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IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 136

EEP

The Evolution and Ecology Program at IIASA fosters the devel-
opment of new mathematical and conceptual techniques for un-
derstanding the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Evolution and Ecology Program
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.

No. 1 Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, van
Heerwaarden JS: Adaptive Dynamics: A Geometrical Study
of the Consequences of Nearly Faithful Reproduction. IIASA
Working Paper WP-95-099 (1995). van Strien SJ, Verduyn
Lunel SM (eds): Stochastic and Spatial Structures of Dynami-
cal Systems, Proceedings of the Royal Dutch Academy of Sci-
ence (KNAW Verhandelingen), North Holland, Amsterdam,
pp. 183-231 (1996).

No. 2 Dieckmann U, Law R: The Dynamical Theory of Co-
evolution: A Derivation from Stochastic Ecological Processes.
IIASA Working Paper WP-96-001 (1996). Journal of Mathe-
matical Biology 34:579-612 (1996).

No. 3 Dieckmann U, Marrow P, Law R: Evolutionary Cy-
cling of Predator-PreyInteractions: Population Dynamicsand
the Red Queen. IIASA Preprint (1995). Journal of Theoreti-
cal Biology 176:91-102 (1995).

No. 4 Marrow P, Dieckmann U, Law R: Evolutionary Dy-
namics of Predator-Prey Systems: An Ecological Perspective.
IIASA Working Paper WP-96-002 (1996). Journal of Mathe-
matical Biology 34:556-578 (1996).

No. 5 Law R, Marrow P, Dieckmann U: On Evolution under
Asymmetric Competition. IIASA Working Paper WP-96-003
(1996). Evolutionary Ecology 11:485-501 (1997).

No. 6 Metz JAJ, Mylius SD, Diekmann O: When Does Evo-
lution Optimize? On the Relation Between Types of Density
Dependence and Evolutionarily Stable Life History Parame-
ters. IIASA Working Paper WP-96-004 (1996).

No. 7 Ferrière R, Gatto M: Lyapunov Exponents and the
Mathematics of Invasion in Oscillatory or Chaotic Popula-
tions. Theoretical Population Biology 48:126-171 (1995).

No. 8 Ferrière R, Fox GA: Chaos and Evolution. IIASA
Preprint (1996). Trends in Ecology and Evolution 10:480-
485 (1995).

No. 9 Ferrière R, Michod RE: The Evolution of Cooperation
in Spatially Heterogeneous Populations. IIASA Working Pa-
per WP-96-029 (1996). The American Naturalist 147:692-
717 (1996).

No. 10 van Dooren TJM, Metz JAJ: Delayed Maturation in
Temporally Structured Populations with Non-Equilibrium Dy-
namics. IIASA Working Paper WP-96-070 (1996). Journal
of Evolutionary Biology 11:41-62 (1998).

No. 11 Geritz SAH, Metz JAJ, Kisdi É, Meszéna G: The Dy-
namics of Adaptation and Evolutionary Branching. IIASA
Working Paper WP-96-077 (1996). Physical Review Letters
78:2024-2027 (1997).

No. 12 Geritz SAH, Kisdi É, Meszéna G, Metz JAJ: Evo-
lutionary Singular Strategies and the Adaptive Growth and
Branching of the Evolutionary Tree. IIASA Working Paper
WP-96-114 (1996). Evolutionary Ecology 12:35-57 (1998).

No. 13 Heino M, Metz JAJ, Kaitala V: Evolution of Mixed
Maturation Strategies in Semelparous Life-Histories: The
Crucial Role of Dimensionality of Feedback Environment.
IIASA Working Paper WP-96-126 (1996). Philosophi-
cal Transactions of the Royal Society of London Series B
352:1647-1655 (1997).

No. 14 Dieckmann U: Can Adaptive Dynamics Invade?
IIASA Working Paper WP-96-152 (1996). Trends in Ecol-
ogy and Evolution 12:128-131 (1997).

No. 15 Meszéna G, Czibula I, Geritz SAH: Adaptive Dynam-
ics in a 2-Patch Environment: A Simple Model for Allopatric
and Parapatric Speciation. IIASA Interim Report IR-97-001
(1997). Journal of Biological Systems 5:265-284 (1997).

No. 16 Heino M, Metz JAJ, Kaitala V: The Enigma of
Frequency-Dependent Selection. IIASA Interim Report IR-
97-061 (1997). Trends in Ecology and Evolution 13:367-370
(1998).

No. 17 Heino M: Management of Evolving Fish Stocks.
IIASA Interim Report IR-97-062 (1997). Canadian Journal
of Fisheries and Aquatic Sciences 55:1971-1982 (1998).

No. 18 Heino M: Evolution of Mixed Reproductive Strategies
in Simple Life-History Models. IIASA Interim Report IR-97-
063 (1997).

No. 19 Geritz SAH, van der Meijden E, Metz JAJ: Evolution-
ary Dynamics of Seed Size and Seedling Competitive Ability.
IIASA Interim Report IR-97-071 (1997). Theoretical Popu-
lation Biology 55:324-343 (1999).

No. 20 Galis F, Metz JAJ: Why Are There So Many Cichlid
Species? On the Interplay of Speciation and Adaptive Radi-
ation. IIASA Interim Report IR-97-072 (1997). Trends in
Ecology and Evolution 13:1-2 (1998).



No. 21 Boerlijst MC, Nowak MA, Sigmund K: Equal Pay
for all Prisoners/ The Logic of Contrition. IIASA Interim
Report IR-97-073 (1997). American Mathematical Society
Monthly 104:303-307 (1997). Journal of Theoretical Biology
185:281-293 (1997).

No. 22 Law R, Dieckmann U: Symbiosis Without Mutualism
and the Merger of Lineages in Evolution. IIASA Interim Re-
port IR-97-074 (1997). Proceedings of the Royal Society of
London Series B 265:1245-1253 (1998).

No. 23 Klinkhamer PGL, de Jong TJ, Metz JAJ: Sex and Size
in Cosexual Plants. IIASA Interim Report IR-97-078 (1997).
Trends in Ecology and Evolution 12:260-265 (1997).

No. 24 Fontana W, Schuster P: Shaping Space: The Possi-
ble and the Attainable in RNA Genotype-Phenotype Mapping.
IIASA Interim Report IR-98-004 (1998). Journal of Theoret-
ical Biology 194:491-515 (1998).

No. 25 Kisdi É, Geritz SAH: Adaptive Dynamics in Allele
Space: Evolution of Genetic Polymorphism by Small Muta-
tions in a HeterogeneousEnvironment. IIASA Interim Report
IR-98-038 (1998). Evolution 53:993-1008 (1999).

No. 26 Fontana W, Schuster P: Continuity in Evolution: On
the Nature of Transitions. IIASA Interim Report IR-98-039
(1998). Science 280:1451-1455 (1998).

No. 27 Nowak MA, Sigmund K: Evolution of Indirect Reci-
procity by Image Scoring/ The Dynamics of Indirect Reci-
procity. IIASA Interim Report IR-98-040 (1998). Nature
393:573-577 (1998). Journal of Theoretical Biology 194:561-
574 (1998).

No. 28 Kisdi É: Evolutionary Branching Under Asymmetric
Competition. IIASA Interim Report IR-98-045 (1998). Jour-
nal of Theoretical Biology 197:149-162 (1999).

No. 29 Berger U: Best ResponseAdaptation for Role Games.
IIASA Interim Report IR-98-086 (1998).

No. 30 van Dooren TJM: The Evolutionary Ecology of
Dominance-Recessivity. IIASA Interim Report IR-98-096
(1998). Journal of Theoretical Biology 198:519-532 (1999).

No. 31 Dieckmann U, O’Hara B, Weisser W: The Evolution-
ary Ecology of Dispersal. IIASA Interim Report IR-98-108
(1998). Trends in Ecology and Evolution 14:88-90 (1999).

No. 32 Sigmund K: Complex Adaptive Systems and the Evo-
lution of Reciprocation. IIASA Interim Report IR-98-100
(1998). Ecosystems 1:444-448 (1998).

No. 33 Posch M, Pichler A, Sigmund K: The Efficiency of
Adapting Aspiration Levels. IIASA Interim Report IR-98-
103 (1998). Proceedings of the Royal Society London Series
B 266:1427-1435 (1999).

No. 34 Mathias A, Kisdi É: Evolutionary Branching and Co-
existence of Germination Strategies. IIASA Interim Report
IR-99-014 (1999).

No. 35 Dieckmann U, Doebeli M: On the Origin of Species
by Sympatric Speciation. IIASA Interim Report IR-99-013
(1999). Nature 400:354-357 (1999).

No. 36 Metz JAJ, Gyllenberg M: How Should We Define Fit-
ness in Structured Metapopulation Models? Including an Ap-
plication to the Calculation of Evolutionarily Stable Dispersal
Strategies. IIASA Interim Report IR-99-019 (1999). Pro-
ceedings of the Royal Society of London Series B 268:499-
508 (2001).

No. 37 Gyllenberg M, Metz JAJ: On Fitness in Structured
Metapopulations. IIASA Interim Report IR-99-037 (1999).
Journal of Mathematical Biology 43:545-560 (2001).

No. 38 Meszéna G, Metz JAJ: Species Diversity and Popula-
tion Regulation: The Importance of Environmental Feedback
Dimensionality. IIASA Interim Report IR-99-045 (1999).

No. 39 Kisdi É, Geritz SAH: Evolutionary Branching and
Sympatric Speciation in Diploid Populations. IIASA Interim
Report IR-99-048 (1999).

No. 40 Ylikarjula J, Heino M, Dieckmann U: Ecology and
Adaptation of Stunted Growth in Fish. IIASA Interim Report
IR-99-050 (1999). Evolutionary Ecology 13:433-453 (1999).

No. 41 Nowak MA, Sigmund K: Games on Grids. IIASA
Interim Report IR-99-038 (1999). Dieckmann U, Law R,
Metz JAJ (eds): The Geometry of Ecological Interactions:
Simplifying Spatial Complexity, Cambridge University Press,
Cambridge, UK, pp. 135-150 (2000).

No. 42 Ferrière R, Michod RE: Wave Patterns in Spatial
Games and the Evolution of Cooperation. IIASA Interim
Report IR-99-041 (1999). Dieckmann U, Law R, Metz JAJ
(eds): The Geometry of Ecological Interactions: Simplifying
Spatial Complexity, Cambridge University Press, Cambridge,
UK, pp. 318-332 (2000).

No. 43 Kisdi É, Jacobs FJA, Geritz SAH: Red Queen Evo-
lution by Cycles of Evolutionary Branching and Extinction.
IIASA Interim Report IR-00-030 (2000). Selection 2:161-
176 (2001).

No. 44 MeszénaG, Kisdi É, DieckmannU, Geritz SAH, Metz
JAJ: Evolutionary Optimisation Models and Matrix Games in
the Unified Perspectiveof Adaptive Dynamics. IIASA Interim
Report IR-00-039 (2000). Selection 2:193-210 (2001).

No. 45 Parvinen K, Dieckmann U, Gyllenberg M, Metz JAJ:
Evolution of Dispersal in Metapopulations with Local Density
Dependence and Demographic Stochasticity. IIASA Interim
Report IR-00-035 (2000). Journal of Evolutionary Biology
16:143-153 (2003).

No. 46 Doebeli M, Dieckmann U: Evolutionary Branch-
ing and Sympatric Speciation Caused by Different Types of
Ecological Interactions. IIASA Interim Report IR-00-040
(2000). The American Naturalist 156:S77-S101 (2000).

No. 47 Heino M, Hanski I: Evolution of Migration Rate in
a Spatially Realistic Metapopulation Model. IIASA Interim
Report IR-00-044 (2000). The American Naturalist 157:495-
511 (2001).

No. 48 Gyllenberg M, Parvinen K, Dieckmann U: Evolution-
ary Suicide and Evolution of Dispersal in StructuredMetapop-
ulations. IIASA Interim Report IR-00-056 (2000). Journal
of Mathematical Biology 45:79-105 (2002).

No. 49 van Dooren TJM: The Evolutionary Dynamics of Di-
rect Phenotypic Overdominance: Emergence Possible, Loss
Probable. IIASA Interim Report IR-00-048 (2000). Evolu-
tion 54:1899-1914 (2000).

No. 50 Nowak MA, Page KM, Sigmund K: Fairness Versus
Reason in the Ultimatum Game. IIASA Interim Report IR-
00-57 (2000). Science 289:1773-1775 (2000).

No. 51 de Feo O, Ferrière R: Bifurcation Analysis of Pop-
ulation Invasion: On-Off Intermittency and Basin Riddling.
IIASA Interim Report IR-00-074 (2000). International Jour-
nal of Bifurcation and Chaos 10:443-452 (2000).



No. 52 Heino M, Laaka-Lindberg S: Clonal Dynamics and
Evolution of Dormancy in the Leafy Hepatic Lophozia Sil-
vicola. IIASA Interim Report IR-01-018 (2001). Oikos
94:525-532 (2001).

No. 53 Sigmund K, Hauert C, Nowak MA: Reward and Pun-
ishment in Minigames. IIASA Interim Report IR-01-031
(2001). Proceedings of the National Academy of Sciences
of the USA 98:10757-10762 (2001).

No. 54 Hauert C, De Monte S, Sigmund K, Hofbauer J: Os-
cillations in Optional Public Good Games. IIASA Interim
Report IR-01-036 (2001).

No. 55 Ferrière R, Le Galliard J: Invasion Fitness and Adap-
tive Dynamics in Spatial Population Models. IIASA Interim
Report IR-01-043 (2001). Clobert J, Dhondt A, Danchin E,
Nichols J (eds): Dispersal, Oxford University Press, pp. 57-79
(2001).

No. 56 de Mazancourt C, Loreau M, Dieckmann U: Can the
Evolution of Plant Defense Lead to Plant-Herbivore Mutual-
ism? IIASA Interim Report IR-01-053 (2001). The Ameri-
can Naturalist 158:109-123 (2001).

No. 57 Claessen D, Dieckmann U: Ontogenetic Niche Shifts
and Evolutionary Branching in Size-Structured Populations.
IIASA Interim Report IR-01-056 (2001). Evolutionary Ecol-
ogy Research 4:189-217 (2002).

No. 58 Brandt H: Correlation Analysis of Fitness Land-
scapes. IIASA Interim Report IR-01-058 (2001).

No. 59 Dieckmann U: Adaptive Dynamics of Pathogen-Host
Interacations. IIASA Interim Report IR-02-007 (2002).
Dieckmann U, Metz JAJ, Sabelis MW, Sigmund K (eds):
Adaptive Dynamics of Infectious Diseases: In Pursuit of Viru-
lence Management, Cambridge University Press, Cambridge,
UK, pp. 39-59 (2002).

No. 60 Nowak MA, Sigmund K: Super- and Coinfection:
The Two Extremes. IIASA Interim Report IR-02-008 (2002).
Dieckmann U, Metz JAJ, Sabelis MW, Sigmund K (eds):
Adaptive Dynamics of Infectious Diseases: In Pursuit of Viru-
lence Management, Cambridge University Press, Cambridge,
UK, pp. 124-137 (2002).

No. 61 Sabelis MW, Metz JAJ: Evolution Management: Tak-
ing Stock - Relating Theory to Experiment. IIASA Interim
Report IR-02-009 (2002). Dieckmann U, Metz JAJ, Sabelis
MW, Sigmund K (eds): Adaptive Dynamics of Infectious Dis-
eases: In Pursuit of Virulence Management, Cambridge Uni-
versity Press, Cambridge, UK, pp. 379-398 (2002).

No. 62 Cheptou P, Dieckmann U: The Evolution of Self-
Fertilization in Density-Regulated Populations . IIASA In-
terim Report IR-02-024 (2002). Proceedings of the Royal
Society of London Series B 269:1177-1186 (2002).

No. 63 Bürger R: Additive Genetic Variation Under Intraspe-
cific Competition and Stabilizing Selection: A Two-Locus
Study. IIASA Interim Report IR-02-013 (2002). Theoret-
ical Population Biology 61:197-213 (2002).

No. 64 Hauert C, De Monte S, Hofbauer J, Sigmund K: Vol-
unteering as Red Queen Mechanism for Co-operation in Pub-
lic Goods Games. IIASA Interim Report IR-02-041 (2002).
Science 296:1129-1132 (2002).

No. 65 Dercole F, Ferrière R, Rinaldi S: Ecological Bistabil-
ity and Evolutionary Reversals under Asymmetrical Competi-
tion. IIASA Interim Report IR-02-053 (2002). Evolution
56:1081-1090 (2002).

No. 66 Dercole F, Rinaldi S: Evolution of Cannibalistic
Traits: Scenarios Derived from Adaptive Dynamics. IIASA
Interim Report IR-02-054 (2002). Theoretical Population Bi-
ology 62:365-374 (2002).

No. 67 Bürger R, Gimelfarb A: Fluctuating Environments
and the Role of Mutation in Maintaining Quantitative Genetic
Variation. IIASA Interim Report IR-02-058 (2002). Geneti-
cal Research 80:31-46 (2002).

No. 68 Bürger R: On a Genetic Model of Intraspecific Com-
petition and Stabilizing Selection. IIASA Interim Report IR-
02-062 (2002). Amer. Natur. 160:661-682 (2002).

No. 69 Doebeli M, Dieckmann U: Speciation Along Environ-
mental Gradients. IIASA Interim Report IR-02-079 (2002).
Nature 421:259-264 (2003).

No. 70 Dercole F, Irisson J, Rinaldi S: Bifurcation Analysis of
a Prey-Predator Coevolution Model. IIASA Interim Report
IR-02-078 (2002). SIAM Journal on Applied Mathematics
63:1378-1391 (2003).

No. 71 Le Galliard J, Ferrière R, DieckmannU: The Adaptive
Dynamics of Altruism in Spatially HeterogeneousPopulations.
IIASA Interim Report IR-03-006 (2003). Evolution 57:1-17
(2003).

No. 72 Taborsky B, Dieckmann U, Heino M: Unex-
pected Discontinuities in Life-History Evolution under Size-
Dependent Mortality. IIASA Interim Report IR-03-004
(2003). Proceedings of the Royal Society of London Series B
270:713-721 (2003).

No. 73 Gardmark A, Dieckmann U, Lundberg P: Life-
History Evolution in Harvested Populations: The Role of Nat-
ural Predation. IIASA Interim Report IR-03-008 (2003).
Evolutionary Ecology Research 5:239-257 (2003).

No. 74 Mizera F, Meszéna G: Spatial Niche Packing, Char-
acter Displacement and Adaptive Speciation Along an En-
vironmental Gradient. IIASA Interim Report IR-03-062
(2003). Evolutionary Ecology Research 5:363-382 (2003).

No. 75 Dercole F: Remarks on Branching-Extinction Evolu-
tionary Cycles. IIASA Interim Report IR-03-077 (2003).
Journal of Mathematical Biology 47:569-580 (2003).

No. 76 Hofbauer J, Sigmund K: Evolutionary Game Dynam-
ics. IIASA Interim Report IR-03-078 (2003). Bulletin of the
American Mathematical Society 40:479-519 (2003).

No. 77 Ernande B, Dieckmann U, Heino M: Adaptive
Changes in Harvested Populations: Plasticity and Evolution
of Age and Size at Maturation. IIASA Interim Report IR-
03-058 (2003). Proceedings of the Royal Society of London
Series B-Biological Sciences 271:415-423 (2004).

No. 78 Hanski I, Heino M: Metapopulation-Level Adaptation
of Insect Host Plant Preference and Extinction-Colonization
Dynamics in Heterogeneous Landscapes. IIASA Interim
Report IR-03-028 (2003). Theoretical Population Biology
63:309-338 (2003).

No. 79 van Doorn G, Dieckmann U, Weissing FJ: Sympatric
Speciation by Sexual Selection: A Critical Re-Evaluation.
IIASA Interim Report IR-04-003 (2004). American Natu-
ralist 163:709-725 (2004).

No. 80 Egas M, Dieckmann U, Sabelis MW: Evolution Re-
stricts the Coexistence of Specialists and Generalists - the
Role of Trade-off Structure. IIASA Interim Report IR-04-004
(2004). American Naturalist 163:518-531 (2004).



No. 81 Ernande B, Dieckmann U: The Evolution of Pheno-
typic Plasticity in Spatially StructuredEnvironments: Implica-
tions of Intraspecific Competition, Plasticity Costs, and Envi-
ronmental Characteristics. IIASA Interim Report IR-04-006
(2004). Journal of Evolutionary Biology 17:613-628 (2004).

No. 82 Cressman R, Hofbauer J: Measure Dynamics on a
One-Dimensional Continuous Trait Space: Theoretical Foun-
dations for Adaptive Dynamics. IIASA Interim Report IR-
04-016 (2004).

No. 83 Cressman R: Dynamic Stability of the Replicator
Equation with Continuous Strategy Space. IIASA Interim
Report IR-04-017 (2004).

No. 84 Ravigné V, Olivieri I, Dieckmann U: Implications of
Habitat Choice for Protected Polymorphisms. IIASA Interim
Report IR-04-005 (2004). Evolutionary Ecology Research
6:125-145 (2004).

No. 85 Nowak MA, Sigmund K: Evolutionary Dynamics of
Biological Games. IIASA Interim Report IR-04-013 (2004).
Science 303:793-799 (2004).

No. 86 Vukics A, Asbóth J, Meszéna G: Speciation in Mul-
tidimensional Evolutionary Space. IIASA Interim Report
IR-04-028 (2004). Physical Review 68:041-903 (2003).

No. 87 de Mazancourt C, Dieckmann U: Trade-off Geome-
tries and Frequency-dependent Selection. IIASA Interim Re-
port IR-04-039 (2004). American Naturalist 164:765-778
(2004).

No. 88 Cadet CR, Metz JAJ, Klinkhamer PGL: Size and the
Not-So-Single Sex: Disentangling the Effects of Size on Sex
Allocation. IIASA Interim Report IR-04-084 (2004). Amer-
ican Naturalist 164:779-792 (2004).

No. 89 Rueffler C, van Dooren TJM, Metz JAJ: Adaptive
Walks on Changing Landscapes: Levins’ Approach Extended.
IIASA Interim Report IR-04-083 (2004). Theoretical Popu-
lation Biology 65:165-178 (2004).

No. 90 de Mazancourt C, Loreau M, Dieckmann U: Under-
standing Mutualism When There is Adaptation to the Partner.
IIASA Interim Report IR-05-016 (2005). Journal of Ecology
93:305-314 (2005).

No. 91 Dieckmann U, Doebeli M: Pluralism in Evolutionary
Theory. IIASA Interim Report IR-05-017 (2005). Journal of
Evolutionary Biology 18:1209-1213 (2005).

No. 92 Doebeli M, Dieckmann U, Metz JAJ, Tautz D: What
We Have Also Learned: Adaptive Speciation is Theoretically
Plausible. IIASA Interim Report IR-05-018 (2005). Evolu-
tion 59:691-695 (2005).

No. 93 Egas M, Sabelis MW, Dieckmann U: Evolution of
Specialization and Ecological Character Displacement of
HerbivoresAlong a Gradient of Plant Quality. IIASA Interim
Report IR-05-019 (2005). Evolution 59:507-520 (2005).

No. 94 Le Galliard J, Ferrière R, Dieckmann U: Adaptive
Evolution of Social Traits: Origin, Trajectories, and Corre-
lations of Altruism and Mobility. IIASA Interim Report IR-
05-020 (2005). American Naturalist 165:206-224 (2005).

No. 95 Doebeli M, Dieckmann U: Adaptive Dynamics as
a Mathematical Tool for Studying the Ecology of Speciation
Processes. IIASA Interim Report IR-05-022 (2005). Journal
of Evolutionary Biology 18:1194-1200 (2005).

No. 96 Brandt H, Sigmund K: The Logic of Reprobation: As-
sessment and Action Rules for Indirect Reciprocity. IIASA
Interim Report IR-04-085 (2004). Journal of Theoretical Bi-
ology 231:475-486 (2004).

No. 97 Hauert C, Haiden N, Sigmund K: The Dynamics of
Public Goods. IIASA Interim Report IR-04-086 (2004). Dis-
crete and Continuous Dynamical Systems - Series B 4:575-
587 (2004).

No. 98 Meszéna G, Gyllenberg M, Jacobs FJA, Metz JAJ:
Link Between Population Dynamics and Dynamics of Dar-
winian Evolution. IIASA Interim Report IR-05-026 (2005).
Physical Review Letters 95:Article 078105 (2005).

No. 99 Meszéna G: Adaptive Dynamics: The Continuity Ar-
gument. IIASA Interim Report IR-05-032 (2005).

No. 100 Brännström NA, Dieckmann U: Evolutionary Dy-
namics of Altruism and Cheating Among Social Amoebas.
IIASA Interim Report IR-05-039 (2005). Proceedings of the
Royal Society London Series B 272:1609-1616 (2005).

No. 101 Meszéna G, Gyllenberg M, Pasztor L, Metz JAJ:
Competitive Exclusion and Limiting Similarity: A Unified
Theory. IIASA Interim Report IR-05-040 (2005).

No. 102 Szabo P, Meszéna G: Limiting Similarity Revisited.
IIASA Interim Report IR-05-050 (2005).

No. 103 Krakauer DC, Sasaki A: The Greater than Two-Fold
Cost of Integration for Retroviruses. IIASA Interim Report
IR-05-069 (2005).

No. 104 Metz JAJ: Eight Personal Rules for Doing Science.
IIASA Interim Report IR-05-073 (2005). Journal of Evolu-
tionary Biology 18:1178-1181 (2005).

No. 105 Beltman JB, Metz JAJ: Speciation: More Likely
Through a Genetic or Through a Learned Habitat Preference?
IIASA Interim Report IR-05-072 (2005). Proceedings of the
Royal Society of London Series B 272:1455-1463 (2005).

No. 106 Durinx M, Metz JAJ: Multi-type Branching Pro-
cesses and Adaptive Dynamics of Structured Populations.
IIASA Interim Report IR-05-074 (2005). Haccou P, Jager
P, Vatutin V (eds): Branching Processes: Variation, Growth
and Extinction of Populations, Cambridge University Press,
Cambridge, UK, pp. 266-278 (2005).

No. 107 Brandt H, Sigmund K: The Good, the Bad and
the Discriminator - Errors in Direct and Indirect Reciprocity.
IIASA Interim Report IR-05-070 (2005). Journal of Theoret-
ical Biology 239:183-194 (2006).

No. 108 Brandt H, Hauert C, Sigmund K: Punishing and Ab-
staining for Public Goods. IIASA Interim Report IR-05-071
(2005). Proceedings of the National Academy of Sciences of
the United States of America 103:495-497 (2006).

No. 109 Ohtsuki A, Sasaki A: Epidemiology and Disease-
Control Under Gene-for-Gene Plant-Pathogen Interaction.
IIASA Interim Report IR-05-068 (2005).

No. 110 Brandt H, Sigmund K: Indirect Reciprocity, Image-
Scoring, and Moral Hazard. IIASA Interim Report IR-05-
078 (2005). Proceedings of the National Academy of Sci-
ences of the United States of America 102:2666-2670 (2005).

No. 111 Nowak MA, Sigmund K: Evolution of Indirect Reci-
procity. IIASA Interim Report IR-05-079 (2005). Nature
437:1292-1298 (2005).

No. 112 Kamo M, Sasaki A: Evolution Towards Multi-Year
Periodicity in Epidemics. IIASA Interim Report IR-05-080
(2005). Ecology Letters 8:378-385 (2005).



No. 113 Dercole F, Ferrière R, Gragnani A, Rinaldi S: Co-
evolution of Slow-fast Populations: EvolutionarySliding, Evo-
lutionoary Pseudo-equilibria, and Complex Red Queen Dy-
namics. IIASA Interim Report IR-06-006 (2006). Proceed-
ings of the Royal Society B 273:983-990 (2006).

No. 114 Dercole F: Border Collision Bifurcations in the Evo-
lution of Mutualistic Interactions. IIASA Interim Report
IR-05-083 (2005). International Journal of Bifurcation and
Chaos 15:2179-2190 (2005).

No. 115 Dieckmann U, Heino M, Parvinen K: The Adaptive
Dynamics of Function-Valued Traits. IIASA Interim Report
IR-06-036 (2006). Journal of Theoretical Biology 241:370-
389 (2006).

No. 116 Dieckmann U, Metz JAJ: Surprising Evolutionary
Predictions from Enhanced Ecological Realism. IIASA In-
terim Report IR-06-037 (2006). Theoretical Population Biol-
ogy 69:263-281 (2006).

No. 117 Dieckmann U, Brännström NA, HilleRisLambers R,
Ito H: The Adaptive Dynamics of Community Structure.
IIASA Interim Report IR-06-038 (2006). Takeuchi Y, Iwasa
Y, Sato K (eds): Mathematics for Ecology and Environmental
Sciences, Springer, Berlin Heidelberg, pp. 145-177 (2007).

No. 118 Gardmark A, Dieckmann U: Disparate Maturation
Adaptations to Size-dependent Mortality. IIASA Interim Re-
port IR-06-039 (2006). Proceedings of the Royal Society
London Series B 273:2185-2192 (2006).

No. 119 van Doorn G, Dieckmann U: The Long-term Evo-
lution of Multi-locus Traits Under Frequency-dependent Dis-
ruptive Selection. IIASA Interim Report IR-06-041 (2006).
Evolution 60:2226-2238 (2006).

No. 120 Doebeli M, Blok HJ, Leimar O, Dieckmann U: Mul-
timodal Pattern Formation in Phenotype Distributions of Sex-
ual Populations. IIASA Interim Report IR-06-046 (2006).
Proceedings of the Royal Society London Series B 274:347-
357 (2007).

No. 121 Dunlop ES, Shuter BJ, Dieckmann U: The Demo-
graphic and Evolutionary Consequences of Selective Mortal-
ity: Predictions from an Eco-genetic Model of the Smallmouth
Bass. IIASA Interim Report IR-06-060 (2006). Transactions
of the American Fisheries Society 136:749-765 (2007).

No. 122 Metz JAJ: Fitness. IIASA Interim Report IR-06-
061 (2006).

No. 123 Brandt H, Ohtsuki H, Iwasa Y, Sigmund K: A Sur-
vey on Indirect Reciprocity. IIASA Interim Report IR-06-065
(2006). Takeuchi Y, Iwasa Y, Sato K (eds): Mathematics for
Ecology and Environmental Sciences, Springer, Berlin Hei-
delberg, pp. 21-51 (2007).

No. 124 Dercole F, Loiacono D, Rinaldi S: Synchronization
in Ecological Networks: A Byproduct of Darwinian Evolu-
tion? IIASA Interim Report IR-06-068 (2006). International
Journal of Bifurcation and Chaos 7:2435-2446 (2007).

No. 125 Dercole F, Dieckmann U, Obersteiner M, Rinaldi S:
Adaptive Dynamics and Technological Change. IIASA In-
terim Report IR-06-070 (2006).

No. 126 Rueffler C, van Dooren TJM, Metz JAJ: The
Evolution of Resource Specialization Through Frequency-
Dependent and Frequency-Independent Mechanisms. IIASA
Interim Report IR-06-073 (2006). American Naturalist
167:81-93 (2006).

No. 127 Rueffler C, Egas M, Metz JAJ: Evolutionary Predic-
tions Should be Based on Individual Traits. IIASA Interim
Report IR-06-074 (2006). American Naturalist 168:148-162
(2006).

No. 128 Kamo M, Sasaki A, Boots M: The Role of Trade-Off
Shapes in the Evolution of Virulence in Spatial Host-Parasite
Interactions: An Approximate Analytical Approach . IIASA
Interim Report IR-06-075 (2006).

No. 129 Boots M, Kamo M, Sasaki A: The Implications of
Spatial Structure Within Populations to the Evolution of Para-
sites . IIASA Interim Report IR-06-078 (2006).

No. 130 Andreasen V, Sasaki A: Shaping the Phylogenetic
Tree of Influenza by Cross-Immunity. IIASA Interim Report
IR-06-079 (2006).

No. 131 Rueffler C, van Dooren TJM, Metz JAJ: The Inter-
play Between Behavior and Morphology in the Evolutionary
Dynamics of Resource Specialization. IIASA Interim Report
IR-06-082 (2006). American Naturalist 169:E34-E52 (2007).

No. 132 Rueffler C, van Dooren TJM, Metz JAJ: The Evolu-
tion of Simple Life-Histories: Steps Towards a Classification.
IIASA Interim Report IR-06-083 (2006).

No. 133 Durinx M, Metz JAJ, Meszéna G: Adaptive Dynam-
ics for Physiologically Structured Population Models. IIASA
Interim Report IR-07-027 (2007).

No. 134 Ito H, Dieckmann U: A New Mechanism for Recur-
rent Adaptive Radiations. IIASA Interim Report IR-07-048
(2007). American Naturalist 170:E96-E111 (2007).

No. 135 Troost T, Kooi B, Dieckmann U: Joint evolution of
predator body size and prey-size preference. IIASA Interim
Report IR-07-050 (2007).

No. 136 Nowak MA, Sigmund K: How populations cohere:
Five rules for cooperation. IIASA Interim Report IR-07-052
(2007). May RM, McLean A (eds): Theoretical Ecology:
Principles and Applications, Oxford UP, Oxford, pp. 7-16
(2007).

Issues of the IIASA Studies in Adaptive Dynamics series can be obtained at www.iiasa.ac.at/Research/EEP/Series.html or by
writing to eep@iiasa.ac.at.



Contents 

Abstract............................................................................................................................. 1 

2.1 Kin selection ............................................................................................................... 2 

2.2 Direct reciprocity........................................................................................................ 2 

2.3 Indirect reciprocity ..................................................................................................... 6 

2.4 Graph selection ........................................................................................................... 8 

2.5 Group selection........................................................................................................... 9 

2.6 Conclusion................................................................................................................ 11 

References ...................................................................................................................... 12 

Figures ............................................................................................................................ 16 



 1

How populations cohere: five rules for cooperation 
Martin A. Nowak a , Karl Sigmund ,b c  
 
a The Program of Evolutionary Dynamics, Faculty of Arts and Science, One Brattle 
Square, Harvard University, Cambridge, MA02138, USA. E-mail: 
nowak@fas.harvard.edu 
b Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, A-1090 Vienna, 
Austria. E-mail: karl.sigmund@univie.ac.at 
c Evolution and Ecology Program, International Institute for Applied Systems Analysis, 
Schlossplatz 1, A-2361 Laxenburg, Austria. Email: sigmund@iiasa.ac.at 
 
 
Subsequent chapters in this volume1 deal with populations as dynamic entities in time 
and space. Populations are, of course, made up of individuals, and the parameters which 
characterize aggregate behavior—population growth rate and so on—ultimately derive 
from the behavioral ecology and life-history strategies of these constituent individuals. In 
evolutionary terms, the properties of populations can only be understood in terms of 
individuals, which comes down to studying how life-history choices (and consequent 
gene-frequency distributions) are shaped by environmental forces. 

Many important aspects of group behavior—from alarm calls of birds and mammals 
to the complex institutions that have enabled human societies to flourish—pose problems 
of how cooperative behavior can evolve and be maintained. The puzzle was emphasized 
by Darwin, and remains the subject of active research today. 

In this book, we leave the large subject of individual organisms’ behavioral ecology 
and life-history choices to texts in that field (e.g. Krebs and Davies, 1997). Instead, we 
lead with a survey of work, much of it very recent, on five different kinds of mechanism 
whereby cooperative behavior may be maintained in a population, despite the inherent 
difficulty that cheats may prosper by enjoying the benefits of cooperation without paying 
the associated costs. 

Cooperation means that a donor pays a cost, c, for a recipient to get a benefit, b. In 
evolutionary biology, cost and benefit are measured in terms of fitness. While mutation 
and selection represent the main forces of evolutionary dynamics, cooperation is a 
fundamental principle that is required for every level of biological organization. 
Individual cells rely on cooperation among their components. Multicellular organisms 
exist because of cooperation among their cells. Social insects are masters of cooperation. 
Most aspects of human society are based on mechanisms that promote cooperation. 
Whenever evolution constructs something entirely new (such as multicellularity or 
human language), cooperation is needed. Evolutionary construction is based on 
cooperation. 

                                                 
1 This paper will be published as book chapter in R M May and A McLean (eds) Theoretical Ecology: 
Principles and Applications, Oxford UP, Oxford (2007). 
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The five rules for cooperation which we examine in this chapter are: kin selection, 
direct reciprocity, indirect reciprocity, graph selection, and group selection. Each of these 
can promote cooperation if specific conditions are fulfilled.  

2.1 Kin selection 
The heated conversation took place in an unheated British pub over some pints of warm 
bitter. Suddenly J.B.S. Haldane remarked, ‘I will jump into the river to save two brothers 
or eight cousins.’ The founding father of population genetics and dedicated communist in 
his spare time never bothered to write up this insight. The witness of the revelation was 
Haldane’s eager pupil, the young John Maynard Smith. But given John’s high regard for 
entertaining stories and good beer, can we trust his memory?  

The insight that Haldane might have had in the pub was precisely formulated by 
William Hamilton. He wrote a PhD thesis on this topic, submitted a long paper to the 
Journal of Theoretical Biology, and spent much of the next decade in the Brazilian 
jungle. This was arguably the most important paper in evolutionary biology in the second 
half of the twentieth century (Hamilton, 1964a, 1964b, 1998). The theory was termed kin 
selection by Maynard Smith (1964). The crucial equation is the following. Cooperation 
among relatives can be favored by natural selection if the coefficient of genetic 
relatedness, r, between the donor and the recipient exceeds the cost/benefit ratio of the 
altruistic act:  

/r c b>               (2.1) 

Kin-selection theory has been tested in numerous experimental studies. Indeed, many 
cooperative acts among animals occur between close kin (Frank, 1998; Hamilton, 1998). 
The exact relationship between kin selection and other mechanisms such as group 
selection and spatial reciprocity, however, remains unclear. A recent study even suggests 
that much of cooperation in social insects is due to group selection rather than kin 
selection (Wilson and Hölldobler, 2005). Note that kin selection is more likely to work in 
quite small groups; in large groups, unless highly inbred, the average value of r will be 
tiny. 

2.2 Direct reciprocity  
In 1971, Robert Trivers published a landmark paper entitled ‘The evolution of reciprocal 
altruism’ (Trivers, 1971). Trivers analyzed the question how natural selection could lead 
to cooperation between unrelated individuals. He discusses three biological examples: 
cleaning symbiosis in fish, warning calls in birds, and human interactions. Trivers cites 
Luce and Raiffa (1957) and Rapoport and Chammah (1965) for the Prisoner’s Dilemma, 
which is a game where two players have the option to cooperate or to defect. If both 
cooperate they receive the reward, R. If both defect they receive the punishment, P. If one 
cooperates and the other defects, then the cooperator receives the sucker’s payoff, S, 
while the defector receives the temptation, T. The Prisoner’s Dilemma is defined by the 
ranking T R P S> > > . 
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Would you cooperate or defect? Assuming the other person will cooperate it is better 
to defect, because T R> . Assuming the other person will defect it is also better to defect, 
because P S> . Hence, no matter what the other person will do it is best to defect. If both 
players analyze the game in this rational way then they will end up defecting. The 
dilemma is that they both could have received a higher payoff if they had chosen to 
cooperate. But cooperation is irrational. 

We can also imagine a population of cooperators and defectors and assume that the 
payoff for each player is determined by many random interactions with others. Let x 
denote the frequency of cooperators and 1 x−  the frequency of defectors. The expected 
payoff for a cooperator is (1 ).Cf Rx S x= + −  The expected payoff for a defector is 

(1 ).Df Tx P x= + −  Therefore, for any x, defectors have a higher payoff than cooperators. 
In evolutionary game theory, payoff is interpreted as fitness. Successful strategies 
reproduce faster and outcompete less successful ones. Reproduction can be cultural or 
genetic. In the non-repeated Prisoner’s Dilemma, in a well-mixed population, defectors 
will outcompete cooperators. Natural selection favors defectors. 

Cooperation becomes an option if the game is repeated. Suppose there are m rounds. 
Let us compare two strategies, always defect (ALLD), and GRIM, which cooperates on 
the first move, then cooperates as long as the opponent cooperates, but permanently 
switches to defection if the opponent defects once. The expected payoff for GRIM versus 
GRIM is nR. The expected payoff for ALLD versus GRIM is ( 1)T m P+ − . If 

( 1)nR T m P> + −  then ALLD cannot spread in a GRIM population when rare. This is an 
argument of evolutionary stability. Interestingly, Trivers (1971) quotes ‘Hamilton (pers. 
commun.)’ for this idea.  

A small problem with the above analysis is that given a known number of rounds it 
is best to defect in the last round and by backwards induction it is also best to defect in 
the penultimate round and so on. Therefore, it is more natural to consider a repeated 
game with a probability w of having another round. In this case, the expected number of 
rounds is 1/(1 ),w−  and GRIM is stable against invasion by ALLD provided 

( ) /( ).w T R T P> − −  
We can also formulate the Prisoner’s Dilemma as follows. The cooperator helps at a 

cost, c, and the other individual receives a benefit, b. Defectors do not help. Therefore we 
have ,T b=  ,R b c= −  0P = , and .S c= −  The family of games that is described by the 
parameters b and c is a subset of all possible Prisoner’s Dilemma games as long as .b c>  
For the repeated Prisoner’s Dilemma, we find that ALLD cannot invade GRIM if  

/w c b>               (2.2) 

The probability of having another round must exceed the cost/benefit ratio of the 
altruistic act (Axelrod and Hamilton, 1981; Axelrod, 1984). Notice, however, the implicit 
assumption here that the payoff for future rounds is not discounted (i.e. distant benefits 
count as much as present ones). In evolutionary reality, this is unlikely. We can address 
this by incorporating an appropriate discount factor in w (May, 1987), but note, from eqn 
2, that this makes cooperation less likely. 
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Thus, the repeated Prisoner’s Dilemma allows cooperation, but the question arises: 
what is a good strategy for playing this game? This question was posed by the political 
scientist, Robert Axelrod. In 1979, he decided to conduct a tournament of computer 
programs playing the repeated Prisoner’s Dilemma. He received 14 entries, of which the 
surprise winner was tit-for-tat (TFT), the simplest of all strategies that were submitted. 
TFT cooperates in the first move, and then does whatever the opponent did in the 
previous round. TFT cooperates if you cooperate, TFT defects if you defect. It was 
submitted by the game theorist Anatol Rapoport (who is also the co-author of the book 
Prisoner’s Dilemma; Rapoport and Chammah, 1965). Axelrod analyzed the events of the 
tournament, published a detailed account and invited people to submit strategies for a 
second championship. This time he received 63 entries. John Maynard Smith submitted 
tit-for-two-tats, a variant of TFT which defects only after the opponent has defected twice 
in a row. Only one person, Rapoport, submitted TFT, and it won again. At this time, TFT 
was considered to be the undisputed world champion in the heroic world of the repeated 
Prisoner’s Dilemma. 

But one weakness became apparent very soon (Molander, 1985). TFT cannot correct 
mistakes. The tournaments were conducted without strategic noise. In a real world, 
trembling hands and fuzzy minds cause erroneous moves. If two TFT players interact 
with each other, a single mistake leads to a long sequence of alternating defection and 
cooperation. In the long run two TFT players get the same low payoff as two players who 
flip coins for every move in order to decide whether to cooperate or to defect. Errors 
destroy TFT.  

Our own investigations in this area began after reading a News and Views article in 
Nature where the author made three important points: first, he often leaves university 
meetings with a renewed appreciation for the problem of how natural selection can favor 
cooperative acts given that selfish individuals gain from cheating; second, strategies in 
the repeated Prisoner’s Dilemma should not be error-free but subjected to noise; third, 
evolutionary stability should be tested not against single invaders but against 
heterogeneous ensembles of invaders (May, 1987). This was the motivation for the 
following work.  

In 1989, we conducted evolutionary tournaments. Instead of inviting experts to 
submit programs, we asked mutation and selection to explore (some portion of) the 
strategy space of the repeated Prisoner’s Dilemma in the presence of noise. The initial 
random ensemble of strategies was quickly dominated by ALLD. If the opposition is 
random, it is best to defect. A large portion of the population began to adopt the ALLD 
strategy and everything seemed lost. But after some time, a small cluster of players 
adopted a strategy very close to TFT. If this cluster is sufficiently large, then it can 
increase in abundance, and the entire population swings from ALLD to TFT. Reciprocity 
(and therefore cooperation) has emerged. We can show that TFT is the best catalyst for 
the emergence of cooperation. But TFT’s moment of glory was brief and fleeting. In all 
cases, TFT was rapidly replaced by another strategy. On close inspection, this strategy 
turned out to be generous tit-for-tat (GTFT), which always cooperates if the opponent has 
cooperated on the previous move, but sometimes (probabilistically) even cooperates 
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when the opponent has defected. Natural selection had discovered forgiveness (Nowak 
and Sigmund, 1992).  

After many generations, however, GTFT is undermined by unconditional 
cooperators, ALLC. In a society where everybody is nice (using GTFT), there is almost 
no need to remember how to retaliate against a defection. A biological trait that is not 
used is likely to be lost by random drift. Birds that escape to islands without predators 
lose the ability to fly. Similarly, a GTFT population is softened and turns into an ALLC 
population.  

Once most people play ALLC, there is an open invitation for ALLD to seize power. 
This is precisely what happens. The evolutionary dynamics run in cycles: from ALLD to 
TFT to GTFT to ALLC and back to ALLD. These oscillations of cooperative and 
defective societies are a fundamental part of all our observations regarding the evolution 
of cooperation. Most models of cooperation show such oscillations. Cooperation is never 
a final state of evolutionary dynamics. Instead it is always lost to defection after some 
time and has to be re-established. These oscillations are also reminiscent of alternating 
episodes of war and peace in human history (Figure 2.1). 

A subsequent set of simulations, exploring a larger strategy space, led to a surprise 
(Nowak and Sigmund, 1993). The fundamental oscillations were interrupted by another 
strategy which seems to be able to hold its ground for a very long period of time. Most 
surprisingly, this strategy is based on the extremely simple principle of win-stay, lose-
shift (WSLS). If my payoff is R or T then I will continue with the same move next round. 
If I have cooperated then I will cooperate again, if I have defected then I will defect 
again. If my payoff is only S or P then I will switch to the other move next round. If I 
have cooperated then I will defect, if I have defected then I will cooperate (Figure 2.2). 

If two WSLS strategists play each other, they cooperate most of the time. If a 
defection occurs accidentally, then in the next move both will defect. Hereafter both will 
cooperate again. WSLS is a simple deterministic machine to correct stochastic noise. 
While TFT cannot correct mistakes, both GTFT and WSLS can. But WSLS has an 
additional ace in its hand. When WSLS plays ALLC it will discover after some time that 
ALLC does not retaliate. After an accidental defection, WSLS will switch to permanent 
defection. Therefore, a population of WSLS players does not drift to ALLC. Cooperation 
based on WSLS is more stable than cooperation based on TFT-like strategies.  

The repeated Prisoner’s Dilemma is mostly known as a story of TFT, but WSLS is a 
superior strategy in an evolutionary scenario with errors, mutation, and many generations 
(Fudenberg and Maskin, 1990; Nowak and Sigmund, 1993). 

In the infinitely repeated game, WSLS is stable against invasion by ALLD if 
/ 2b c > . If instead 1 / 2b c< <  then a stochastic variant of WSLS dominates the scene; 

this strategy cooperates after a mutual defection only with a certain probability. Of 
course, all strategies of direct reciprocity, such as TFT, GTFT, or WSLS can only lead to 
the evolution of cooperation if the fundamental inequality (eqn 2) is fulfilled. 
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2.3 Indirect reciprocity 
Whereas direct reciprocity embodies the idea of you scratch my back and I scratch yours, 
indirect reciprocity suggests that you scratch my back and I scratch someone else’s. Why 
should this work? Presumably I will not get scratched if it becomes known that I scratch 
nobody. Indirect reciprocity, in this view, is based on reputation (Nowak and Sigmund, 
1998a, 1998b, 2005). But why should you care about what I do to a third person?  

The main reason why economists and social scientists are interested in indirect 
reciprocity is because one-shot interactions between anonymous partners in a global 
market become increasingly frequent and tend to replace the traditional long-lasting 
associations and long-term interactions between relatives, neighbors, or members of the 
same village. Again, as for kin selection, it is a question of the size of the group. A 
substantial part of our life is spent in the company of strangers, and many transactions are 
no longer face to face. The growth of online auctions and other forms of e-commerce is 
based, to a considerable degree, on reputation and trust. The possibility to exploit such 
trust raises what economists call moral hazards. How effective is reputation, especially if 
information is only partial? 

Evolutionary biologists, on the other hand, are interested in the emergence of human 
societies, which constitutes the last (up to now) of the major transitions in evolution. In 
contrast to other eusocial species, such as bees, ants, or termites, humans display a large 
amount of cooperation between non-relatives (Fehr and Fischbacher, 2003). A 
considerable part of human cooperation is based on moralistic emotions, such as anger 
directed towards cheaters or the warm inner glow felt after performing an altruistic 
action. Intriguingly, humans not only feel strongly about interactions that involve them 
directly, they also judge actions between third parties as evidenced by the contents of 
gossip. There are numerous experimental studies of indirect reciprocity based on 
reputation (Wedekind and Milinski, 2000; Milinski et al., 2002; Wedekind and 
Braithwaite, 2002; Seinen and Schram, 2006).  

A simple model of indirect reciprocity (Nowak and Sigmund, 1998a, 1998b) 
assumes that within a well-mixed population, individuals meet randomly, one in the role 
of the potential donor, the other as potential recipient. Each individual experiences 
several rounds of this interaction in both roles, but never with the same partner twice. A 
player can follow either an unconditional strategy, such as always cooperate or always 
defect, or a conditional strategy, which discriminates among the potential recipients 
according to their past interactions. In a simple example, a discriminating donor helps a 
recipient if her score exceeds a certain threshold. A player’s score is 0 at birth, increases 
whenever that player helps and decreases whenever the player withholds help. Individual-
based simulations and direct calculations show that cooperation based on indirect 
reciprocity can evolve provided the probability, p, of knowing the social score of another 
person exceeds the cost/benefit ratio of the altruistic act:  

/p c b>              (2.3) 
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The role of genetic relatedness that is crucial for kin selection is replaced by social 
acquaintanceship. In a fluid population, where most interactions are anonymous and 
people have no possibility of monitoring the social score of others, indirect reciprocity 
has no chance. But in a socially viscous population, where people know each other’s 
reputation, cooperation by indirect reciprocity can thrive (Nowak and Sigmund, 1998a).  

In a world of binary moral judgements (Nowak and Sigmund, 1998b; Leimar and 
Hammerstein, 2001; Fishman, 2003; Panchanathan and Boyd, 2003; Brandt and 
Sigmund, 2004, 2005), there are four ways of assessing donors in terms of first-order 
assessment: always consider them as good, always consider them as bad, consider them 
as good if they refuse to give, or consider them as good if they give. Only this last option 
makes sense. Second-order assessment also depends on the score of the receiver; for 
example, it can be deemed good to refuse help to a bad person. There are 16 second-order 
rules. Third-order assessment also depends on the score of the donor; for example, a good 
person refusing to help a bad person may remain good, but a bad person refusing to help 
a bad person remains bad. There are 256 third-order assessment rules. We display four of 
them in Figure 2.3.  

With the scoring assessment rule, cooperation, C, always leads to a good reputation, 
G, whereas defection, D, always leads to a bad reputation, B. Standing (Sugden, 1986) is 
like scoring, but it is not bad if a good donor defects against a bad recipient. With 
judging, in addition, it is bad to cooperate with a bad recipient. For another assessment 
rule, shunning, all donors who meet a bad recipient become bad, regardless of what 
action they choose. Shunning strikes us as grossly unfair, but it emerges as the winner in 
a computer tournament if errors in perception are included and if there are only a few 
rounds in the game (Takahashi and Mashima, 2003).  

An action rule for indirect reciprocity prescribes giving or not giving, depending on 
the scores of both donor and recipient. For example, you may decide to help if the 
recipient’s score is good or your own score is bad. Such an action might increase your 
own score and therefore increase the chance of receiving help in the future. There are 16 
action rules.  

If we view a strategy as the combination of an action rule and an assessment rule, we 
obtain 4096 strategies. In a remarkable calculation, Ohtsuki and Iwasa (2004, 2005) 
analyzed all 4096 strategies and proved that only eight of them are evolutionarily stable 
under certain conditions and lead to cooperation (Figure 2.4).  

Both standing and judging belong to the leading eight, but scoring and shunning are 
not. However, we expect that scoring has a similar role in indirect reciprocity to that of 
TFT in direct reciprocity. Neither strategy is evolutionarily stable, but their simplicity and 
their ability to catalyze cooperation in adverse situations constitute their strength. In 
extended versions of indirect reciprocity, in which donors can sometimes deceive others 
about the reputation of the recipient, scoring is the foolproof concept of ‘I believe what I 
see’. Scoring judges the action and ignores the stories. There is also experimental 
evidence that in certain situations humans follow scoring rather than standing (Milinski et 
al., 2001).  
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In human evolution, there must have been a tendency to move from the simple 
cooperation promoted by kin or group selection to the strategic subtleties of direct and 
indirect reciprocity. Direct reciprocity requires precise recognition of individual people, a 
memory of the various interactions one had with them in the past, and enough brain 
power to conduct multiple repeated games simultaneously. Indirect reciprocity, in 
addition, requires the individual to monitor interactions among other people, possibly 
judge the intentions that occur in such interactions, and keep up with the ever-changing 
social network of the group. Reputation of players may not only be determined by their 
own actions, but also by their associations with others.  

We expect that indirect reciprocity has coevolved with human language. On the one 
hand, it is helpful to have names for other people and to receive information about how a 
person is perceived by others. On the other hand a complex language is needed, 
especially if there are intricate social interactions. The possibilities for games of 
manipulation, deceit, cooperation, and defection are limitless. It is likely that indirect 
reciprocity has provided the very selective scenario that led to cerebral expansion in 
human evolution. 

2.4 Graph selection 
The traditional model of evolutionary game dynamics assumes that populations are well-
mixed (Taylor and Jonker, 1978; Hofbauer and Sigmund, 1998). This means that 
interactions between any two players are equally likely. More realistically, however, the 
interactions between individuals are governed by spatial effects or social networks. Let us 
therefore assume that the individuals of a population occupy the vertices of a graph 
(Nakamaru et al., 1997, 1998; Skyrms and Pemantle, 2000; Abramson and Kuperman, 
2001; Ebel and Bornholdt, 2002; Lieberman et al., 2005; Nakamaru and Iwasa, 2005; 
Santos et al., 2005; Santos and Pacheco, 2005). The edges of the graph determine who 
interacts with whom (Figure 2.5).  

Consider a population of N individuals consisting of cooperators and defectors. A 
cooperator helps all individuals to whom it is connected, and pays a cost, c. If a 
cooperator is connected to k other individuals and i of those are cooperators, then its 
payoff is .bi ck−  A defector does not provide any help, and therefore has no costs, but it 
can receive the benefit from neighboring cooperators. If a defector is connected to k other 
individuals and j of those are cooperators, then its payoff is bj. Evolutionary dynamics are 
described by an extremely simple stochastic process: at each time step, a random 
individual adopts the strategy of one of its neighbors proportional to their fitness. 

We note that stochastic evolutionary game dynamics in finite populations is sensitive 
to the intensity of selection. In general, the reproductive success (fitness) of an individual 
is given by a constant, denoting the baseline fitness, plus the payoff that arises from the 
game under consideration. Strong selection means that the payoff is large compared with 
the baseline fitness; weak selection means the payoff is small compared with the baseline 
fitness. It turns out that many interesting results can be proven for weak selection, which 
is an observation also well known in population genetics.  
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The traditional, well-mixed population of evolutionary game theory is represented by 
the complete graph, where all vertices are connected, which means that all individuals 
interact equally often. In this special situation, cooperators are always opposed by natural 
selection. This is the fundamental intuition of classical evolutionary game theory. But 
what happens on other graphs?  

We need to calculate the probability, Cρ , that a single cooperator starting in a 
random position turns the whole population from defectors into cooperators. If selection 
neither favors nor opposes cooperation, then this probability is 1/ N , which is the fixation 
probability of a neutral mutant. If the fixation probability Cρ  is greater than 1/ N , then 
selection favors the emergence of cooperation. Similarly, we can calculate the fixation 
probability of defectors, Dρ . A surprisingly simple rule determines whether selection on 
graphs favors cooperation. If  

/b c k>               (2.4) 

then cooperators have a fixation probability of greater than 1/ N  and defectors have a 
fixation probability of less than 1/ .N  Thus, for graph selection to favor cooperation, the 
benefit/cost ratio of the altruistic act must exceed the average degree, k, which is given by 
the average number of links per individual (Ohtsuki et al., 2006). This relationship can be 
shown with the method of pair-approximation for regular graphs, where all individuals 
have exactly the same number of neighbors. Regular graphs include cycles, all kinds of 
spatial lattice, and random regular graphs. Moreover, computer simulations suggest that 
the rule /b c k>  also holds for non-regular graphs such as random graphs and scale-free 
networks. The rule holds in the limit of weak selection and .k N  For the complete 
graph, ,k N=  we always have 1/ .D CNρ ρ> >  Preliminary studies suggest that eqn 2.4 
also tends to hold for strong selection. The basic idea is that natural selection on graphs 
(in structured populations) can favor unconditional cooperation without any need for 
strategic complexity, reputation, or kin selection. 

Games on graphs grew out of the earlier tradition of spatial evolutionary game theory 
(Nowak and May, 1992; Herz, 1994; Killingback and Doebeli, 1996; Mitteldorf and 
Wilson, 2000; Hauert et al., 2002; Le Galliard et al., 2003; Hauert and Doebeli, 2004; 
Szabo´ and Vukov, 2004) and investigations of spatial models in ecology (Durrett and 
Levin, 1994a, 1994b; Hassell et al., 1994; Tilman and Kareiva, 1997; Neuhauser, 2001) 
and spatial models in population genetics (Wright, 1931; Fisher and Ford, 1950; 
Maruyama, 1970; Slatkin, 1981; Barton, 1993; Pulliam, 1988; Whitlock, 2003). 

2.5 Group selection 
The enthusiastic approach of early group selectionists to explain all evolution of 
cooperation from this one perspective (Wynne-Edwards, 1962) has met with vigorous 
criticism (Williams, 1966) and even a denial of group selection for decades. Only an 
embattled minority of scientists defended the approach (Eshel, 1972; Wilson, 1975; 
Matessi and Jayakar, 1976; Wade, 1976; Uyenoyama and Feldman, 1980; Slatkin, 1981; 
Leigh, 1983; Szathmary and Demeter, 1987). Nowadays it seems clear that group 
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selection can be a powerful mechanism to promote cooperation (Sober and Wilson, 1998; 
Keller, 1999; Michod, 1999; Swenson et al., 2000; Kerr and Godfrey-Smith, 2002; 
Paulsson, 2002; Boyd and Richerson, 2002; Bowles and Gintis, 2004; Traulsen et al., 
2005). We only have to make sure that its basic requirements are fulfilled in a particular 
situation (Maynard Smith, 1976). Exactly what these requirements are can be illustrated 
with a simple model (Traulsen and Nowak, 2006). 

Imagine a population of individuals subdivided into groups. For simplicity, we 
assume that the number of groups is constant and given by m. Each group contains 
between 1 and n individuals. The total population size can fluctuate between the bounds 
m and nm. Again, there are two types of individual, cooperators and defectors. 
Individuals interact with others in their group and thereby receive a payoff. At each time 
step a random individual from the entire population is chosen proportional to payoff in 
order to reproduce. The offspring is added to the same group. If the group size is less than 
or equal to n then nothing else happens. If the group size, however, exceeds n then with 
probability q the group splits into two. In this case, a random group is eliminated (in 
order to maintain a constant number of groups). With probability 1 ,q−  the group does 
not divide, but instead a random individual from that group is eliminated (Figure 2.6).  

This minimalist model of multilevel selection has some interesting features. Note 
that the evolutionary dynamics are entirely driven by individual fitness. Only individuals 
are assigned payoff values. Only individuals reproduce. Groups can stay together or split 
(divide) when reaching a certain size. Groups that contain fitter individuals reach the 
critical size faster and therefore split more often. This concept leads to selection among 
groups, although only individuals reproduce. The higher level selection emerges from 
lower level reproduction. Remarkably, the two levels of selection can oppose each other.  

As before, we can compute the fixation probabilities, Cρ  and Dρ , of cooperators and 
defectors to check whether selection favors one or the other. If we add a single cooperator 
to a population of defectors, then this cooperator must first take over a group. 
Subsequently the group of cooperators must take over the entire population. The first step 
is opposed by selection, the second step is favored by selection. Hence, we need to find 
out if the overall fixation probability is greater to or less than what we would obtain for a 
neutral mutant. An analytic calculation is possible in the interesting limit 1q , where 
individuals reproduce much more rapidly than groups divide. In this case, most of the 
groups are at their maximum size and hence the total population size is almost constant 
and given by .N nm=  We find that selection favors cooperators and opposes defectors, 

1/ ,C DNρ ρ> >  if 

/ 1 /( 2)b c n m> + −            (2.5a) 

This result holds for weak selection. Smaller group sizes and larger numbers of 
competing groups favor cooperation. We also notice that the number of groups, m, must 
exceed 2. There is an intuitive reason for this threshold. Consider the case of 2m =  
groups with 2n =  individuals. In a mixed group, the cooperator has payoff c−  and the 
defector has payoff b; the defector/cooperator difference is b c+ . In a homogeneous 
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group, two cooperators have payoff ,b c−  while two defectors have a payoff of 0. Thus 
the disadvantage for cooperators in mixed groups cannot be compensated for by the 
advantage they have in homogeneous groups. Interestingly, however, for larger splitting 
probabilities, q, we find that cooperators can be favored even for 2m =  groups. The 
reason is the following: for very small q, the initial cooperator must reach fixation in a 
mixed group; but for larger q, a homogeneous cooperator group can also emerge if a 
mixed group splits, giving rise to a daughter group that has only cooperators. Thus, larger 
splitting probabilities make it easier for cooperation to emerge.  

Let us also consider the effect of migration between groups. The average number of 
migrants accepted by a group during its lifetime is denoted by z. We find that selection 
favors cooperation provided that 

/ 1 /b c z n m> + +            (2.5b) 

In order to derive this condition we have assumed weak selection and 1,q  as before, 
but also that both the numbers of groups, m, and the maximum group size, n, are much 
larger than 1.  

Group selection (or multilevel selection) is a powerful mechanism for the evolution 
of cooperation if there is a large number of relatively small groups and migration between 
groups is not too frequent. 

2.6 Conclusion  
We end by listing the five rules that we mentioned in the beginning. These rules represent 
laws of nature governing the natural selection of cooperation. 

1. Kin selection leads to cooperation if / 1/ ,b c r>  where r is the coefficient of genetic 
relatedness between donor and recipient. 

2. Direct reciprocity leads to cooperation if / 1/b c w> , where w is the probability of 
playing another round in the repeated Prisoner’s Dilemma. 

3. Indirect reciprocity leads to cooperation if / 1/b c q> , where q is the probability of 
knowing the reputation of a recipient. 

4. Graph selection (or network reciprocity) leads to cooperation if /b c k> , where k is 
the degree of the graph; that is, the average number of neighbors.  

5. Group selection leads to cooperation if / 1 /b c z n m> + + , where z is the number of 
migrants accepted by a group during its lifetime, n is the group size, and m is the 
number of groups. 

In all five theories, b is the benefit for the recipient and c the cost for the donor of an 
altruistic act. 
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Figures 
Tit-for-tat Generous tit-for-tat

Always cooperateAlways defect

Win-stay, lose-shift 
 

 
Figure 2.1 Evolutionary cycles of cooperation and defection. A small cluster of tit-for-tat (TFT) players or even a 
lineage starting from a single TFT player in a finite population can invade an always defect (ALLD) population. In fact, 
TFT is the most efficient catalyst for the first emergence of cooperation in an ALLD population. But in a world of fuzzy 
minds and trembling hands, TFT is soon replaced by generous tit-for-tat (GTFT), which can re-establish cooperation 
after occasional mistakes. If everybody uses GTFT, then always cooperate (ALLC) is a neutral variant. Random drift 
leads to ALLC. An ALLC population invites invasion by ALLD. But ALLC is also dominated by win-stay, lose-shift 
(WSLS), which leads to more stable cooperation than TFT-like strategies. 
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Figure 2.2 Win-stay, lose-shift (WSLS) embodies a very simple principle. If you do well then continue with what you 
are doing. If you are not doing well, then try something else. Here we consider the Prisoner’s Dilemma payoff values 

3,R =  5,T =  1,p =  and 0S = . If both players cooperate, you receive three points, and you continue to cooperate. If 
you defect against a cooperator, you receive five points, and you continue to defect. But if you cooperate with a 
defector, you receive no points, and therefore you will switch from cooperation to defection. If, on the other hand, you 
defect against a defector, you receive one point, and you will switch to cooperation. Your aspiration level is three 
points. If you get at least three points then you consider it a win and you will stay with your current choice. If you get 
less than three points, you consider it a loss and you will shift to another move. If ( ) / 2R T P> +  (or / 2b c > ) then 
WSLS is stable against invasion by ALLD. If this inequality does not hold, then our evolutionary simulations lead to a 
stochastic variant of WSLS, which cooperates after a DD move only with a certain probability. This stochastic variant 
of WSLS is then stable against invasion by ALLD. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3 Four assessment rules. Assessment rules specify how an observer judges an interaction between a potential 
donor and a recipient. Here we show four examples of assessment rules in a world of binary reputation, good (G) and 
bad (B). For scoring, cooperation (C) earns a good reputation and defection (D) earns a bad reputation. Standing is very 
similar to scoring; the only difference is that a good donor can defect against a bad recipient without losing his good 
reputation. Note that scoring is associated with costly punishment (Sigmund et al., 2001; Fehr and Gaechter, 2002), 
whereas for standing punishment of bad recipients is cost-free. For judging it is bad to help a bad recipient. Shunning 
assigns a bad reputation to any donor who interacts with a bad recipient. 
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Figure 2.4 Ohtsuki and Iwasa’s leading eight. Ohtsuki and Iwasa (2004, 2005) have analyzed the combination of 

82 256=  assessment modules with 42 16=  action modules. This is a total of 4096 strategies. They have found that 
eight of these strategies can be evolutionarily stable and lead to cooperation, provided that everybody agrees on each 
other’s reputation. (In general, uncertainty and incomplete information might lead to private lists of the reputation of 
others.) The three asterisks in the assessment module indicate a free choice between G and B. There are therefore 

32 8=  different assessment rules which make up the leading eight. The action module is built as follows: if the column 
in the assessment module is G and B, then the corresponding action is C, otherwise the action is D. Note that standing 
and judging are members of the leading eight, but that scoring and shunning are not. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5 Games on graphs. The members of a population occupy the vertices of a graph (or social network). The 
edges denote who interacts with whom. Here we consider the specific example of cooperators, C, competing with 
defectors, D. A cooperator pays a cost, c, for every link. Each neighbor of a cooperator receives a benefit, b. The 
payoffs of some individuals are indicated in the figure. The fitness of each individual is a constant, denoting the 
baseline fitness, plus the payoff of the game. For evolutionary dynamics, we assume that in each round a random player 
is chosen to die, and the neighbors compete for the empty site proportional to their fitness. A simple rule emerges: if 

/b c k>  then selection favors cooperators over defectors. Here k is the average number of neighbors per individual. 
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Figure 2.6 A simple model of group selection. A population consists of m groups of maximum size n. Individuals 
interact with others in their group in the context of an evolutionary game. Here we consider the game between 
cooperators, C, and defectors, D. For reproduction, individuals are chosen from the entire population with a probability 
proportional to their payoff. The offspring is added to the same group. If a group reaches the maximum size, n, then it 
either splits in two or a random individual from that group is eliminated. If a group splits, then a random group dies, in 
order to keep the total population size constant. This metapopulation structure leads to the emergence of two levels of 
selection, although only individuals reproduce. 
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