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PREFACE

One of the roles of Systems and Decision Sciences at IIASA is to pro-
vide tools for studying sophisticated control systems. Accordingly, the task
“Nondifferentiable Optimization” has been created to study modern methods
in the field of mathematical programming, and to implement efficient mini-
mization codes.

This paper describes the role of nondifferentiable optimization from
the point of view of systems analysis, briefly describes the state of the art,
and gives a new minimization method.

The author considers that this method is a first result of the Nonsmooth
Optimization Workshop held at IIASA from March 28 to April 9, 1977,
during which many ideas were exchanged so that the method could see the
light of day.
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SUMMARY

Nonsmooth optimization is a field of research actively pursued at
ITASA. In this paper, we show what it is; a thing that cannot be guessed
easily from its definition by a negative statement. Also, we show why it
exists at IIASA, by exhibiting a large field of applications ranging from the
theory of nonlinear programming to the computation of economic equilib-
ria, including the general concept of decentralization. Finally, we show
how it can be done, outlining the state of the art, and developing a new
algorithm that realizes a synthesis between the concepts commonly used in
differentiable as well as nondifferentiable optimization.

Our approach is as non-technical as possible, and we hope that a non-
acquainted reader will be able to follow a non-negligible part of our develop-
ment.
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ABSTRACT

In Section 1, we give the basic concepts underlying nonsmooth
optimization and show what it consists of. We also outline the classical
methods, which have existed since 1959, aimed at optimizing nondifferen-
tiable problems.

In Section 2, we give a list of possible applications, including accelera-
tion of gradient type methods, general decomposition--by prices, by
resources, and Benders decomposition-minimax problems, and computa-
tion of economic equilibria.

In Section 3, we give the most modern methods for nonsmooth
optimization, defined around 1975, which were the first general descent
methods.

In Section 4, we develop a new descent method, which is based on

concepts of variable metric, cutting plan approximation and feasible
directions. We study its motivation, its convergence, and its flexibility.
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Nonsmooth Optimization and

Descent Methods

1. BASIC CONCEPTS

1.1. The aim of "nonsmooth optimization" is to provide algorithms
which minimize objective functions f whose gradient is not con-
tinuous. In such situations, the known classical methods fail

to provide even a gross approximation of an optimum. This is
rather obvious for the gradient type methods (steepest descent,
conjugate gradient, quasi-Newton,...) but it is also true in
general for methods which do not compute derivatives (Hook-Jeeves,

Gauss-Seidel,...) and this fact is perhaps less well known.

1.2. Since the gradient is not continuous, there must be some
points where it is not defined. However, we will suppose that

f is smooth enough such that, even if the gradient does not

exist at a point x, it does exist at some point x +dx arbitrarily
close to x. It is known that convex functions are smooth enough
in this sense, and, for simplicity, we will restrict our develop-

ment to the convex case.

1.3. Thus, we suppose that, given a point x, it is possible to
compute the value f(x) (which is continuous) together with some
vector, which we call g(x), which is either the gradient Vf (x)
if it exists, or the gradient at some point infinitely close

to x. A simple example shows how this statement can be inter-

preted:

In one dimension, let f be defined by

x“ -1, if x> 1 .



The 1 -vector g{x) will be 0 if x< 1 and 2x if x> 1. At the
point x =1, there is no gradient, but we can take 0 or 2 as g{1).

Thus, g(x) can, for example, be defined as

0, 1if x < 1
gi{x) =

2x, 1if x > 1

Note that g(1) =2 is not a gradient of f anywhere, but it is the
limit of Vf(x) as x+¥ 1. Of course, from the discontinuous nature
of the gradient, the process for computing g{(x) has to be highly
unstable (small changes in x may induce large changes in g(x)).
This is the reason why classical methods fail, and nonsmooth op-
timization is precisely aimed at eliminating this bad effect.

The vector g(x), thus computed, will be called a subgradient of

f at x.

To sum it up, nonsmooth optimization has nothing to do with
derivative-free methods, but rather with special devices added

to gradient methods for ensurinc convergence.

1.4. For minimizing such a nondifferentiable function, the sim-
plest method is the so-called "subgradient optimization", largely
developed in the Soviet Union (see [15] for a review of the lit-
erature). It consists of constructing iteratively a sequence

{xn}: at each X , we compute g(xn) and we make a step tn > 0 along

the normalized direction-—g(xn):

Xn+1 = Xn - tng(xn)/lg(xn)|

Generally, the stepsize is chosen "off-line", for example:

t =
n

S|=
3
o

hol

where tO >0 and p is a positive number slightly smaller than 1.



Although this kind of method is quite simple (5 minutes are
enough for anybody to implement it on a computer), this advantage
is paid for by a serious drawback: there is no reasonable stop-
ping criterion; one must stop the iterations when the stepsize t,
has become conveniently small, and one has no information on the
optimality of X - Moreover, the seauence of objective values
{f(xn)} is not monotonically decreasing. Yet, a monotone decrease
of the objective would be a very nice property, which would pro-

vide at least two safeguards:

- Stability: the requirement f(x ) < f(xn) prevents X

n+1
to diverge or to cycle.

- Emergency stop: if the method fails for some reason
(such an eventuality must unfortunately never be neglected)
then one has to stop the iterations "by hand". 1In that
case, one is at least assured of having made progress if
the method is descent-wise: the last iterate is in par-

ticular better than the first one!

1.5. If it is desired to make progress at each iteration
(f(xn+1) <f(xn)), one must spend much time computing a direction
of descent because one must take into account all the possible
values for g(xn). More precisely, X, being given, construct a
sequence y; > X_ such that Vf(yi) has a limit (this is possible:
see 1.2). Consider all such sequences {yi} and the set M(xn)
made up of all the corresponding limits of the gradients. Note
that M(xn) is just a mathematical concept, and it is generally
impossible to know it explicitly.

Then it can be shown that a direction dn issuing from X, is

a direction of descent (i.e. such that it is possible to find

tn >0, such that f(xn-+tndn) <f(xn)) if and only if

(dn,g) < 0 , for all g € M(xn) .

In some special cases, studied by Demjanov [2], M(xn) is a

finite set {91,...,gk} that can be constructed explicitly. Then



it is possible to find a descent direction, which has to satisfy

a set of k inequalities. It turns out that, among all the descent
directions, there is one which is particularly imoortant: the
opposite of the projection of the origin onto the convex polyhe-
dron generated by M(xn), which plays the role of the gradient

in the nondifferentiable case. This direction is therefore the
solution of the quadratic program:

min |d|?
k

d=-1 M9 9; € Mx))
i=1

k

i£1 Ay =0 Ay 200

Therefore, this program is of importance for computing a descent
direction.

1.6. Another o0ld method is the so-called cutting-plane method
([11,[7]1). It is based on the following observation: from con-
vexity, we know that

f(x) > f£(y) + (g(y),x-y) for all x and y

Therefore, we can write f (x) under the sophisticated form

f(x) = max (f(y) + (g(y),x-y)]!
Y

r

and to minimize f(x) is eguivalent to minimize this max, or
equivalently to solve the linear vorogram with an infinite number

of constraints (the variables are v and x):

min v

v E(y) + (gly),x-y) ¥y .



This vrogram cannot be solved directly, and the cutting-
plane method consists in solving a sequence of linear programs
with only a finite subset of constraints: when XyrXgreor Xy
have been generated together with g(x1),g(x2),...,g(xn), one

solves

min v

vz E(x) + (gx).x-x5) i=1,2,...,n .

One calls Va1 and X4 the solution of this program. Since

there are fewer constraints, it is clear that Vot is a lower
bound for min f(x). Then, one computes f(xn+1) and g(xn+1) and

one solves again the linear program with n+ 1 constraints.

Among these three methods, we consider the last two as the
most interesting: 1.5. because it is the most natural extension
of steepest descent, and 1.6. because it approximates convex
functions by supporting hyperplanes, a technique which deserves
attention. We shall use them as a basis for the methods developed

in Sections 3 and 4.

2. FIELD OF APPLICATION FOR NONDIFFERENTIABLE OPTIMIZATION

The first question we must answer is: 1is it really so im-
portant to study algorithms for nondifferentiable optimization,
or is it only a mathematical sport? Actually, such algorithms

have a rather large field of application.

2.1. The class of objectives we are interested in can be approxi-

mated by smooth functions (for example polynomials) which can be
minimized by classical methods. However, when the approximation
becomes tighter, the minimization becomes slower, and one might

try to accelerate it.

Saying it another way, nondifferentiable optimization can
be viewed as a study of accelerating classical methods for stiff

problems. This is a very important application.



2.2, It seems that the main field of application should be the

general decomposition problem. Suppose we have to solve a large-
scale decomposable problem

in which the vector b can be considered as resources to be shared
between the local units indexed by i. On way of decomposing this
problem is to attribute a price of consumption )} to the resource:
a local unit consuming gi(xi) has to pay (A,gi(xi)) so that its

own objective becomes
min £, (x;) * (09, ix)) . (2)

Call hi(k) the ovtimum value of this program. The coordi-
nation problem is then to find the optimal X, i.e. such that the
solutions of (2) make up a solution of (1).

Duality theory says that such prices exist if (1) is convex

and they solve the nonsmooth optimization problem:
max ) h, (0) = (b)) = h())

Decomposition theory is extensively studied in the literature.

See for example [9] for a comprehensive exposition.

Note that the index i might be the time, i.e. (1) might be
a dynamic problem, in which X5 is the decision vector to be made
at time i1 and b is the total resource available over the planning
horizon {1,2,...,m} (cf. [17]).

2.3. Another method for solving (1) is the so-called "right-
hand side" decomposition ([4],[6],[20]). The resource b can be

shared into "quotas" Yqreoer¥pr such that Zyi:=b, which are



attributed to the local units. Each local unit i is then not

allowed to consume more than y;. and its own optimization problem

becomes
min fi(xi)
(3)
g9; (x5) <y
Call vi(yi) the optimum value in (3). As in 2.2, the coor-

dination problem is to find the optimal quotas, such that the
solutions of (3) make up a solution of (1). It can be shown
rather easily that this consists of solving the nonsrmooth prob-

lem

In these two examples 2.2 and 2.3, computing the value and
the subgradient of the objective function (h(}) in 2.2, v(y) in
2.3) amounts to solving m local problems, which might be a rather
long process. This justifies seeking a sovhisticated method, which

carefully uses the information given by this process.

2.4. More generally, one may have to solve an ordinary optimi-
zation problem in which a natural grouping of the variables ap-

pears. Consider for example the problem

min c(x,y)
X,y

and suppose that, fixing x, the minimization with respect to y

alone is very simple (for example, if ¢ is linear in y).

It is then desirable to strive to solve min f(x), where

f(x) is the function



Here again, f(x) is in general not differentiable, and we

can justify this statement intuitively. If the minimizer y(x)

is unique, one has f(x) =c(x,y(x)). Then we can write formally
af ) d
) - R cly() + P oy () gz ¥
Now, since y(x) is optimal one has %% = 0. Therefore, when
daf

the minimizer y(x) is unique, one has in general g{(x) = ax

_ 3

= 7% S(xy(x)).
When it is not unique, there are several "gradients", i.e.

no gradient at all. Computing M(x) (defined in 1.5.) consists in

that case in finding all the solutions of min c(x,y).
y

Such a technique is known as the Benders decomposition. It
has been applied in [5] for mixed integer programming problems,

using algorithms of the type 1.6.

2.5. Some problems can be encountered in which the objective
function has the so-called minimax form:

m

f(x) = max f, (x)
. i
i=1
Again, there is no gradient at points x such that the max

is obtained for several values of i. As a good example, we can

mention the problem of finding an economic equilibrium [8].

For i=1,2,...,n let Zi(x) be n functions, called the excess
demands, depending on the price x. Generally, these functions
have the property that, for each x, there is at least one Zi(x)
which is nonnegative, and there exists an % such that the Zi(i)
are all zero. Such an x, called an economic equilibrium, must
be found.

In some examples, Zi(x) are multivalued functions, and in
that case, there exists only one algorithm [19] for finding an
equilibrium. It is combinatorial in nature, and its computation-
al efficiency is much debated.



On the other hand, when Zi(x) are well-defined continuous
functions, it might be more interesting to have "descent" methods

in which the excess demand is reduced at each iteration.
This can be done by defining the function

n

f(x) = T:>1< a; 25 (x)
where the positive coefficients a; are suitably chosen. This
function is always positive; its minimum is zero, obtained at an
equilibrium Xx. Minimizing f(x) is a nonsmooth optimization prob-
lem (note that we do not suppose that Zi(x) is continuously dif-
ferentiable).

3. METHODS OF DESCENT

3.1. Most classical algorithms of minimization determine the new

iterate x by computing first a direction dn issued from X

n+1
and then a positive stepsize tn.

For computing the stepsize, a technique has been recently
developed in [21], which seems quite satisfactory; we describe

it now.

In addition to X, and dn’ one has on hand a negative number
gq. Considering the univariate function h(t) =f(xn«+tdn), defined
for t >0, g is generally an estimate of h'(0): q==(dn,gn).

Then two numbers m, and m, such that 0 <m, <m, <1 are chosen.
They are generally fixed throughout the algorithm; m, =0.2,

m, = 0.1 is a reasonable choice. The stepsize ty is sought, with

X041 =xn-+tndn, and In+1 =g/ ) satisfying two requirements:

n+ *n+1

@) {dyrgpyg) > ma

(b) £(x 1) < £(x ) + myt g .
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Recalling the interpretation of g, (a) means that the new
gradient is sufficiently different from the old one, and (b)

means that the objective has sufficiently decreased.

It can be shown that these two requirements are consistent,
provided g >h' (0). If this does not hold (which might be the
case when X is a point of nondifferentiabilitv) then (b) might

be impossible to obtain with tn > 0.

In order to prevent this case, one must choose an addition-
al tolerance € >0 and look for tn such that (a) is satisfied to-
gether with

(b') £H( ) - tn(g d) > f(x ) - ¢

X
n+1 n+1’'"n’ = n

It can be shown also that, when (b) is impossible, then (a)
and (b') are satisfied by any ty small enough. The interpreta-

tion of ¢ is given by observing that the term f(x ) —tn(g d_ )

n+1 n+1’'“n
is the value at y =x, of the linear function f(xn+1) +(gn+1,y -
xn+1). This is the approximation of the convex function £, lin-
earized at Xopqe Thus, (b') holds when the approximation agrees

with the actual f(xn) to a precision of at least «¢.

When (b') holds with a small ¢, this means that 941 is al-

most in M(xn). Therefore, this Ine1 should be taken into account
when defining a descent direction (which should satisfy (%H4,d)<0)
(see 1.5). As a consequence, when the line search fails to meet

(b), and gives (a)-(b'), a new direction is computed from X

taking into account the new information et

3.2. The nroblem of computing the direction proverly is not so
easy, and we shall investigate it now. It is commonly admitted
that this computation should make use of the information Xq1Xy,
<Xy and 9qr9pre--19, accumulated during the nrevious itera-
tions, which must be memorized in one way or another. All

classical accelerating devices do that.
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A method which has proved rather efficient, called the "con-
jugate subgradient method", proceeds as follows: according to
some selection rule, extract a subset In<:{1,2,...,n}. Then de-

fine the finite set Gn=={gi | 1 eIn}.

The method computes the direction dn by finding the projec-
tion of the origin onto G,- In other words, one solves the qua-

dratic program

Ay 200 F oy =1

Then, the stepsize is computed by the line search of Section
3.1, where q==—|dn|2; the tolerance € is a convergence parameter,
and when dn is zero, then convergence is obtained within € : f(xn)
<min f+ ¢ (provided the selection rule is also based on the use

of €).

To interpret and define the selection rule, we can compare
with the algorithm of Section 1.5. We see that Gn is supposed
to approximate M(xn). Therefore, one should select those 95 such
that X is close to X to a degree related to e. Convergence
has been proved for various selection rules ([11],[141,[21]).
The algorithm has been encoded as a FORTRAN program, implemented
in particular at IIASA on the PDP 11 computer. It is currently
used for example to compute economic equilibria in the interna-

tional models for food and agriculture.

This program is rather easy to use, with resmect to its de-
gree of generality. The user has to write a suborogram which
computes f(x) and g(x), and to define some tolerances. The al-
gorithm is quite fail-safe, and some safeqguards have been incor-
porated to take care of nonconvexity. However, we must say that
it is rather slow, in particular if some of the tolerances are

not carefully chosen.
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3.3. The conjugate gradient method has a certain lack of flexi-
bility, which partly explains its modest performances: for each
g the only choice is to discard it or to incorrvorate it into

G, No possibility is allowed to weight it. Yet, in view of
Section 1.5., the projection of the origin onto G, has a meaning

only if Gn==M(xn).

Therefore, it should be better to use some approximation of
M(xn) which is not simply a subset of {g1,gz,...,gn}. It appears

that one can define the n positive numbers

OLi = f(xn) - [f(xl) + (gi,Xn‘Xi)] (u)

and consider the convex polyhedron

n

G, () = {g=i£1 293 12320, 1Ay =1, ] da; <el
where e is some positive number. By suitably adiusting €, one
can make Gn(e) approximate M(xn). One is then led to the "bundle
method" defined in (12]: the direction dn is computed as the
solution of the quadratic program

min |d|2

d=—Z)\igi

) Ay =1, 02 >0, zxiai < e .

The stepsize is then computed as in 3.1 and 3.2.

It can be shown that this method is closely related to the
method of Section 1.6. Thus, it realizes a synthesis between

the descent methods of the type 1.5, and cutting-plane methods
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(which are not descent). It has been imolemented as an experi-
mental FORTRAN orogram. Its performances appear to be very sen-
sitive to the choice of &, which unfortunately is difficult to
choose. 1In fact, one needs more information such as curvature

to guess its proper value.

4. A NEW METHCD

The design of a method makes use of a "model" of the objec-
tive function. For example, a conjugate gradient or quasi-Newton
method uses a quadratic model, i.e. it supposes that the objec-
tive looks like a quadratic. On the contrary, a cutting-plane
method supposes that it looks like a piecewise linear function.

Of course, the performance of a given method is likely to depend
on how the actual objective fits into the chosen model. Curiously
enough, it has been observed experimentally that a guadratic model
is generally a rather good representation, even of piecewise lin-
ear functions. This justifies our next development, in which we
adopt the strategy: try to use a quadratic model as long as it

does not deviate too much from the actual objective.

4.1. Motivation

Let us denote d the movement from Ko f X4

pose that a symmetric positive definite matrix An is given, so

=xn-+d. Sup-

that the value of the objective f(xn-kd) can be approximated by

the quadratic function

£x) + (g,d) + 5 (d,Ad . (5)

n

(If the objective were a quadratic, An should be its hessian).
On the other hand, the cutting-plane relations give n lower

bounds on the predictable value f(xn+1):

) = £xp+d) > f(xy) + (gy,x +d-x;)

i=1,...,n .



T

This can be arranged as

E(x, +d) > £(x) - [£(x)) = £(x;) - (gy.x, ~x;)] + (g;,d)

or, using the definition (4):

f(xn<+d) > f(xn) - oa; t (gi,d)
Therefore, if we want f(xn<+d) to be strictly lower than f(xn),

it is absolutely necessary that d satisfy

—ay + (gi,d) <0 i=1,...,n . (6)
In (6), each term —af—(gi,d) represents the best possible
decrease from fix,) to f(xn-+d); they must be strictly negative.
It is therefore convenient to look for a 4 which makes a balance
between diminishing the approximation (5) as much as possible,

while keeping all the lower bounds (6) as small as possible.

We think it reasonable to take 4 which solves the following

program in d and v:

min v + % (d,And)
] (7)
-y + (d,gi) < v o i=1,...,n
4.2. Justification

This program is closely related to the direction-finding
problem of Pshenichnyi [18], and to the boxstep method [13] (in
which one would take a "box" of the form (d,And)_it). It can
be partly justified by some heuristic considerations.

Since oy >0, the point d=0, v=0 is feasible in (7) and
the optimum dn,vn must satisfy Vn<+%-(dn,Andn) < 0. (If it were
0, X would be optimal.) Since Al is positive definite, this
implies v < 0 and
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Also, since an==0, we have

1

(gn,dn) + 5 (dn,Andn) A (dn,Andn) <0 .

N —

Thus, dn at least makes the balance mentioned above, in some
sense. Also, it seems reasonable to suppose that the last con-
straint (d,gn)_iv is active in the optimum (otherwise d, would

not depend on gn), so that (7) is just a disguised way to write

min (g ,d) + 5 (d,A_d)

-a; + (g;,4) < (g d) , i=1,...0 -1,
which we do not like because, in nonsmooth optimization, there

is no reason to particularize 9, (for example, it has no meaning
if f is a piecewise linear function, whose xn is a vertex). How-
ever, its interpretation is clear: we require that the lower
bounds (6) be not tighter than the classical first-order approx-
imation, and the freedom left for 4 is used to minimize the qua-
dratic approximation (5).

4.3. The Algorithm

Once dn is computed by (7), one should make a line search
producing either {(a) and (b), or (a) and (b'). From the discus-
sion in Section 4.2 (h'(0) is (gn,dn), which is vn), it is con-
venient to take q=v, (the notations are those of Section 3.1).
However, we do not see exactly how to choose €. Moreover, con-
vergence is helped if t is bounded from below. Therefore, we

will make the line searches as follows.

Try first t=1. If f(xn-fdn) if(xn)-fmzvn, then (b) is sat-
isfied, and we extrapolate to find tn'i1 satisfying (a), (b).
This will be called a serious step; xn,An and the oy will be up-
dated. For updating A, we choose the fashionable BFGS formula

since (a) preserves positive definiteness [3].
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If f(xn-+dn) >f(xn)-+m2vn, then we will recompute a new di-

rection issued from the same X, by adding in (7) a new constraint
-at 4 (gt < v
+ . :
where g+==g(xn-+dn) and a is computed as in (4), namely

+
[

+
£lx)) = [E(x +d )+ (g ,x ~x -d)]

£(x,) - flx, +d )+ (g ,a) . (8)

Q
1]

This will be called a null-step.

For solving (7), it is convenient to consider its dual,
which gives useful information. The Lagrange function is
1 . X
L(v,d,x)==f (d,And) +(d,ZAigi) —Zkiai + (1 —ZAi)v. It is defined
for A > 0. The dual function, h(}) = min L(v,d,A), is defined for

v,d

. Ai = 1 (otherwise it is -=) and is then obtained for

-1
am) =By} a9 (9)

Thus, (7) is solved by this d()), where ) maximizes the dual

function, namely:

1 -1
min 3 (0 43950 1 AgAn95) *+ 1 Aoy
(10)

IA =1, 20 .

To recover V,+ we can write that the dual and primai values

are equal, i.e.

1 1 -1 _
¥ (dn,Andn) A ( A9 Z)\iAn g;) + ) Aag =0,
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which because of (9) can be written as

vy = —(d /A d ) - i Ajoag - (11)

Thus, Vi is a convergence parameter, supposed to converge to
zero, which, when it is small, provides an approximate optimality

condition given by the following result:

Theorem 1: If v >-e, and if (A;1Z,Z) ic|z|2,vz, then one
has

vy: fly) > f(x)) - Ve/c ly-xnl -€ .
Proof: From convexity and (4)

vy: f(y) > f(xn) + (gi,y-xn) - ooy

which, by convex combination, gives
£(y) > £(x ) + ([ A9, y-x%x) = ] Aoy

where ) solves (10).

Now Vh is comoosed of two negative terms so that vh,2 e
i i < , 0, < E.
implies (dn,Andn) < ¢ and ¥ Xlal <e

Now set s = A d = -]} g;.

The positive definiteness of A;1 can be written:

(dn'Andn) = (s,A 's) > cls|® = cl|} Aigil

so that |Z N9, < vere.

Finally, by applying the Cauchy-Schwarz inequality to
(ZAigi,y —xn), we obtain:

vy:  fly) > fi{x)) - Ye/e [y-x | - ¢ . Q.E.D.
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We can now state an algorithm extending qguasi-Newton methods

to nondifferentiable objective functions:

Step 1
X i Gqreessg 7 Oqrenerty are given; € >0 is a tolerance.
Hn==Ar'l1 is a quasi-Newton matrix (H1==the identity matrix).

Solve (10) for A and obtain dn and vy by (9) and (11).
If v_>-c STOP.

Step 2

Compute f(xn-fdn) and gn+1==g(xn-+dn).
If f(xn-+dn) >f(xn)-+m2vn, then:

Set x X

n+1~ “n°’

Compute o =f(x ) -flx +d)+ (g d ).

n+1 n+1’"n

Increase n by 1 and go to 1.
Step 3

Otherwise, extrapolate to find tn_z1 and gn+1==g(xn-+tndn)
such that

f(xn-+tndn) < f(xn) + mZtnvn

d v

> m
— "1 n

(gn+1’ n)

Set X1 = X + tndn.

Change o, to a., + f(x
i i

=0.
n+1
Update Hn’ for example by the well-known Broyden-Fletcher-

)-f(xn) - (gi,an—x ) i=1,...,n

n+1 n

and set o

Goldfarb-Shanno formula (3]. Save Ipa1 for possible subse-
quent update of H.

Increase n by 1 and go to 1.

4.4. Convergence

According to Theorem 1, there are two independent properties
which ensure (%, } to be a minimizing sequence for f. One is that
a subsequence of vy tends to zero, in order that the STOP in
Step 1 eventually occurs. The second is that Hn remains uniform-

ly positive definite, so that the optimality condition holds.
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This second property depends just on studies in quasi-Newton
methods. Thanks to the m, requirement and the fact that A
and tn2_1, it seems that it should hold (cf. [16]). Therefore

we will study here the first property only.

Theorem 2: There cannot be an infinite number of sertous

steps unless f(xh)->—W.

Proof (straightforward): Between two consecutive serious

steps, say n and p, we have
fix) < £f(x) + m1Vp_1

If Vo1 <-¢ for all serious steps, f(ﬁﬁ goes to -». Q.E.D.

Theorem 3: There cannot be an itnfinite number of null-

steps, unless 95 ig unbounded.

Proof: We follow [10, Theorem 2.3], by proving first that
dn and Vo are bounded, and then that there is a subsequence of

Vi which tends to zero.

It is very important to note that, when a series of null-

steps is built up, H  and every a; are fized.

. . 1 .
2It is clear that, if |dn|-++m, then 5 (dn,Andn)—>+m like
|dn| » whereas v cannot go to -« faster than |dn|' Therefore

the optimal value in (7) cannot remain negative.

Hence, dn is bounded, and v is bounded from below.

Now take a subsequence such that dn-+a and vn-+§. It is
clear that G_i—e. Let n and p, p>n be two consecutive indices
of this subsequence. From the feasibhility of dp and Vp’ we have
that

-Q

+ (g ad) <v, . (12)

n+1 n+1’"p P

Now when executing Step 2, we have

f(xn) - f(xn-+dn) < -m2vn
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which, together with the definition of an+1==f(xn) —f(xn-+dn)

+ (g dn), implies

n+1’

a d < =M,V (13)

n+1 (gn+1’ n)

Adding (12) and (13) yields

(gn+1,dp—dn) < vp - m2vn

Pass to the limit: 1if g is bounded, the left-hand side tends

n+1
to zero, and

0 < (1-myv

Since m, <1, 5_10 which contradicts G_i-e. Q.E.D.

It is worth mentioning that these two proofs are indepen-
dent of the chosen formula for updating Hn' In other words, the
algorithms terminate at some point provided that each Hn is posi-
tive definite. It is only for getting optimality condition at
this point that the uniform positive definiteness of H, is re-

quired.

4.5. Variants

In the dual form (10) of the direction finding problem, the
linear term I Xiai can be considered as the dualization of a con-

straint of the form I Aiai_ie, for some €. This means that there

exists € > 0 such that (10) is equivalent to

]
3 (A9 0 T AHp9y)

1
z)‘l=1 ’ )\l>0 ’ Z)\ialig ’

min

which appears to be strongly related to the bundle methods of
Section 3.3. We can actually show that our present method is a
form of boxstep method, in which the box is chosen according to
the norm induced by An (instead of the Euclidean norm, as in 3.3,
or a linear norm as in [13]). In such a method, the direction 4

is the solution of
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min v
v > f(xn) - a; + (gi,d)
(d,And) <t

and proceeding as in [12], we can show that this gives the solu-
tion of (7), provided that t is suitably chosen. This observa-
tion suggests that the role of An is relatively minor and it
might suffice to consider for example a diagonal matrix. It

would be very worthwhile since the present form with a full ma-

trix requires a large amount of data.

Another modification concerns the line search: the reason
why we have given up a complete line search is that, in case of a
serious step, tn must be bounded from below (cf. the proof of

Theorem 2) and, in case of a null-step, tn = 1 suffices to provide

n+1 (gn+1'dn) 2 MyVn

which is the key argument for proving Theorem 3.

However, requiring tn_z1 for a serious steo might be too
severe. Particularly at the beginning of the algorithm, when
Hy is not yet properly updated, one might have to make many null-
steps, which do not diminish the objective, and do not update Hn'
Therefore, it might be wise to allow for smaller values for tn
(for example tn310'1) by modifying Step 2 of the algorithm: when
f(xn+dn) >f(xn) +m2vn, we test f(xn+0.1 dn) >f(xn) +0.1 myv, -
If it is true, we compute %pn 41 =f(xn) —f(xn-+0.1 dn) + 0.1
(g(xn-+0.1 dn)'dn) and go to Step 1. 1If it is false, we deter-

mine a serious step tn €[0.1,1].

The proof of Theorem 2 still holds, and we now show that

the proof of Theorem 3 also holds.
Theorem 4: Let t €]0,1]1. Suppose f(xn-ktdn) >f(xn)<+tm2vn,

and denote g=g(xn+tdn), f=f(xn+tdn). Set a=f(xn) —f+t(g,dn).
Then

-a + (g,dn) > mzvn
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Proof: By hypothesis, we have

—a + (g,d ) = £ - £(x) - t(g,d ) + (g,d))

> tm2Vrl + (1 —t)(g,dn) .

Now by convexity, we know that f(xn) > f —t(g,dn); therefore

f—f(xn)

(9:47) 2 —%— > MY

We conclude that

-0+ (g,dn) > tm2vn + (1 -t)m2Vrl = m,v . Q.E.D.
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