in
practice. Such results would only be relevant for HCS planning
if the user of the model had good reason to believe that either
(a) the subjective judgements corresponded to the prevailing
preferences and priorities in the HCS or (b) that the prefer-
ences and priorities implied by the subjective judgements could
be implemented in the HCS in place of the prevailing ones.

Accordingly we will examine Case 1 no further and turn our
attention to Cases 2 and 3 which describe situations which are
likely to be more relevant in practice.

Case 2

Here we assume that in its past resource allocations the
HCS has optimised a utility function of the form defined in the
previous chapter. We describe a method, based on this assumption,

by which values of the parameters of the function--the ol Bi’

Xy and U;-~can be inferred from empirical data on past alloca-

tions. With such parameter values we can then use the model to
generate predictions of how the HCS would allocate resources in
the future for different levels of aggregate resource availabil-
ity; such predictions are conditional upon the prevailing pref-
erences and priorities in the HCS remaining unchanged. 1Illus-
trative examples of using the model in this way are given in

the following chapter.
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In this section we start by defining a set of empirical
resource allocation data. We then derive equations which relate
the model parameters to this data; these equations define a set
of parameter values which is consistent with the empirical data.
Finally we describe an algorithm for solving the equations and
producing the required parameter values.

Data for Case 2

Let us consider a geographical region with constituent sub-
regions and let us suppose that we can observe, for a given time
period, the admission rates, xi, and the average lengths of stay,
u, . for each sub-region. From these observations we can compute
the corresponding quantities for the region as a whole:

X, = regional admission rate for category i;

Gi = regional length of stay for category i;
B = regional aggregate bed supply;

and these quantities have the natural property

B=J X3 - (16)
i 1

Let us now define the following elasticities:

Y; = elasticity of admission rate, X for category i
with respect to aggregate bed supply;
n; = elasticity of average length of stay, u, . for

category 1 with respect to aggregate bed supply.

Thus, in terms of the model,

d(log xi)
Yi T d(log B) (7

and

d(log ui)

"i T &(log B) (18)




-17-

Now estimates, ?i and ﬁi’ of these elasticities may be obtained

from cross-section analysis of the sub-region data. For example
Feldstein [9] obtained such estimates from English hospital data
in 1960 using the following types of regression equation (having
previously experimented with other specifications):

Il

Y. log B + constant

log X i

and

ﬁ. log B + constant .

log u, i

Some illustrative elasticity estimates, based on some of
Feldstein's results, are shown in Table 1.

Table 1. Elasticities of hospital admissions and lengths of stay
with respect to total bed supply* for England, 1960,
for certain diseases (adapted from Feldstein [9]).

Elasticity of:
Disease
Admissions* per Year Averade Stay
Varicose Veins 0.78 0.62
Haemorrhoids 0.70 0.44
Ischaemic Heart** 1.14 1.08
Pneumonia 0.71 0.23
Bronchitis 1.13 0.05***
Appendicitis 0.05%** 0.31

*Per thousand population.
**Excluding acute myccardial infarction.

***The values obtained by Feldstein for these elasticities were negative but
not significantly different from zero. Since negative elasticities are
somewhat inplausible in this context these results have been interpreted
as indicating that the true values for these elasticities are close to
zero but positive. For the purposes of the calculations in this paper
they have been assigned the value of 0.05.
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Case 2: Equations for Parameter Estimation

We now derive equations which relate the values of the
model parameters to the empirical data defined above. First
we derive equations relating the oy and Bi to the empirical

estimates ?i and ﬁi. From (12) we have

1/(ai+1) -1/(ai+1)

£(\) = -B + ) X.U.B. ¢

: 111 1 (12)
1

Therefore at the optimum, where f(A) = 0, we have
B =F(2) ,
where

1/(ai+1) —1/(ai+1)

F(A) = Z X;U0,8; ¢4 (19)
1

and the expression for ¢i in terms of X is given at (13). Now,
== = F () .

But we see from (12) and (19) that F"(A) = £7°(A). Therefore

dB _ _.
a = ;o
d{log B) _ 1 , _.
Crumil S
dx _ B
d(log B) £ (3} - (20)

We can now express the Yi and nj in terms of the ai and Bi.
From (18)
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d(log ui)

- . dx
i = ax d(log B)
From (10) and (20)
= 1 . B
ni = - (Bl ¥ 1) )\f‘()\) ’ (21)
and from (17)
d(log xi) ax
Yi < an ' d(log B) °
Therefore from (11)
-1/(B,+1)
1
o BiA . 1 . B
i~ (a, + 1) B./(B,+1) £7())
* [(si+1)xl * -1]
B.
= - = ! . B ) (22)
o, * 1 —Bi/(8i+1) AET(X)
Bi + 1 = X

If we have the empirical estimates ?i and ﬁi of regional

elasticities at the current regional average aggregate bed
supply, B, we can use equations (21) and (22) to derive ex-
pressions for a; and B,- Let

=y o (23
Then from (21)
B, == -1 , vi o, (24)
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and from (22)

1T, ¥ i . (25)

a - py
i —Bi/(Bi+1)>

Turning now to the values of parameters Xi and Ui we may

derive equations relating them to the observed regional quanti-

ties, the X5 and Uy using the inverses of equations (10) and
(11):

_ /B

U. = u.

i i , Vi (26)

1/(ai+1)

B./(B.+1)
- ¥ i i .
i = Xi{g—i |i(81 + 1) A - 1]} ’ ¥ 1

We now have the required equations--(23) through (27)--re-
lating the model parameters which are to be estimated~-the asy

»
|

(27)

Bi, Xi and Ui——to empirical data--B and the Yir Ny xi and u; .

Case 2: Algorithm for Parameter Estimation

We now describe a procedure for estimating the model param-
eters using the eguations described above. The procedure is
based on the requirement that the parameter values should be
such that the consequent behaviour of the model is consistent
with the empirical data. In other words it is required that if
bed supply is set to the level B then the model solution should
be given by

X, = X, and u, = u., , vyi , (28)

and that the response of the model solution at this point to
perturbations in bed supply should be consistent with the
empirical elasticity data, i.e. that if the bed supply is
perturbed by a small amount 6B where 8B = o(B) then the per-
turbations, 6xi and 6ui, in the model solution should satisfy

the following:
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[P
2oy, 8B hrotn . Vi,
— A
X. B

1

(29)

su.

1o, %8 4 4o(1)) v i
— P =
ui B

We note that the above mentioned requirement--that the
model output should be consistent with the input data--can only
be satisfied if the data represent a feasible model solution;
this leads to two conditions which the data must satisfy:

I x,u, =B , (16)
i
) ilﬁl(Qi + ﬁl) =B (30)
1

The derivation of these conditions is given in Appendix 1, al-
though (16) has_already been noted in connection with the source
of the data on e Uy and B. (It is possible that because of

measuring errors and other reasons the input data will not pre-
cisely satisfy (16) and (30); in this case the parameter esti-

mation procedure will be spuriously prevented frocm converging.

Accordingly the computer programme incorporates checks that the
data satisfy (16) and (30). In the case that (30) is not sat-

isfied within the necessary margin, a procedure is available in
the programme for scaling the input elasticity values by the

multiplicative factor B|] xiui(§i + ﬁi)}_1 so as to remedy the
i
situation.)

Let us now consider how to solve equations for estimating
the model parameters from this data. We have 4N + 1 equations
--(23) to (27)--for 4N + 3 unknowns--C, X, £”(X) and the X;r Ugr
oy and Bi (where N = the number of patient categories). Thus
two additional equations are needed to generate a unique solu-
tion. Let us consider two equations which, at first sight,
appear to be suitable. The first is obtained from the optimal-
ity requirement that f(1) = 0 where f()) is given by (12) and
(13); this gives us
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1/(a+1)
. X3U;B84
1
-1/ (ag+1)
(0, +8.+1) /(8. +1) (a.+1) /(8. +1) _
. [(Bl + 1))\ 1 1 1 _ )\ 1 1 ] =B .

(31)

The second is an expression for £°(A) in terms of X and the Xi’
Ui, oy and Bi, which can be derived from substituting (13) and
(15) in (14).

Unfortunately (31) and (14) add no definition to the equa-
tion system. Using equations (26) and (27) it is possible to
reduce equation (31) to the data identity given by equation (16).
Furthermore it can be shown that equation (14), in conjunction
with equations (23) to (27), can be reduced to the data identity
given by equation (30). (The proofs of these two results are
given in Appendix 1.)

Thus although we have 4N + 3 equations--(23) to (27), (31)
and (14)--for 4N + 3 unknowns--C, A, £°(}) and the Xi' Ui’ a;
and Bi——it turns out that only 4N + 1 of them are independent.
Thus there are two degrees of freedom in the equation system
and an infinite number of solutions. Accordingly the following
computational procedure was adopted:

i. Set C and X at arbitrary initial values.

ii. Using the input data on the §j, Ei’ §i and ﬁi and
equations (24) to (27), estimate values for the

arameters X., U., o, and B,.
p i’ Y1t i Bl

iii. With these parameter values the model can now be
used to simulate the allocation of any given bed
supply B”, using equations (10), (11) and solving
f(A) = 0 for the value B = B” by the Newton-Raphson
Method, as for Case 1.

Naturally the values of the parameter estimates obtained
by this procedure (in stage (ii)), depend strongly on the arbi-
trary initial values selected for X and C in stage (i). However,
and this is a most important result, the final outputs of the
model--the values of the Xy and uy obtained in the simulation

process in stage (iii)--are not sensitZve to the initial values
of X and C. For reasons given in Appendix 2 certain bounds on
the values of X\ and C can be defined a priori. If the initial
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values of X and C are restricted to vary within these bounds,
computational experience (described in Appendix 2) suggests that
the mean absolute variation in the output values (the X and ui)

will usually be about 0.1%. Since this is a high level of pre-
cision in the field of health services research the computational
procedure described above seems to be adequate for practical
purposes.

Case 3

We now consider the situation where estimates of the Xi and
Ui are supplied exogenously. As mentioned above, for Case 1,

they might be obtained during the formal planning process in
those countries where there is a strong degree of central
planning in the HCS. Given such estimates of the Xi and Ui

we now need to estimate only the oy and Bi; we describe below

a method by which this may be done using empirical data on
elasticities of the same type as described for Case 2 above.
However in this case we encounter some difficulty because we
are using two completely different sources of data. The esti-
mates of the X.l and Ui have a prescriptive quality since they

involve a degree of subjective judgement about what the HCS
ought to be doing, either at present or in the future; by
contrast the elasticity data are descriptive of what the HCS
has done in the past. If we then run the model with such
parameter estimates to predict future resource allocations we
need to assume that the behaviour of the HCS will be consistent
with both the prescribed ideal allocations and the prevailing
elasticities. From the behavioural point of view this assump-
tion is tenable if the prescriptive estimates of the Xi and Ui

are based on a realistic understanding of the behaviour of the
actors in the HCS. It seems reasonable to assume that there
are several countries where the HCS has a strong degree of
central planning and where the prescriptive quantities, or
planning norms, are indeed derived from a careful analysis of
HCS behaviour; for example Popov [12] has described how such an
analysis is performed within the central planning of the HCS in
the USSR. 1In the belief, therefore, that it is likely to be
relevant in several countries we now describe a procedure for
estimating the parameters ay and Bi.

The following procedure was considered initially:
i. Set C and X to arbitrary initial values.

ii. Using data on B and the ?i and ﬁi and equations (24)
and (25) estimate values for the parameters oy and
B..

1
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iii. Using the estimates of oy and Bi from (ii) and the
exogenous estimates of the parameters Xi and Ui solve
equations (31), (14) and (23) for A, £7(A) and C.

iv. Repeat (ii)} and (iii) until convergence--i.e. until
at the end of stage (1i) the current values of X and
the oy and Bi satisfy equation (31) to within a given

criterion. (Note that in this case, unlike Case 2,
equation (31) cannot be reduced to a data identity
because the Xi and Ui are supplied exogenously.) The

parameter estimation process is now complete.

v. With the parameter values so obtained the model can
be used to simulate the allocation of any given bed
supply B”, using (10), (11) and solving f(}) = 0.

This procedure is less demanding of empirical data on
resource allocation than the procedure for Case 2. It requires
data on the elasticities Y; and n; but not on the regional allo-

cations Ii and Ei; thus the latter data can be used to validate

the model's performance, as shown in the next chapter.

Unfortunately the parameter estimation part of this proce-
dure does not in general converge because the combination of
prospective data on the Xi and Ui and descriptive data for the

Y. and ﬁ. is not, in general, consistent with any feasible model
i i

solution. To understand why this is so and to remedy the situa-
tion we need to examine stage (iii) in more detail. 1In this
stage values of B and the Xi' Ujr 0y and Bi are given and the
equation £()) = 0 is solved by the Newton-Raphson method. We
can regard the computations in this stage as being equivalent
to the situation for Mark 1 where the parameters are supplied
exogenously and the model is used to simulate the allocations
of B bed-days; a solution, X, to the equation f(X) = 0 is ob-
tained and simulation results xi and ui are calculated. However

such results do not in general satisfy the condition

ul(y, +n.) =B
g x{u{(y; + n;) =B

By similar arguments to those given in Appendix 1 it can
be shown that unless the elasticity data satisfy this condition
there are no values for the parameters o5 and Bi that are con-

sistent with the data; hence the lack of convergence of the
procedure described above. The data inconsistency is a direct
consequence of the fact we observed above, that for Case 3 the
values of the Xi and Ui are supplied from one source, whereas
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the elasticity data ?i and ﬁi are obtained independently from

another. Since such mixed data do not, in general, constitute
a feasible solution to the model the only way to proceed is to
adjust the data until it does constitute a feasible solution
and then to fit the model parameters to this adjusted data, as
with Case 2. We stated above that our discussion of Case 3 is
based on the premise that the estimates of the xi and Ui are

derived from a careful prospective analysis of HCS behaviour
whereas the estimates of elasticities are derived from obser-
vations of past behaviour. This suggests that it is more
reasonable to adjust the latter data rather than the former.
Accordingly we propose below a means of scaling the elasticity
data so that, together with the data on the Xi and Ui' it is

consistent with a feasible model soluticn. 1In practice it is
probably reasonable to employ such a scaling procedure provided
that the consequent alteration of the elasticity data is not
very large. If however large alterations were required within
this procedure then one would doubt the validity of using the
data in this manner.

The elasticity data, the Y and n;, may be scaled by a

multiplicative factor, r, given by

(32)

and xi and ui have the meanings described in the preceding

paragraph. This scaling can be performed in stage (ii) for
each iteration after the first. (Note that for Case 2 a simi-
lar scaling procedure is required only at the initiation of

the procedure.) The same effect can also be achieved, and more
conveniently from a computational point of view, by computing
the new value of C at the end of stage (iii) by the expression

5 i“it i i
¢ = ET (N (33)
rather than
_ -B
¢ =30y (23)

With this modification the procedure is found to converge
rapidly.
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As with Case 2, the equation system is under-defined but
in this case there is only one degree of freedom, whereas with
Case 2 there are two. This occurs because, in Case 3, equation
(31) cannot be reduced to a data identity since the X, and U,

are supplied exogenously. Thus for Case 3 we have 2N + 2 equa-
tions--(23), (24), (25) and (31)--for 2N + 3 unknowns--C, A,
£7(A) and the oy and Bi. Computational experience (described
in Appendix 2) has shown that the final model outputs, the X,
and u;, are fairly insensitive to the arbitrary initial values

for C and A. Thus, for the same reasons as for Case 2, the
computational procedure suggested above is considered adequate
for practical purposes.

5. ILLUSTRATIVE MODEL RUNS

To illustrate how the model can be used we shall examine a
hypothetical example of an HCS resource allocation situation--the
allocation of acute hospital bed-days in the South Western Region
of England in 1968 between patients suffering from six diseases:

- varicose veins:
- haemorrhoids;

~ ischaemic heart disease, excluding acute myocardial
infarction;

- Ppneumonia;
- bronchitis; and
- appendicitis.

To obtain the required input quantities we shall use hospi-
tal data for the 15 Hospital Regions of England for 1968 and the
elasticity estimates of Feldstein shown in Table 1. Illustrative
runs for Cases 2 and 3 are presented below.

Case 2

A~

The required input consists of data on the §i, Hi’ Y and

and B. For these illustrative runs the values used for the

X| 3>
[

iy Ei and B are taken from data [13] on the actual use of hos-

pital beds in the South Western Region in 1968. The elasticity
data are derived from the results of Feldstein, Table 1. The
full list of input data is shown below in Table 2.
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Table 2. Input data for illustrative runs of DRAM for Case 2.
‘ : : .
Patient Category | Mean Admission Rate | Mean Length of Stay | Elasticities
N X5 Yy Vs Ny
1. Varicose Veins 6.3 11.3 0.78 0.62
Haemorrhoids 4.1 13.1 0.70 0.44
3. 1Ischaemic
Heart Disease 4.6 10.2 1.14 1.08
4. Pneumonia 12.3 14.7 0.71 0.23
5. Bronchitis 11.8 27.4 1.13 0.05
6. Appendicitis 24.8 11.3 0.05 0.31
All Categories 63.9 17.1 - -

Total bed-days

used = B =

~1
X |
el
1}

Two illustrative runs for Case 2 are described below.
the first run the bed supply input,

figure B,

In

is set at a level,

800 bed-days, which is considerably below the level B (1094.2
bed-days per million population), which existed in the South

Western Region in 1968.
supply is set at a higher 1level,

the two runs are displayed below in Table 3.

Table 3.

In the second run the figure for bed
1200 bed-days.

The results of

Output from two illustrative runs of DRAM for Case 2.

Run 1: B = B0O bed- Run 2: B = 1200 bed-
days/million days/million
Pati t Cat
atien ategory Admission Av. Length Admission Av. Length
i Rate of Stay Rate of Stay
X, u, X, u,
i i i i
1. vVaricose Veins 5.0 9.4 6.7 11
2. Haemorrhoids 3.3 11.5 4.3 13
3. Ischaemic
Heart Disease 3.3 29.2 5.1 43.9
4. Pneumonia 10.0 13.7 13.0 15.0
5. Bronchitis 8.4 27.0 12.9 27.5
6. Appendicitis 24.4 10.3 24.9 11.6
All Categories 54.6 14.7 67.0 17.9
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Naturally both the admission rate and the length of stay
for each category increase from Run 1 to Run 2 as a consequence
of the increase in bed supply. However the amount of increase
varies considerably, in accordance with the values of the cor-
responding elasticities. For example, the admission rate for
appendicitis increases very little, from 24.4 in Run 1 to 24.9
in Run 2 (see Table 3); this is a direct consequence of the low
value of the elasticity for appendicitis admissions, 0.05 (see
Table 2). By contrast the admission rate for bronchitis changes
a great deal, from 8.4 in Run 1 to 12.9 in Run 2, because of the
relatively high value, 1.13, of the elasticity of bronchitis
admissions. For similar reasons the length of stay for bronchi-
tis increases very little between runs but the length of stay
for ischaemic heart disease increases a great deal.

Case 3

The required input consists of data on the Xi' Ui' Yi

ﬁi and B. The data for the elasticities was taken as before

from_the Feldstein results shown in Table 1. The value used

for B is set, as before, at the level, 1094.2, of actual usage
in the South Western Region in 1968. 1In a real application data
on the Xi and Ui would be obtainable from morbidity estimates

and clinical opinion, as described in the previous chapter.

Since such data were not available for this exercise, proxy
measures were used. These were obtained using data [13] for

the 15 regions of England and Wales in 1968; for each individual
parameter the highest figure from the 15 regions was selected.
For example the largest figure for pneumonia admissions per mil-
lion population is 12.8, from the North West Metropolitan Region,
and this figure was used for the parameter value, Xi' for pneu-

monia admissions. A full list of the input data is shown in
Table 4 below.

Table 4. Input data for illustrative runs of DRAM for Case 3.

Ideal Ideal Average
Patient Category Admission Rate Length of Stay Elasticities
i X, . Y n
i Yi A N3
1. Varicose Veins 12.8 15.0 0.78 0.62
2. Haemorrhoids 7.7 13.1 0.70 0.44
3. Ischaemic
Heart Disease 10.4 52.1 1.14 1.08
4. Pneumonia 21.0 19.7 0.71 0.23
5. Bronchitis 21.3 34.2 1.13 0.05
6. Appendicitis 24.8 10.1 0.05 0.31
All Categories 98.0 22.8 - -
Bed-day supply for which elasticity estimates apply = B = 1094.2
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With this data two illustrative runs of the model were
performed with bed supply, B, set at 800 and 1200 respectively,
as before. The results are displayed in Table 5 below. It will
be seen that they are somewhat similar to those of the illustra-
tive runs for Case 2. The similarity arises for two reasons:

i. the elasticity data is the same in both cases, and

ii. the observed mean regional allocation (the Ei and Ei),

used for the Case 2 runs, are, within fairly small
margins, consistent with the data on ideal allocations
(the Xi and Ui) used for the Case 3 runs and with the

elasticity data. 1In other words the proxy estimates
of the ideal allocations used here are, reassuringly,
reasonably consistent with the ideals ZmplZed by the
actual regional allocation data used for Case 2.

Thus if DRAM Mark 3 is run with the bed supply B set equal to
the value, 1094.2, used for B in the runs for Case 2 then the
outputs from this run are approximately equal to the corre-
sponding figures for mean regional allocations used for the
input data for the runs for Case 2. This can be seen in Table
6 where the results of this run are displayed.

Table 5. Output from two illustrative runs for Case 3.

Run 1: B = 800 bed- Run 2: B = 1200 bed-
days/million days/million
Patient Category Admission Av. Length Admission Av. Length
i Rate of Stay Rate of Stay
X, u, X, u,
i i i i
1. vVaricose Veins 6.4 9.1 8.5 11.4
2. Haemorrhoids 4.1 9.0 5.4 10.6
3. Ischaemic
Heart Disease 3.6 20.7 5.4 30.9
4. Pneumonia 11.3 16.2 14.7 17.6
5. Bronchitis 8.1 32.8 12.3 33.3
6. Appendicitis 23.7 7.7 24.2 8.7
All Categories 57.2 14.0 70.4 17.0
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Table 6. Output from run for Case 3 compared with data used for
Case 2 runs.

Data used for Case 2 I
Output from Case 3 run :
(actual regional al-
for B = 10,94',2 bed- locations for bed
days/million usage = 1094.2)
Patient Category
i Admission Av. Length Admission Av. Length
Rate of Stay Rate of Stay
*i vy *i Yy
1. Varicose Veins 7.9 0.9 6.3
2. Haemorrhoids 5.1 0.2 4.1
3. Ischaemic
Heart Disease 4.9 28.3 .6 40.2
4. Pneumonia 13.9 17.3 12.3 14.7
5. Bronchitis 11.2 33.2 11.8 27.4
6. Appendicitis 24.1 8.5 ’ 24.8 11.3
All Categories 67.1 16.3 ©63.9 17.1

For Case 3 it is possible to compare the output quantities,
X and u, . with the corresponding ideal quantities X, and U,

supplied exogenously. As can be observed from Tables 4 and 5,
the output quantities which vary little between runs because of
their low elasticities are closer to the corresponding ideals
than the quantities for which the elasticities are large. Thus
in both sets of results shown in Table 5 the admission rates for
appendicitis are close to the ideal level, 24.8, whereas those
for bronchitis are relatively far from the ideal level, 21.3.
Thus we can interpret a low elasticity, Y;r as implying high

priority for admission and vice versa. This situation is illus-
trated in Figure 2 which shows admission rate as a function of

bed supply for appendicitis and bronchitis. Even if bed supply is
low a high proportion of appendicitis cases are admitted whereas
for bronchitis, with a lower implied priority, the admission

rate is low and only rises as the bed supply is increased.

The response of average length of stay to changing bed
supply can be interpreted in a similar way. For example in the
results of both of the runs for Case 3, shown in Table 5, the
length of stay for bronchitis is close to the ideal level, 34.2,
quoted in Table 4; this is a consequence of the low elasticity,
0.05. By contrast the result for the length of stay for varicose
veins increases considerably from Run 1 to Run 2, as a result of
its relatively high elasticity, 0.62. This situation is illus-~
trated in Figure 3; in regions with a low bed supply the length
of stay for varicose veins will be much shorter than in regions
with high supply whereas the length of stay for bronchitis is
much less affected by bed supply. It is possible to interpret
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this situation, in the English context, as follows. In the case
of varicose veins it is often possible to discharge patients
after a stay as short as two days [14]. There is evidence [13]
from the English hospital service that this practice is more
common in regions where the bed supply is low than where it

is high, thus bringing the average length of stay down in the
former. By contrast there is less possibility for such practice
in the case of bronchitis because of the risk of relapse if the
patient is discharged early.

A
Admission Appendicitis
rate as 1 —+
fraction
of ideal -
admi ssion Bronchitis
rate:
X,
e
X,
i
| | » Bed supply
0 J T I B
low high
Figure 2. Admission rate as a function of bed supply.
Average 4
length of

stay as 1 T
fraction

of ideal Varicose Veins
length of
stay:
u,
_t
U,
1

| » Bed supply
Ll

1
B !
low high B

Bronchitis

Figure 3. Length of stay as a function of bed supply.
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6. FUTURE DEVELOPMENT OF DRAM

DRAM Mark 1, the version of the model described in this
paper, represents the allocation of one HCS resource (such as
hospital beds) within one mode of treatment (such as in-patient
treatment). In the future it is planned to develop more general
versions of the model, in particular:

- a Mark 2 version, to represent the allocation of
several resources within one treatment mode; and then

- a Mark 3 version, to include substitution between
alternative treatment modes.

The main preoccupation in this development work will be to try
to retain the computational convenience of the methods described
for DRAM Mark 1.

With DRAM Mark 2 the user would be able to explore a wider
range of planning issues than with DRAM Mark 1; rather than
merely study the consequences of changing the supply of one re-
source he would also be able to study the consequences of
changing the mix of resources within a service. For example
the hospital in-patient service could be represented as a mix
of different resources--beds, physicians, nurses, laboratories,
X-ray equipment, etc.--rather than as a single composite resource,
bed-days, as we have had to do for DRAM Mark 1. DRAM Mark 2
would not only be more useful from a planner's point of view,
but it would also be a more accurate model from the scientific
point of view since it would represent both how different types
of patient make different demands on each resource and how some
resources have a greater effect on admissions and length of stay
than others. For example Feldstein [9] and Prevett [15] have
shown that lengths of stay are much more elastic to the avail-
ability of physicians than to the availability of nurses.

Computationally it should not prove too difficult to
develop DRAM Mark 2. The change in formulation is fairly
simple. An additional subscript, k, to represent resource type
is introduced. The single constraint (2) in DRAM Mark 1 is re-
placed by a set of constraints

and terms of the form g E x;h. (u;,) replace the term § x;h, (u))
in the objective function (1). The problem can be solved as

before, using Lagrange Multipliers. However in this case there
are a set of multipliers, Ak (one for each resource), rather

than a single multiplier, A, to be determined.
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The scope and usefulness of DRAM Mark 3 would be even
greater since it would allow the user to examine the balance
between alternative modes of treatment (e.g. in-patient and
ocut-patient treatment) as well as the mix of resources within
a mode. The difficulty here will be to retain sufficient sim-
plicity in the formulation so as to allow efficient solution by
Lagrange Multipliers (and so avoid being forced to use large and
highly specialised computer programmes) while at the same time
capturing the essence of the problem of the balance between al-
ternative modes of treatment. Only future study will reveal
whether this difficulty can be overcome.
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Appendix 1

Restrictions on the Data Used in Case 2 and the Consequent
Degrees of Freedom in the Parameter Estimation Process

In Case 2 empirical input data are supplied for B and

the ii' ﬁi, Yi and ﬁi. From these, estimates are made of the

parameters~-the Xi’ Ui' a. and Bi--by the procedure described in

i
Chapter 4. This procedure is based on the proposition that the
model solution for the value B = B should be consistent with the
input data. Thus the data must itself be a feasible model solu-
tion. This gives rise to two restrictions on the data, as shown
below. It is then shown that these restrictions give rise to

two degrees of freedom in the parameter estimation procedure.

For a given bed supply, B, the model produces a solution,
the Xy and u., to satisfy the constraint

L x;u; =B . (2)

Thus the first restriction on the input data for the model is

] ®§, =B . (16)
1

Let us now consider how the model solution changes in
response to changes in the value of B. As before, let Y5 and

n; be the elasticities of the X and u,; with respect to B. From

(2) we have

( dug dxi

From the definition of Y5 and n; (see (17) and (18)), we

can show that



-36-

_ B
Yi T x. d&B
1
and
_B M
s T4, d

Substituting these in (32) we have

B + B

=1

~e

.u.n, X.u.v,
(xlulnl 1u1Y1)

i
therefore

g xiui(yi + ni) =B . (33)

Thus there is a second restriction on the input data

g _iEi(qi + ﬁi) =B . (28)

We will now show how these two restrictions on the data
cause two degrees of freedom in the parameter estimation pro-
cedure. One of the equations used in the procedure is

1/(a;+1)
X.U.B.,
i“iti

—1/(ai+1)
(a.+B.+1)/(B.+1) (a.+1)/(B.+1)
% [(Bl+ 1))‘ 1 1 1 -2 py 1 ]
(31)

By rearranging equations (26) and (27) we have
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-1/(B;+1)

U.A = (34)
1

o |

and

-1/(ai+1)

B./(B.+1)
1 i 1 -z

1

By substituting these equation (31) reduces to the data
identity represented by (16); this creates one degree of freedom
in the parameter estimation process.

Next consider another equation used in the procedure

ini 1/(ai+1) —(ai+2)/(ai+1)

£7(0) = -E TEI_:—TT By ®5 6, (04

where ¢i and ei are given by (13) and (15). Substituting (34)
and (35) in (14) we have

£7(x) = -] X.u.¢,; 6. (a, + 1) . (36)
i

From (13) we have

b, = A

i Bg. + 1 = X

1

(ai+si+1)/(si+1)( —si/(si+1)>

= ¢°. Thus we can write

m|m
>|e

We recall, see (15), that ei =

0 05 = 05 of
d log ¢i
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_eatBt g By (2841 /(BHD)
B.+1 B.+1
1
-8, /(8. +1)] "
x [go+1-2 F 7
1
_ ai+1 1 .\ Bi
T Bi+1 ( —Bi/(Bi+1)
(a;+1) | B;+1-2
Therefore from (23), (24) and (25)
iy a; + 1 AMETOR; AET() Y,
¢, 8, = - — - —
i 71 A B B

£7(x) = £7(A) Z xiui(yi
i
E xlul(yi + nl) =B .

Thus equation (14) reduces to the
and a second degree of freedom is
estimation process for Case 2.

data identity given by (28)
created in the parameter
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Appendix 2

Suitable Initial Values in the Parameter Estimation Process

The parameter estimation process for Cases 2 and 3 are
described in Chapter 4. For each Case the stage (i) consists
of setting arbitrary initial values for X and C. 1In this
Appendix suitable ranges for these initial values are derived.
Within such ranges the final outputs of the model are shown to
be insensitive to the initial values selected.

First of all, it can be shown, by reference to equations
(24) and (25), that the smallest value, Cmin' of C which guar-
antees positive values for each of the oy and Bi in stage (ii)
of the parameter estimation process is given by

Chin = M?x(yi + ni) . (42)

In order to set an upper bound for C we need to consider plau-
sible upper bounds for the oy and Bi.

We recall, from Chapter 2, that the oy and Bi are related
to the elasticities Ei and Fi of admissions and length of stay

with respect to marginal opportunity cost (and, equivalently,
marginal utility)

Substituting these in (24) and (25) we have

=

= CF,
i

and

-1

<>

=B,/ (B;+1)
= 1 1
= CEi8i<Si + 1 -2 )

~ CEi for a wide range of values of Bi >0 and A > 1.
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On a priori grounds it is reasonable that the hypothetical elas-
ticities Ei and Fi with respect to opportunity cost should be

similar in magnitude to the empirical elasticities ?i and ﬁi

with respect to bed supply. This implies a value of C that is
within an order of magnitude of unity.

Using the test problem described in Chapter 5 some
sensitivity analysis was performed. The initial value of C
was set first at the minimum value, Cmin’ given by (42), which
was 2.22, and second at the value 10.0. It was found that
the sensitivity of the final model outputs, the Xy and u,

to this change was about 0.1% for Case 2 and 1% for Case 3.

It was concluded that any value of C between Chin and 10.0 would

be suitable for most problems but the value, C , given by (43),

min
being closest to unity, would be most suitable. Since the largest
of the elasticities ?i and ﬁi are rarely much in excess of unity,

the application of (42) will typically elicit a starting value
for C that is of the order of two.

From this definition of a suitable initial value for C we
may deduce suitable values for A. 1In Case 2 we assume that we
have no information about the ideal quantities given by the
parameters X, and Ui' We wish to use the model to explore the

consequences of setting the bed supply B to a number of different
values. Let us suppose that the largest conceivable value of
interest is given by

B =28 , (43)

i.e. a bed supply of dcuble the current regional value. It is
also necessary in solving the model that the parameters Xi and

U; should satisfy
B <j XU, . (u4)
i

The folloﬁing equality satisfies both conditions:

L X;U, = 2B . {(u5)
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Computational experience with Case 2 suggests that the
estimates produced for the X and Ui depend on the starting

values for A and C in a manner given, approximately, by

} XU, = BA1/C
i 1 1

Thus, from (45) we have

W x2

therefore

X =2 . (46)

It is suggested that equation (46) be used for assigning a
suitable initial value for A. Since the most suitable value for
C is of the order of two, the application of (46) will result in
a starting value for X that is of the order of four.

Sensitivity analysis using the test problem described in
Chapter 5 has shown that if the starting value of X is changed
from 2.0 to 10.0 the sensitivity of the final model outputs,
the x, and u; . is of the order of 0.1% for Case 2 and only

0.01% for Case 3. Thus the procedures described above for
setting the initial values of C and A are considered satis-
factory for practical purposes.
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