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Foreword 

Discounting is a key element of catastrophic risk management. Misperceptions of 
discount rates result in inadequate evaluations of risk management strategies, which in 
turn may provoke catastrophes and significantly contribute to increasing vulnerability of 
the society. Therefore applications of the traditional discounting negatively affect 
the outcome of catastrophic risk management. 
 
This paper analyses the implication of potential catastrophic events on the choice of 
discounting. It provides fundamental insights in the nature of discounting that is 
critically important for developing robust strategies for managing catastrophic risks. 
 
It shows that any discounting with constant or declining rates can be linked to random 
"stopping time" events, which define the internal discount-related horizons of 
evaluations. Conversely, any random stopping time horizon induces a discounting, in 
particular, with the standard discount rates. 
 
The expected duration of the stopping time horizon for discount rates obtained from 
capital markets does not exceed a few decades and, as such, these rates may 
significantly underestimate the net benefit of long-term decisions. The proposed 
alternative undiscounted stopping time criterion allows to induce social discounting 
focusing on arrival times of potential extreme events rather then horizons of market 
interests. It depends also on feasible decisions and spatio-temporal variability of 
catastrophic losses. 
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Abstract 

The goal of this paper is to specify and summarize assumptions and proofs for new 
approaches to discounting proposed in our catastrophic risk management studies. The 
main issue is concerned with justification of investments, which may turn into benefits 
over long and uncertain time horizon. For example, how can we justify mitigation 
efforts for expected 300-year flood that can occur also next year. The discounting is 
supposed to impose time preferences to resolve this issue, but this view may be 
dramatically misleading. We show that any discounted infinite horizon sum of values 
can be equivalently replaced by undiscounted sum of the same values with random 
finite time horizon. The expected duration of this stopping time horizon for standard 
discount rates obtained from capital markets does not exceed a few decades and 
therefore such rates may significantly underestimate the net benefits of long-term 
decisions.  

The alternative undiscounted random stopping time criterion allows to induce social 
stopping time discounting focusing on arrival times of potential extreme events rather 
then horizons of market interests. In general, induced discount rates are conditional on 
the degree of social commitment to mitigate risk. Random extreme events affect these 
rates, which alter the optimal mitigation efforts that, in turn, change events. This 
endogeneity of the induced discounting restricts exact evaluations necessary for using 
traditional deterministic methods and it calls for stochastic optimisation methods. The 
paper provides insights in the nature of discounting that are critically important for 
developing robust long-term risk management strategies.  

 

Key words: Extreme events, stopping time, catastrophic risks, discounting, 
investments, stochastic optimisation, risk measures. 
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1. Introduction 
The implication of uncertainties and risks for justifying long-term investments is a 

controversial issue. How can we justify investments, which may possibly turn into 

benefits over long and uncertain time horizons in the future? This is a key issue for 

catastrophic risk management. For example, how can we justify investments in climate 

change mitigations, say, in flood defense systems to cope with foreseen extreme 1000-, 

500-, 250-, and 100- floods? The lack of proper evaluations for dealing with extreme 

events dramatically contributes to increasing losses from human-made and natural 

disasters [5]. The analysis of floods that occurred in the summer of 2002 across central 

Europe [18] shows that the potential areas of vulnerability to extreme floods have 

multiplied as a consequence of failed development planning. Underestimation and 

ignorance of low probability/high consequence events have led to the growth of 

buildings and industrial land and sizable value accumulation in flood prone areas 

without proper attention being paid to flood mitigations. A challenge is that an 

endogenously created catastrophe1, say a 300-year flood, has never occurred before in a 

given region. Therefore, purely adaptive policies relying on historical observations 

provide no awareness of the “unknown” risk although, a 300-year flood may occur next 

year. For example, the 2002 floods in Austria, Germany and the Czech Republic were 

classified (in different regions) as 1000-, 500-, 250-, and 100-year events [18].  

                                                 
1 As a consequence of inappropriate policies. 
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A key issue is development of policies with proper long-term perspectives. The 

traditional discounting is supposed to impose necessary time preferences, but this view 

may be dramatically misleading. There are several possibilities for choosing discount 

rates (see, for example, the discussion in [2], [23], [26], [31]). The traditional approach 

is to use the rates obtained in capital markets. The geometric or exponential discount 

factor  (for small rttrt
t eerd −+−− ≈=+= )1ln()1( r ) is usually connected with a 

constant rate r  of returns from capital markets. Since returns in capital markets are 

linked to assets with a lifespan of a few decades, this choice may completely reduce the 

impacts that investments have beyond these intervals (Section 2). Another serious 

problem [24], [20], [33] arises from the use of the expected value Er  and the discount 

factor  that implies additional significant reduction of future values in contrast 

to the expected discount factor  since . These issues 

are discussed in Sections 2 and 3. 

tEr −+ )1(

trE −+ )1( , tt ErrE −− +>>+ )1()1(

An appropriate interest rate is especially difficult to define when decisions involve 

time horizons beyond the interests of the current generation. If future generations are 

not present in the market, e.g., long-term environmental damages are not included in 

production costs, the market interest rates do not reflect the preferences of future 

generations. According to Arrow et al. [2] “the observed market rates of interest refer to 

how individuals are willing to trade off consumption over their own life. These may or 

may not bear close correspondence to how a society is willing to trade off consumption 

across generations”. 

Debates on proper discount rates for long-term problems have a long-standing 

history [2], [31]. Ramsey [27] argued that applying a positive discount rate r  to 

discount values across generations is unethical. Koopmans [21], contrary to Ramsey, 

argued that zero discount rate r  would imply an unacceptably low level of current 

consumption. The use of so-called social discount rates produces two effects [2]. The 

“prescriptive” approach tends to generate relatively low discount rates and thus favors 

mitigation measures and the wellbeing of future generations. The “descriptive” 

approach tends to generate higher discount rates and thus favors less spending on 

mitigations and the wellbeing of the current generation.  
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The constant discount rate has only limited justification [4], [15], [26], [31]. As a 

compromise between “prescriptive” and “descriptive” approaches, Cline [6] argues for a 

declining discount rate: 5% for the first 30 years, and 1.5% later. There have been 

proposals for other schedules and attempts to justify the shape of proper decline. Papers 

[24], [33] show that uncertainty about r  produces a certainty-equivalent discount rate, 

which will generally be declining with time. Weitzman [33] proposed to model discount 

rates by a number of exogenous time dependent scenarios. He argued for rates of 3 – 

4% for the first 25 years, 2% for the next 50 years, 1% for the period 75–300 years and 

0 beyond 300 years. Newell and Pizer [24] analyzed the uncertainty of historical interest 

rates by using data on the US market rate for long-term government bonds. They 

proposed a different declining discount rate justified by a random walk model. 

Chichilinsky [4] proposed a new concept for long-term discounting with a declining 

discount rate by attaching some weight on the present and the future consumption. All 

these papers aim to derive an appropriate exogenous social discount rate.  

Sections 2 and 3 develop a different approach for social discounting. It is shown that 

any discounted sum, so-called net present value (NPV) criterion, tt tVd∑∞
=0  of expected 

values  for random variables (r.v.) , tt EvV = tv ,...1,0=t , , under constant 

and declining discount rates  equals the average undiscounted (in the agreement with 

Ramsey’s concerns) random sum  with a random stopping time 

t
tt rd −+= )1(

tr

∑ =
τ ν0t tE τ  defined by 

the given discounting . Therefore, discount rates can be associated with the 

occurrences of “stopping time” random events determining a finite “internal” discount-

related horizon 

td

],0[ τ . The expected duration of τ  and its standard deviation σ  under 

modest market interest rates of 3.5% is approximately 30 years, which may have no 

correspondence with expected, say, 300-year extreme events and 300≈σ . Conversely, 

it is shown that any stopping time random event induces a discounting. A set of 

mutually exclusive stopping time random events, e.g., 1000-, 500-, 250-, and 100- year 

floods, induces discounting with time-declining discount rates. This case corresponds 

also to the discounting with uncertain discount rates r . In particular, a single stopping 

time random event with the standard geometric probability distribution induces the 

standard discounting with constant discount rate r  and . t
t rd −+= )1(
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The effects of catastrophes on the stream of values , tv ,...1,0=t , differ from the 

effects of market uncertainties. Section 4 indicates that catastrophic events pose new 

challenges. They often create so-called endogenous, unknown (with the lack and even 

absence of adequate observations) and interdependent risks, which may potentially 

affect large territories and communities and, on the other hand, are dramatically affected 

by risk management decisions. As a consequence, catastrophic risks generally make it 

impossible to use traditional economic and insurance models [1], [4], [7], [8], [10], [20]. 

Section 4 shows that the concept of undiscounted random stopping time criteria allows 

to induce social discounting that focuses on arrivals of catastrophic events rather then 

the lifetime of market products. Since risk management decisions affect the occurrence 

of disasters in time and space, the induced discounting may depend on spatio-temporal 

distributions of extreme events and feasible sets of decisions. This endogeneity of 

induced spatio-temporal discounting calls for the use of stochastic optimization 

methods, which allow also to address the variability (Remark 2) of discounted criteria 

by using quantiles of random value  ∑ =
τ

0t tv  even for deterministic , . 

Section 5 establishes connections of stopping time criteria with dynamic versions of 

CVaR (Conditional Value-at-Risk) risk measures. Section 6 illustrates how 

misperception of induced discounting provokes catastrophes. Section 7 provides 

concluding remarks. 

tv ,...1,0=t

 

2. Standard and Induced Discounting 

The choice of discount rate as a prevailing interest rate within a time horizon of 

existing financial markets is well established [22]. Uncertainties, especially related to 

extreme events, challenge the possibility of markets to offer proper rates for longer time 

horizons. The following simple Proposition 1 and Remark 2 clarify the main concerns. 

The traditional financial approaches [22] often use the so-called net present value 

(NPV) criteria to justify investments. An investment is defined as an expected cash flow 

stream , , over a time horizon TVVV ,...,, 10 tt EvV = ∞≤T . Assume that r  is a constant 

prevailing market interest rate, then alternative investments are compared by 
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TTVdVdVV +++= ...110 , where , , t
t dd = 1)1( −+= rd 0,1,...,t T= , is the discount 

factor and V  denotes NPV.  

It is usually assumed that a long-term investment activity has an infinitely long time 

horizon, i.e.,  

∑∞

=
=

0t
V ttVd .  (1) 

The stream of values , , can represent an expected cash flow stream of a 

long-term investment activity. In economic growth models and integrated assessment 

models [23], [25], [31] the value  represents utility  of an infinitely living 

representative agent, or welfare 

tV ,...1,0=t

tV )( txU

∑=
=

n

i
t
iiit xuV

1
)(α  of a society with representative 

agents ni ,1= , utilities , consumptions  and welfare weights iu t
ix iα . Natural selection 

theory treats (1) as Darwinian fitness [30], where discount factors  are associated 

with hazard rates of an environment (Example 2).  

td

The infinite time horizon in (1) creates an illusion of truly long-term analysis. 

Proposition 1 shows that in fact deterministic evaluation (1) accounts only for values  

from a finite random horizon 

tV

],0[ τ  defined by a random stopping time τ  with the 

discount-related probability tdtP =≥ ][τ .  

Proposition 1. Consider a discounted sum (1) with , , . Let 

, , and 

td=td d >r

q = p =

1)1( −+= r 0

d q−1 τ  be a random variable with the geometric probability 

distribution , .  Then [ ] tpqtP ==τ ,...1,0=t [ ]tPdt ≥= τ  and 

∑=∑ ≥=∑ =
∞
=

∞
=

ττ 000 ][ t tttt t
t VEVtPVd . (2) 

Conversely, for any stopping time τ  with a geometric probability distribution 

, ∑=∑ ∞
== 00 t ttt t VdVE τ ][ tPdt ≥= τ . 

Proof.  We have  . Conversely, t
tt

tk
k dqqpqpqtP ==−=∑=≥ −∞

=
1)1(][τ
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t
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∞
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∞
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That is, any discounted deterministic sum (1) equals to the average undiscounted 

random sum ∑  of the same values . In other words, the discount factor  

induces an “internal” discount-related time horizon 

=

τ
0t tV tV t

t dd =

],0[ τ  with the geometrically 

distributed τ . Conversely, any geometrically distributed τ  and the criterion  

induces the geometric discounting in the sum .  

∑ =
τ

0t tVE

∑∞
=0t ttVd

Remark 1 (Random stopping time horizon).  We can consider ],0[ τ  being a random 

stopping time horizon associated with the first occurrence of a “killing”, i.e., a 

catastrophic stopping time event. The probability that this event occurs at  is 

 and  is the probability that this event occurs first time at t , i.e., 

,...

p tpq

1,0=t

τ  has a 

geometric probability distribution. Since dp −= 1 , , then the expected 

duration of 

1)1( −=d + r

τ , r/1+pE 1/1 ==τ . Therefore, for the interest rate of 3.5%, , 

the expected duration is 

035.0=r

30≈τE  years, i.e., this rate orients the policy analysis on an 

expected 30-year time horizon. The standard deviation p/q=σ , i.e., it equals 

approximately 30 years. The bias in favor of the present in discounting with the rate of 

3.5 percent is easily illustrated [26]. For a project with long-run benefits or costs, 1 Euro 

of benefits or costs in years 50, 100, and 200, has a present value respectively of 0.18, 

0.003, and practically 0 Euros. Definitely, this rate may have no correspondence to how 

society has to deal with a 300-year flood, i.e., a flood with the expected arrival time 

equal to 300 years. Therefore, in the risk management τ  can be associated with the 

arrival of potential catastrophic events rather than with horizons of market interests. The 

induced social discounting ][ tP ≥dt = τ  in this case would have proper long-term 

perspectives dependent on spatio-temporal patterns of catastrophes and risk 

management decisions (see Proposition 3 and Section 4). The discount rate r  can be 

viewed also as a killing (hazard) rate [19] which makes the life expectancy of an 

otherwise infinitely living representative agent or society equal to 1  years. Yet, r/1+
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depending on a concrete situation, stopping time τ  can be associated with the arrival 

time of a reward. 

Remark 2 (Variability of NPV). Disadvantages of this standard criterion (1) are well 

known [22]. In particular, the NPV critically depends on the prevailing interest rate 

which may not be easily defined in practice. In addition, the NPV does not reveal the 

temporal variability of cash flow streams. Two alternative streams may easily have the 

same NPV despite the fact that in one of them all the cash is clustered within a few 

periods, but in another it is spread out evenly over time. This type of temporal 

heterogeneity is critically important for dealing with catastrophic losses which occur 

suddenly as a “spike” in time and space [8].  

The criterion ,  has visible advantages. In particular, it allows to 

address distributional aspects and robust strategies [11] by analyzing the random 

variable  (even for deterministic 

∑ =
τ

0t tVE tt EvV =

∑ =

τ
0t tV tt Vv = ), e.g., its quantiles defined as maximal 

 satisfying safety constraints  δyy =

∑ ≥≥=
τ δ][ yvP

δy

∑ −+ =
− τδ 0

1 },0max{ t t yvEy

0t t . 

Equivalently,   maximizes the concave function (see discussion in [11], p. 16) 

. 

The optimal value of this function defines the so-called CVaR (Conditional Value-at-

Risk) risk measure [29]. 

xTherefore, if variables  depend on some decisions tv  (as in Section 4), then the 

maximization of function 

]}max{[)( 1 −++ − τδ yEyxF ,0 0∑ =t tv  

allows easy control of highly nonlinear (even for linear in x  function ) the safety 

constraints (quantiles of 

tv

∑ =
τ

0t tv )(xF) in an optimal manner defined by a function  that 

is adjusted to CVaR risk measure (see also Section 5). 

Remark 3 (Shock testing). The sensitivity of models w.r.t. “shocks” (extreme 

scenarios, events, stresses) is often assessed by introducing them into discounted criteria 
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[25], [31]. From Proposition 1 it follows that this may lead to serious miscalculations. 

Let us consider criterion (1) with discount factors ,  and assume 

that a “shock” arrives at a random time moment 

tdtd = 1)1( −+= rd

1,0{ ,...}∈θ  with probability 

, . Then the expected value 

, where  with 

, . Therefore, the stopping time of the “shocked” evaluation   

is defined by 

ttP πγθ == ][ 1)1(1 −+=−= ρπγ

∑∑ =∑ =∑ = ==
∞
==

),min(
0000

θττθ γγ t tt t
t

t t
tt

t tt VEVEVdVdE tpq=]tP =[τ

∑ =

θ
0t t

tVdEdq = qp −= 1

),min( θτ . The discount rate of this evaluation is 

111 )1()1()1( −−− +++=+⋅+ ρρρ rrr , i.e., the shocked evaluation increases the 

rate of the original discounting and, hence, the bias in favor of the present.  

Example 1 (Catastrophic Risk Management). The implications of Proposition 1 for 

long-term policy analysis are rather straightforward. Let us consider some important 

cases. It is realistic to assume [26] that the cash flow stream, typical for investment in a 

new nuclear plant, has the following average time horizons. Without a disaster the first 

six years of the stream reflect the costs of construction and commissioning followed by 

40-years of operating life when the plant is producing positive cash flows and, finally, a 

70-year period of expenditure on decommissioning. The flat discount rate of 5%, as 

Remark 1 shows, orients the analysis on a 20-year time horizon. It is clear that a lower 

discount rate places more weight on distant costs and benefits. For example, the explicit 

treatment of a potential 200-year disaster would require at least the discount rate of 

0.5% instead of 5%. A related example is investments in climate change mitigations to 

cope with potential climate change related extreme events. Definitely, a rate of 3.5%, as 

often used in integrated assessment models [31], can easily illustrate that climate change 

does not matter. A shock testing of these models reduces even further their internal 

stopping time horizon. 

Example 2 (Darwinian fitness). Ramsey [27] had introduced discounting, first of all, 

as a mathematical device ensuring the convergence of infinite horizon cumulative 

values. Its various explanations supported by empirical studies were proposed 

afterwards suggesting that humans and animals place less weights on the future then on 

the present (see discussion in [30]). A reason is that future rewards run more risk of 

disappearing. Hence, they should be discounted, where the discount rate is the hazard 
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rate. For example, evidence from selection experiments indicates the existence of a 

trade-off between short-term and long-term fertility, i.e., the existence of life-history 

strategy that discounts the future. In other words, natural selection puts a premium on 

immediate reproductivity. Accordingly, an animal can be treated as a rational optimizer 

maximizing its Darwinian fitness, that can be taken to be equivalent to maximizing the 

expected number of offsprings. In a simple case, fitness is defined [30] then as integral 

, where  is the expected rate of reproductive output at age  if 

the animal survives to that age, and  is the probability of surviving to age . It is 

highly unlikely that an animal is able to learn discount factors (probability density ) 

in order to maximize the Darwinian fitness. The equivalent distribution free stopping 

time criterion requires observations of only lifetime intervals 

∫= ∞
0 )()( dttstmF )(tm t

dtts )( t

)(ts

τ , which can be easily 

used for adaptive adjustments of life-history strategies.  

3. Time Declining Discount Rates 

This Section extends Proposition 1 to general time declining discount rates. It also 

shows that a time declining discount rate can be associated even with a set of mutually 

exclusive geometrically distributed extreme (stopping time) events.  This rate is 

determined in a sense by the least probable event.  

Let us consider now a stream of random variables (r.v.) ,..., 10 νν  affected by a set of 

random events including potential catastrophic events. Formally, we can think of  tν  as 

a function  )(ων t  defined on a probability space },{ PΩ  with the set  of related 

random events and the probability measure 

Ω

P  on Ω . We assume that tν  does not 

depend on the “future”, i.e., we assume that },{ PΩ  is adapted to a sequence of 

increasing σ -algebras  (subsets of events from ...⊆ ⊆0 1A A Ω , which occur before 

), such that ,...1,0=t tν  is measurable (defined on) w.r.t. A . In what follows, all 

random variables are assumed to be defined on {

t

. }, PΩ

Let ),..., t(, ktk ννσ=  be the σ -algebra generated by tk ννσ ,..., . Consider a stopping 

time τ , which we define as a r. v. ,...}1,0{∈τ , such that event { }t≤τ ,  does 

not depend on values 

,...1,0=t

,..., 21 ++ tt νν , i.e., 1,tσ ∞ .  +
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Proposition 2. Consider a discounted sum ∑∞

=0t ttVd , ,  where  is an 

increasing positive sequence, 

t
tt rd −+= )1( tr

tt EV ν= . Then there is a stopping time τ  such that 

[ ] tdtP =≥τ  and  

[ ] ∑=∑ ≥=∑ =
∞
=

∞
=

τ νντ 000 t tt tt tt EEtPVd .  (3) 

Conversely, let tE ν  is uniformly bounded. Then, for any stopping time τ   

∑∑ ∞

==
=

00 t ttt t VdE τ ν , [ tPdt ≥= ]τ , where  is conditional expectation: tV

]|[ tEV tt ≥= τν  

Proof. Consider such any r. v. τ , ,...}1,0{∈τ  that { }t≤τ   does not dependent on 

values 10 , −t..., νν  and 1][ +−== tt ddtP τ , ,...2,1,0=t . Clearly, 

1...]0[ 02110 ==+−+−=≥ dddddP τ , tdtP =≥ ][τ , and 

[ ]∑∑ ∞

=

∞

=
≥=

00
 

t tt tt VtPVd τ .  

Let now ∑= =
t
k ktf 0: ν . From the rearrangement known as the Kolmogorov-

Prohorov’s theorem it follows that 

[ ] [ ]
[ ] [ ] ,;

;;

00

0 00

kkk k

t
t
k kt t

V kPkE       

tEtfEEf

∑ ≥=∑ ≥=

=∑ ∑ ==∑ ==

∞
=

∞
=

∞
= =

∞
=

ττν

τνττ
  

where ]|[ kvEV kk ≥= τ  and [ AE t ; ]ν ,  denotes unconditional expectation [ ]At IEν ,   

is the indicator function of event 

AI

A . The last assertion follows from the identity 

{ } { 1t t }τ τ≥ = > − , i.e., from the independence of  { }tτ ≥  on ,tσ ∞ . The change in the 

order of sums is possible due to the uniform boundness of . || tvE

Corollary. If ,...10 ,νν  are independent r.v. or }{ t≥τ , ,...2,1,0=t , does not depend 

on 110 , −t ,...,ννν , then  in both cases of Proposition 2 is unconditional expectation 

. If  

 Vt

tt Ev V = ,...10 ,νν  are independent identically distributed r.v., then the Wald’s 

identity follows from  Proposition1: 

τνντ EEE t t 00 =∑ = .  
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Proof: It follows from the following rearrangements:  

∑ ===∑ ∑ =∑ =≥ ∞
=

∞
=

∞
=

∞
= 000 ][][][ tk ktt EttPtPtP ττττ . 

Example 3 (Expected catastrophic losses). Assume that a catastrophic event may 

occur at  with probability ,...2,1,0=t p . It is usually defined as (1/p)- year event, say a 

100-year flood. Define τ  as the arrival time of the first catastrophe and let , 0=tv

10 −≤≤ τt , , where  is conditional expected losses given that the event 

occurs at 

ττ Lv = τL

τ . Since  only for 0≠tl τ=t , then the expected (unconditional) losses at τ  

are: 

∑ ≥∑ ==+++= ∞
=

∞
= 002

2
10 ][... t tt t

t VtPVqpLqqpLpLEv ττ , where . tt pLV =

The next Proposition shows that a set of even geometrically distributed events can 

induce discounting with time declining discount rates. Let us assume that there is a set 

of mutually exclusive events (see also Section 4) of “magnitude” . The 

probability of scenario i  is 

ni ,...,1=

iθ ,  and, conditional on this scenario, the event  

occurs for the first time at 

1
1

=∑
=

n

i
iθ i

iτ  with the probability ,  

. Thus, the occurrence of events at t  is characterized by a mixed geometric 

distribution . Let 

t
iii qptP == ][τ ii pq −=1 ,

,...1,0=t

t
i

n
i ii qp∑=1
θ τ  be the arrival time of a first event. Then 

[ ] 1
[n

t i
d P t P tτ θ τ

=
= ≥ = ≥∑ ]i i . Since ( ) t

i
t
ii

t
iii qqpqptP =++=≥ + ...1τ , then 

evaluation (1) takes the form 

t
t

tVdV ∑
∞

=

=
0

, .  (4) ∑
=

=
n

i

t
iit qd

1
θ

Equation (4) essentially modifies the standard geometric discounting. Nevertheless, the 

induced discount factors  for large t  tend to be defined by the smallest discount rate 

of the least probable event. The following proposition is similar to the conclusion in 

[33]. 

td
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Proposition 3. Discount factor  in (4) is determined for  by the 

standard geometric discount factor  associated with the least probable event , 

:  for 

∑
=

=
n

i

t
iit qd

1
θ ∞→t

t
iq *

•i

iii
pp min* = **/ i

t
it qd θ→ ∞→t . 

Proof. , where ∑ =
= n

i ii
t
it tqd

1
)(* χθ ( ) t

iii qqt  /)( *=χ . From ,  

it follows that , , for  and 

ii pp <• ii qp −=1 ,

0)( →χ ti ∞→t •≠ ii 1)( =• tiχ . Hence,  for 

.   

**/ i
t
it qd θ→

∞→t

 

Remark 4 (Finite time horizon T). Propositions 1, 2, 3 hold true also for a finite time 

horizon   after substituting probabilities ∞<T ][ tP =τ  and ][ tP ≥τ  by conditional 

probabilities ]|[ TtP ≤= ττ  and ]|[ TtP ≤≥ ττ .  

Remark 5 (Distribution free approach). Propositions 1, 2 provide two alternative 

approaches for discounting: standard discounted criterion of the left hand side of 

equations (1), (2) with an exogenous discounting, or undiscounted criterion of the right 

hand side with τ  defined by random arrival time of stopping time events. Proposition 3 

shows that the corresponding induced discounting  ][ tPdt ≥= τ  can be a complex 

implicit function of spatio-temporal patterns of events. The next Section illustrates, that 

τ  may depend also on various decisions. All these make it rather difficult to evaluate 

exact risk profiles ][ tP ≥τ  and exogenous discount factors . Therefore, this would 

require the use of the distribution-free random stopping time criterion and STO methods 

rather then the standard distribution-based discounted criterion and deterministic 

optimization methods.  

td

4. Endogenous Discounting  

This Section summarizes typical motivations for developing spatio-temporal 

catastrophic risk management models with rather natural versions of the stopping time 

concepts. A typical model may include often the following loop and the potential for 

positive feedbacks, branching and disequilibrium:  

 12



1. Stopping time induces discounting in the form of dynamic risk profiles 

][ tPdt ≥= τ ; 

2. The discounting affects optimal mitigation efforts; and 

3. Mitigation efforts affect the stopping time τ , risk profiles ][ tP ≥τ  and the 

discounting  (return to point 1). td

This means that the stopping time criterion induces endogenous spatio-temporal 

endogenous discounting.  

Example 4 (Evaluation of a Flood Management Program). Consider a simple 

version of the catastrophic flood management model developed for the Upper Tisza 

river region [8]. The spatio-temporal structure of this model was motivated by the 

following reasons.  

Throughout the world, the losses from floods and other natural disasters are mainly 

absorbed by the immediate victims and their governments [16]. The insurance industry 

and its premium payers also absorb a portion of catastrophic losses, but even in the 

wealthy countries this share is relatively small. With increasing losses from floods, 

governments are concerned with escalating costs for flood prevention, flood response, 

compensation to victims, and public infrastructure repair. As a new policy, many 

officials would like to increase the responsibility of individuals and local governments 

for flood risks and losses [28], but this is possible only through location-specific 

analysis of risk exposures and potential losses, the mutual interdependencies of these 

losses, and the sensitivities of the losses to new risk management strategies. 

This is a methodologically challenging task requiring at least the development of 

spatio-temporal catastrophe models [7], [8], [10], [32]. Although rich data usually exist 

on aggregate levels, the sufficient location specific data are not available, especially 

data relevant to new policies. Moreover, catastrophes affect large territories and 

communities producing mutually dependent losses with analytically intractable 

multidimensional probability distributions dependent also on various decisions. This 

critically distinguishes the arising problems from a standard risk management situations, 

e.g., the well-known asset-liability management. The standard methods, in particular, 

the existing extreme event theory, are not applicable to rational management of 
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catastrophic risks. The new GIS-based catastrophe models [8], [32] are needed to 

simulate the occurrence of potential extreme events and the samples of mutually 

dependent catastrophic losses for which no or very few historic observations exist.   

In general, a catastrophe model represents the study region by grids, e.g., a relatively 

small pilot Upper Tisza region is represented by 1500x1500 grids [8]. Depending on the 

purpose of the study, these grids are aggregated into a much smaller number of cells 

(locations, compartments) . These cells may correspond to a collection of 

households at a certain site, a collection of grids with similar land-use characteristics, or 

an administrative district or grid with a segment of gas pipeline. The choice of cells 

provides a desirable representation of losses. Accordingly, cells are characterized by 

their content, in general, not necessarily in monetary units. Values can be measured in 

real terms, without using an aggregate dollar value. The content of cells is characterized 

by the vulnerability curves calculating random damages to crops, buildings, 

infrastructure, etc., under a simulated catastrophic scenario.  

mj ,...,2,1=

Catastrophic floods which are simulated by the catastrophe model, affect at random 

different cells and produce mutually dependent random losses , , from a 

catastrophic event at time t . These losses can be modified by various decisions. Some 

of the decisions reduce losses, say a dike, whereas others spread them on a regional, 

national, and international level, e.g., insurance contracts. If 

t
jL mj ,...,1=

),...,,( 21 nxxxx =  is the 

vector of the decision variables, then  is a random function . t
jL )(xLt

j

Flood occurrences in the region are modeled according to specified probabilistic 

scenarios of catastrophic rainfalls and the reliability of dikes. There are three dikes 

allocated along the region’s river branch. Each of them may break after the occurrence 

at a random time of a 100-, 150-, 500-, and 1000- year rainfall characterized by the so-

called up-stream discharge curves calculating the amount of discharged water to the 

river branch per unit of time. In fact, the discharge curves upscale the information about 

complex rainfall and run-off processes affected by land-use and land-transformation 

policies. This brings considerable uncertainty in the definition of a 1/p - year flood, 

, 1/150, 1/500, 1/1000. Therefore, a 100-year discharge curve may represent, 

in fact, a set of floods with different frequencies 

100/1=p

p , say, 100/1150/1 ≤≤ p . In addition 
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to the interval, the uncertainty about  can be given by a prior distribution. Therefore, a 

single discharge curve, in general, corresponds to a set of -year floods, where  is 

characterized by a prior probability distribution. For example, it can be characterized by 

a finite number of probabilistic scenarios  with prior probabilities 

p

p/1 p

npp ,...,1 nθθ ,...,1  as 

in Proposition 3. 

The stopping time can be defined differently, depending on the purpose of the policy 

analysis. A catastrophic flood in our example occurs due to the break of one of the three 

dikes. These events are considered as mutually exclusive events, since the break of a 

dike in the pilot region releases the “pressure” on other dikes. Therefore, the stopping 

time τ  can be defined as the first time moment of a dike break. In this case, the 

probability or induced discount factor  ][ tPdt ≥= τ  is an implicit function of t , 

probabilities ii p,θ , , and the probability of a dike break. The situation is 

complicated further by the deterioration of dikes in time and/or by inappropriate 

maintenance of the flood protection system (see also Section 6), e.g., modifications to 

the dikes, the removal of some of them, and building new retention areas and reservoirs. 

Besides these structural decisions, the stopping time 

ni ,...,1=

τ  can be affected by other 

decisions, e.g., land use policies. Accordingly, depending on goals, the definition of 

stopping time τ  can be further modified. For example, let us assume that the region 

[14] participates in the flood management program through payments to a mutual 

catastrophe fund, which has to support a flood protection system and compensates 

losses to victims. To enforce the participation in the program, the government provides 

only partial coverages of losses. The stability of this program critically depends on the 

insolvency of the fund that may require a new definition of τ . Let β  be a fixed 

investment rate enabling the support of the system of dikes on a certain safety level and 

ξ  be a random time of a first catastrophic flood. Denote by jLξ  random losses at 

location j , mj ,1= , at time t ξ=  and by jπ  the premium rate paid by location j  to 

the mutual catastrophe fund. Then, its accumulated risk reserve at time ξ  together with 

a fixed partial compensation of losses j
j

Lξχ∑  by the government is 

, where βξϕχπξ ξξ
ξ −∑−∑ ∑+=

j
jj

j j
jj LLR 10 ≤≤ jϕ , is the portion of losses 
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compensated by the fund at location j . Let us also assume that the functioning of the 

flood management program is considered as a long-term activity assuming that growth 

and aging processes compensate each other. Then, the insolvency of the fund is 

associated with the event: 

0<−∑−∑ ∑+ βξϕχπξ ξξ

j
jj

j j
jj LL .  (5) 

Inequality (5) defines extreme random events affected by various feasible decisions 

x  including components ),1,,,,,( mjb jjj =βχϕπ . The likelihood of event (5) 

determines the vulnerability of the program. It is more natural now to define the 

stopping time τ  as the first time when event (5) occurs. In this case τ  would depend on 

all components of vector x  and the induced discounting would focus on time horizons 

associated with the occurrence of the event (5).  

 

5. Dynamic risk profiles and CVaR risk measure 
 

The following Example 5 illustrates that the probability distributions ][ tP ≥τ , 

, itself represent key safety characteristics of catastrophic risk management 

programs. Induced discounting 

,...1,0=t

][ tPdt ≥= τ  then “controls” these risk profiles 

implicitly through their contributions to discounted goals of programs. Another 

possibility as this Section shows is to impose explicitly safety constraints of the type 

ttP γτ ≥≥ ][  for some safety levels tγ , ,...1,0=t . In this case resulting robust strategies 

would directly control the safety constraints.  

Example 5 (Safety constraints). The occurrence of disasters is often associated with 

the likelihood of some processes abruptly passing “vital” thresholds. This is a typical 

situation for insurance, where the risk process is defined by flows of premiums and 

claims whereas thresholds are defined by insolvency constraints [12]. A similar 

situation arises in the control of environmental targets and in the design of disaster 

management programs [7], [8], [10]. Assume that there is a random process  and the 

threshold is defined by a random 

tR

tρ . In spatial modeling,  and tR tρ  can be large-

dimensional vectors reflecting the overall situation in different locations of a region. Let 
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us define the stopping time τ  as the first time moment t  when  is below tR tρ . By 

introducing appropriate risk management decisions x  it is often possible to affect  

and 

tR

tρ  in order to ensure the safety constraints [ ]ρ ≥ γ≥ ttRP , for some safety level γ , 

.  ,...2,1,0=t

The use of this type safety constraints is a rather standard approach for coping with 

risks in the insurance, finance, and nuclear industries. For example, the safety 

regulations of nuclear plants assume that the violation of safety constraints may occur 

only once in  years, i.e. 710 7101 −−=γ . It is remarkable that the use of stopping time 

criterion as in the right-hand side of (2) has strong connections with the dynamic safety 

constraints and dynamic versions of static CVaR risk measures [29]. Let us illustrate 

this by using the simplest version of climate change stabilization models discussed in 

[12]. 

Assume that , where decision variables , , 

.  We can think of  as a CO2 emission reduction (see also [ ]) at the 

beginning of period k . At time t  the target value on total emission reduction   in 

period  is given as a random variable 

∑= =
t
k kt xR 0 0≥kx tk ,...,1,0=

∞<≤ Tt kx

tR

t tρ . It is assumed that the exact value of  tρ  may 

be revealed at a random period τ , tdtP =≥ ][τ . The decision path  

has to be chosen ex-ante in period 

),...,,( 10 Txxxx =

0=t  to mitigate climate change impacts associated 

with the case ττ ρ<R .  Consider the loss function associated with emission mitigation 

strategy x  and given τ :  

]},0max{[)( 0∑ −+= = =
τ

τρt tttttt IRbxcExV ,                                               (6) 

where deterministic coefficients t  can be viewed as marginal costs, and  as risk 

factors.   

c tb

This can be written (Example 3) as 

∑ −+= = =
T
t

t∑k kttttt xEbxcdxV 0 0 }],0max{[)( ρ .                                                     

Assume that  is a continuously differentiable function, e.g., a component of 

random vector 

)(xV

),...,,( 10 Tρρρρ =  has a continuous density function. Also, assume for 
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now that there exists a positive optimal solution , , 

minimizing  subject to , 

),...,,( **
1

*
0

*
Txxxx = 0* >tx

)(xV 0≥tx Tt ,...,1,0= . Then, from the optimality condition for 

stochastic minimax problems (see discussions in [11], p. 16) it follows that for ,  *xx =

0][ 0 =∑ ∑ ≤−= = =
T

tk
k
s ksktx xPbcV

t
ρ ,  Tt ,...,1,0= .   

From this it follows sequentially for 0,...,1, −= TTt ,  

TTT
T
k k bcxP /][ 0 =≤∑ = ρ , tttt

t
k k bccxP /)(][ 10 += −=≤∑ ρ , 1,...,1,0 −= Tt . (7)   

Since ][},0max{ tttRttt RPRIERE
tt

≥−=− ≥ ρρρ ρ , then from (7) it follows that 

, which can be viewed as a dynamic CVaR (Conditonal-Value-at-

Risk) risk measure. Equations (7) can be used to control dynamic risk profiles, say, 

profiles with a given safety level 

ττρτ RIEpbxV ≥=)( *

γ  as in Example 5: tttTT bccbc /)(/1 1+−==− γ   

, by appropriate choice of risk factors  similar to stationary CVaR risk 

measures. In this case the minimization of (6) controls safety constraints (7) with given 

safety level 

1,...,1,0 −= Tt tb

γ , i.e.,  

γρ −=∑ ≤= 1][ 0
t
k kkxP , .                                                                 (8) Tt ,...,1,0=

This is a remarkable result, since the safety constraints, as a rule, are non-convex 

and even discontinuous, whereas the minimization of function (6) is often a convex 

problem for important practical cases.  

Equations (7) are derived so far from the existence of the positive optimal solution 

.  The following Proposition clarifies this assumption. *x

Proposition 4. The existence of positive optimal solution follows from 1/ <TT dc , 

, 1/)( 1 <− + ttt dcc 1,...,1,0 −= Tt , and the monotonicity of quantiles tβ , 

Tβββ <<< ...10  defined by equations  

TTTT dcP /][ =≤ ρβ , ttttt dccP /)(][ 1+−=≤ ρβ , 1,...,1,0 −= Tt . 
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Proof. Indeed, the first requirement guarantees that , , 

. From the second requirement it follows that , i.e., , and 

so on.   

0*
0 >x 00

*
0 >∑ =

t
k x

Tt ,...,2,1= *
0

*
1

*
0 xxx >+ 0*

1 >x

Let us note that in general cases outlined in Example 5, process  is given by 

stochastic equations , 

tR

),(1 ttt xtgRR =−+ 1,...,1,0 −= Tt , where  is a random 

function. In this case equations (7), (8) would have a form of conditional expectation 

rather then quantiles. It is even easy to see for 

),( txtg

ttt xaxtg =),( , where  are random 

variables. In rather general cases a minimization problem (6) can be solved by 

distribution-free stochastic optimization methods proposed in [7], [8], [10], [13], i.e., 

methods which don’t use (in general) exact probability distributions. 

ta

Remark 6 (Robust decision). The stopping time τ  in model (6) is not associated 

with the violation of safety constraint (8). In catastrophic risk management the model 

(6) is usually considered as an auxiliary submodel. For example, if random tρ  are 

affected by a set of decisions  with a cost function , then the minimization of 

function  yields robust decision minimizing total costs under safety 

constraints (8) and a dynamic version of the CVaR risk measure. 

y )( yF

)()( yFxV +

 

6. Intertemporal inconsistency.  

The time consistency of discounting means that the evaluation of an investment 

project today ( ), will have the same discount factor as the evaluation of the same 

project after any time interval  in the future. In other words, despite delayed 

implementation of the project we always found ourselves in the same environment.  

Only geometric or exponential discounting, , 

0=t

],0[ T

ttdt
t eedd λ−=== )(ln dln−=λ , defines 

a homogeneous time consistent preference: 

[ ]...... 11
1

100
++++++= +−

−∞

=∑ TT
T

T
T

t t
t dVVdVddVVVd .  

This is also connected with the geometric probability distribution of the discount 

related stopping time τ  in (2): if [ ] tdtP =≥τ , , then 10 << d
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[ ] ttt ddddtP )1(1 −=−== +τ , ,...1,0=t . In other words, the consistency is the direct 

consequence of the well-known “memoryless” feature of geometric and exponential 

probability distributions: for any , , 0≥t 0≥s

)1(/)1(]|[ dddddtstP stst −=−=≥+= +ττ . 

Hence, independently of waiting time , the probability of the stopping time 

occurrence at  is  the same as at the initial time moment 

t

st + 0=t . 

For other discount factors with time-dependent rates, their time inconsistency 

requires appropriate adjustments of discount factors for projects undertaken later rather 

than earlier. The misperception of this inconsistency may provoke increasing 

vulnerability and catastrophic losses. Let us consider typical scenarios of such 

developments. Section 4 shows that the adequate perception of proper discounting is a 

challenging task requiring models that allow the explicit evaluation of related risk 

profiles. This Section, in fact, illustrates that the design of such models has to be 

considered as a key mitigation measure to cope with increasing vulnerability. 

A number of authors distinguish between various types of so-called “imperfect 

altruism” resulting in the lack of social commitment to mitigate risks. For example, 

there were alluded definitions of a naïve, a sophisticated and a committed (ideal) 

society. The main differences between these three societies and how they provoke 

catastrophes are summarized in [9] by using a simplified flood management model 

outlined in Section 4. This model has the fixed 100-year horizon T in which three 

societies, the naïve, the sophisticated, and the committed, live and plan for coping with 

the catastrophic losses that may occur due to break of a dyke from 150-year flood with 

time consistent geometric probability distribution. They are able to mitigate the 

reliability of dikes and losses by paying fair premiums to the catastrophe fund. But, 

depending on their perception of risk profiles or induced discounting, the results are 

dramatically different.  

The current generation of The Naïve Society is aware of a possible catastrophe. It 

maximizes the (identical for all generations) value function taking into account the 

potential need to save for paying premiums. Unfortunately, it has a misleading view on 

the catastrophe, namely, if the catastrophe has not occurred in the later generation the 

society believes that it will not occur within the current generation with the same 
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probability. Thus, it relies on geometric probability distribution and fails to take into 

account the time inconsistency induced by increasing the probability of a dike break due 

to aging processes. Therefore, the first generation of the society postpones the 

implementation of decisions, i.e., the naïve society puts also its preferences on 

consumption as the first priority consuming at a higher rate than it actually plans. 

For the next generation the time is shifted forward by 20 years, and the second 

generation, similar to the first, plans but does not implement saving actions essential for 

the catastrophe fund to function. The risk profiles, time preferences, premiums, and the 

actions are not adjusted towards the real escalating risks. In a similar way, behave the 

next generations. The plans are never implemented and the view on a catastrophe 

remains time invariant despite dramatic increase of risk. 

The Sophisticated Society implies a correct understanding of the time-inconsistent 

discounting induced by the deteriorating system of dikes. But this society, similar to the 

naïve planners, also evaluates present consumption to be much higher than the future 

one. This leads to postponing the decisions. Due to these delays, the risk burden is 

increasingly shifted to the next generation, calculated premiums become higher and 

higher. If a catastrophe occurs, this society will also be not prepared to cope with losses 

as catastrophe management is not functioning. 

The “pathologies” of these societies can be explained by their misperception of 

risks, and, the lack of committed actions.  

The Committed Society is similar to that of the sophisticated society. In contrast 

though, this society is able to implement decisions because its calculations demonstrate 

that the delays in actions may dramatically affect individuals and the growth of societies 

as a whole. Individuals could be better off if their consumption options were limited and 

their choices constrained by anticipating risks. As a direct consequence of the 

committed actions, the premiums that the society pays for coping with catastrophes in 

100 years time are much lower than those of the sophisticated society. 

7. Concluding Remarks 
 
The proposed new approach to discounting is based on undiscounted stopping-time 

criterion which is equivalent to the standard discounted criterion in the case of market-
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related discount factors. In general, the stopping time criterion induces the discounting 

that depends on spatio-temporal patterns of catastrophes and various relevant decisions, 

More formally, this paper demonstrates that discount factors ,  can be 

associated with the occurrence of an extreme “stopping time” event at random time 

td ,...1,0=t

τ  

with probability tdtP =≥ ][τ . Consequently, the infinite discounted sum , ∑∞

=0t ttVd

tt EV ν= , is replaced by the undiscounted expectation ∑ =
τ

0t tvE  within the finite 

interval ],0[ τ . The use of the stopping time criterion ∑ =
τ

0t tvE  induces the standard 

discounting in the case when τ  is associated with the lifetime of market products. In 

dealing with catastrophic risks, the stopping time τ  can be associated with the arrival 

time of potential catastrophic events. The use of random criterion ∑ =
τ

0t tv  allows to 

address the variability of valuations even in the case of deterministic flows , , …. 

In this case, it is often important to substitute the expected value of random sum 

0V 1V

∑ =
τ

0t tv  by its quantiles. Mitigation efforts affect the occurrence of extreme events and, 

thus, they affect discounting, which in turn affects mitigations. This endogeneity of 

discounting restricts exact evaluations of  and the consequent use of deterministic 

methods and it calls for specific stochastic optimization methods.  

td
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	The goal of this paper is to specify and summarize assumptions and proofs for new approaches to discounting proposed in our catastrophic risk management studies. The main issue is concerned with justification of investments, which may turn into benefits over long and uncertain time horizon. For example, how can we justify mitigation efforts for expected 300-year flood that can occur also next year. The discounting is supposed to impose time preferences to resolve this issue, but this view may be dramatically misleading. We show that any discounted infinite horizon sum of values can be equivalently replaced by undiscounted sum of the same values with random finite time horizon. The expected duration of this stopping time horizon for standard discount rates obtained from capital markets does not exceed a few decades and therefore such rates may significantly underestimate the net benefits of long-term decisions. 
	The alternative undiscounted random stopping time criterion allows to induce social stopping time discounting focusing on arrival times of potential extreme events rather then horizons of market interests. In general, induced discount rates are conditional on the degree of social commitment to mitigate risk. Random extreme events affect these rates, which alter the optimal mitigation efforts that, in turn, change events. This endogeneity of the induced discounting restricts exact evaluations necessary for using traditional deterministic methods and it calls for stochastic optimisation methods. The paper provides insights in the nature of discounting that are critically important for developing robust long-term risk management strategies. 
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