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Abstract

We consider a non�cooperative two�player game with payo
 functions of a special type�
for which standard existence theorems and algorithms for searching Nash equilibrium
solutions are not applicable� The problem statement is motivated by situations arising in
the process of determining a time for starting the construction of a new gas pipeline and
a time of putting it into operation� The paper develops the approach suggested in �����
��

Key words� non�cooperative two�person game� best reply� Nash equilibrium� application
to energy problems
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�� Introduction

We construct and analyse a game�theoretic model related to the process of making deci�
sions on the design and commercialization of new gas pipelines� We consider a developing
gas market with increasing demand� for which new pipelines delivering gas from di
erent
natural gas �elds � and thus acting as competitors in a game � are being planned� Evi�
dently� the appearance of every new player in the market leads to a decrease in the sales
returns for the existing gas pipelines� Therefore� a reasonable argument is that the earlier
a player enters the market� the greater total pro�t this player should receive� In the same
time� the present value of the construction cost is decreasing� whereas gas demand and gas
prices are expected to be increasing over time� Therefore� a reasonable delay in entering
the market may be preferable� The above argument leads to a game�theoretic problem
formulation� in which the points in time� at which the gas suppliers enter the market� act
as crucial decisions�

In ��� an adequate game�theoretic model is proposed� The problem is formalized as
a non�cooperative game in which the times of entering the market �commercialization
times� play the role of control variables� The player�s bene�t is de�ned as the total pro�t
gained during the pipeline�s construction�operation period� The model includes a set of
assumptions on the market price formation mechanism� the game is considered with the
in�nite time horizon� functions de�ning bene�t rates and costruction costs are supposed to
be monotonously decreasing� For the case of two players� an analytic solution was obtained
and an algorithm for searching Nash equilibrium solutions was proposed� In ��� 	� �� a
computer realization of that algorithm� including such options as data approximation and
generating forecasts was developed� An application to data on Turkey�s gas market was
suggested�

In subsequent research� attempts have been made to extend the developed approach�
in particular� China�s natural gas market has been considered� However� assumptions
admissible for Turkey�s gas market turned out to be un�t in the case of China�s gas
market� A key economic distinction was that in China the price formation mechanism
could not be viewed as purely market�driven� In �
� a relevant modi�cation of the model
was described and results of data�based simulation of the operation of planned pipelines
delivering gas from Russia to China were presented�

In the present paper we suggest a new mathematical model that takes into account
the phenomena mentioned above� We use an approach similar to that developed in ����
however the assumptions we impose here are signi�cantly di
erent from � and sometimes
opposite to � those adopted in ����
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The main features of our model are the following� The process of construction�operation
of competing gas pipelines has a �nite time horizon� The players� pro�t rate returns are
monotonously increasing �not monotonically decreasing� over time� The construction cost
is constant for each player� A players� payo
 �to be minimized� is de�ned to be a function
of the length of the period of the return of the investment cost �the payback period� and
of the time� at which the player enters the market�

The results presented in this paper provide a theoretical basis for the elaboration of a
decision support system applicable for planning energy infrastructures in situations where
the price formation mechanisms may not be market�driven�

�� Problem Formulation� Notations and Assumptions

Our model assumes that two players �participants� develop their gas pipline projects for
the same gas market� The model�s main variables and parameters are the following�

Participants� bene�t rates� The bene�t rate for participant i �i � �� �� is described by
two functions� �i��t� and �i��t�� �i��t� de�nes the bene�t rate for participant i if partic�
ipant i is a monopolist in the market� and �i��t� de�nes the bene�t rate for participant
i if participant i if both participants occupy the market� The presence of the opponent
reduces the bene�t rate for participant i� therefore �i��t� � �i��t� for all t in a given time
interval ��� T � represending the life period for the participants� projects� Let us denote by
t� and t� the points in time� at which participants � and � enter the market� respectively�
Then the bene�t rates for the participants are de�ned by

���tjt�� �

�
����t� if t � t�

����t� if t � t�
�

���tjt�� �

�
����t� if t � t�

����t� if t � t�
�

The pro�ts participant � and participant � gain on a time interval �t�� t���� are
R t���
t�

���t j

t��dt and
R t���
t�

���t j t��dt� respectively� We assume the functions �ij to be di
erentiable�
concave and monotonously increasing on ��� T �� The assumption that the bene�t rates are
increasing over time is motivated by modeling and forcasting results for China�s natural
gas market� This assumption is di
erent from that suggested in ����

Construction cost� Payback period� We assume that the construction costs are �xed
and denoted by Ci� i � �� �� We also assume the interval ��� T � to be so large that the
construction costs are covered by the market sales�

TZ
�

�i��t�dt � Ci� �����

Let us de�ne times ti� ti� t
�

i � t
��

i as follows�

ti �

tiZ
�

�i��t�dt � Ci� ti �

TZ
ti

�i��t�dt � Ci�

t�i �

t�
iZ

�

�i��t�dt � Ci� t��i �

TZ
t��
i

�i��t�dt � Ci� �����
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Clearly� ti is the payback period for project i� provided participant i enters the market at
time t � �� while the the other participant never enters the market� ti� t�i � t

��

i are interpreted
similarly�

In what follows we assume that the �nal time T is large enough in comparison with
all time characteristics of the projects� Namely� the following relations are supposed to be
true�

As sump t i o n �� It holds that

t�i � ti� i � �� �� ���	�

Note that under Assumption � the next inequalities hold true� � � ti � t�i � ti � t��i �

T � The value �i � �i�t�� t�� de�ned by

ti��iZ
ti

�i�t j tj�dt � Ci� �����

will be called the payback period for project i� here j � �� �� j �� i� In the next section
we will describe properties of �i�t�� t���

Goals of control� payo� functions� The problem we consider in this paper� assumes that
each participant tries to achieve two goals� to minimize his�her payback period �i�t�� t��
and to minimize the commercialization time for his�her project � the time ti� at which
the project enters the market� The participants may have di
erent priorities for these two
criteria and thus choose di
erent waits for them� The participants� control variables are
� as in �����	� � their commercialization times ti� Thus� the payo
 function participant i
minimizes through the choice of his�her commercialization time ti is

fi�t�� t� j �i� � �iti ��i�t�� t��� ���
�

here �i is a weight coe�cient� � � �i � �� With �i � � both criteria are equitable� in case
�i � � one has the unique criterion � the payback period�

In what follows� we consider two problems� The �rst problem consists in optimization
for one participant� while the choice of the other participant is �xed� We formulate this
problem for participant � only�

P ro b l em �� Construct the �generally� multi�valued	 function t�� � t���t� j ��� such that

f��t
�
�� t� j ��� � min

t�
f��t�� t� j ���� �����

In a standard terminology of game theory� t�� � t���t� j ��� is the best reply of participant
� to strategy t� of participant ��

Similarly� we introduce the best reply t�� � t���t� j ��� of participant � to strategy t� of
participant ��

The other problem consists in �nding Nash equilibrium solutions in the corresponding
two�player game� Using the introduced notations� we formulate it in the following way�

P ro b l em �� Find pairs fbt��bt�g such that

bt� � t���bt� j ����bt� � t���bt� j ���� �����
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�� Properties of Payback Periods

Let us study the function �� � ���t�� t��� For �� � ���t�� t��� similar results can be
obtained through a change of the indices�

First of all� let us specify the domain of de�nition of �� � ���t�� t��� i�e�� determine
the set D� � ��� T � � ��� T �� in which equation ����� has a solution� For this purpose�
introduce the following variable� Denote by t

��

� � t
��

��t�� the time such that

TZ
t
��

�

���t j t��dt � C��

By Assumption � t
��

��t�� � t� if t� � t�� and if t� varies from t� to T � time t
��

��t�� grows

from t� to t
��

� � Thus� D� is de�ned by the inequalities � � t� � t
��

��t��� � � t� � T �
Introduce the following functions of 	 � ��� T ��

g� � g��	� �

g�Z
�

���t j 	�dt � C��

g� � g��	� �

��g�Z
�

����t�dt � C�

g� � g��	� �

��g�Z
�

����t�dt � C��

g� � g��	� � g��	� � T � t
��

��	��

g� � T � t��

Note that g��t�� � ����� t��� and this function decreases on ��� t�� from t�� to t�� Then� as
	 � t� g��	� 	 t�� the function g��	� � ���	� T � is de�ned and decreases on ��� t��� � from

g���� � t� to T � t��� � Similarly� g��	� � ���	� �� is de�ned and decreases on ��� t�� from

g���� � t�� to T � t�� Finally� g��t�� 	 T � t� is de�ned on ��� t�� and decreases to T � t���
on �t�� T ��

In what follows� we consider the case where the following assumption is true�

As sump t i o n �� For each admissible t� it holds that

����t�� � ����t� � g��t���� �	���

Assumption � imposes a relationship between the bene�t rates ����t� and ����t� and
the construction cost Ci� This relationship holds provided the payback period for project
� is large compared to the variations of ��j�t� in a neighborhood of t��

For a given t�� de�ne t
�

� � t���t�� by

t�Z
t�
�

����t�dt � C�� �	���

Note that t�� � t���t�� is well de�ned and non�negative for t� � t��
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L emma �� In the set D�� the function �� � ���t�� t�� is de�ned correctly and is con�
tinuous� In each interior point �t�� t�� of D� such that t� �� t���t�� and t� �� t�� there exists

the partial derivative
����t��t�	

�t�
and


���t�� t��


t�
�

�������������
���

����t��
����t� � g��t���

� if � � t� � t���t���

���
����t��

����t� ����t�� t���
� if t���t�� � t� � t��

���
����t��

����t� � g��t���
� if t� � t� � T�

�	�	�

P r o o f� Since �� � ���t�� t�� is de�ned as a solution of equation ����� with i � �� the
correctness of the de�nition of �� follows from the the de�nition of D� and properties of
�ij�t�� Considering ����� as an equality de�ning an implicit function� we derive �	�	��

Lemma � allows us to describe the behaviour of �� � ���t�� t�� in D�� First� let us
consider ���t�� t�� as a function of t�� with t� �xed�

L emma �� Let Assumptions 
 and � be true� Then the payback period ���t�� t��� con�

sidered as a function of t�� decreases on the interval ��� T �� The derivative ����t��t�	
�t�

is
negative and continuous everywhere in ��� T � except for two points� t� � t���t�� and t� � t��

At point t� � t���t�� the derivative ����t��t�	
�t�

increases and at point t� � t� it decreases�
For each �t�� t�� � D� the next inequalities hold�

g��t�� � ���t�� t�� � g��t��� �	���

P r o o f� Inequalities �	��� follows directly from the de�nitions of function ���t�� t��
and functions g��t�� and g��t��� The other assertion of the lemma follows from an analysis

of the sign of ����t��t�	
�t�

determined by �	�	� for various �t�� t�� � D�� For each of the

cases listed in �	�	� we have ����t�� t�	
�t�

� � due to the inequalities ��j�t�� � ��j�t� �
gj�t���� j � �� � �following from the monotonicity assumption for �ij�t��� the inequality
�i��t�� � �i��t��� �	��� and �	����

Fig� ��� provide graphical illustrations of the above assertions for an example con�
sidered in the last section� In Fig� � the graph of the bene�t rate is shown for �xed
t� � �t�� t��� The area of the shaded �gure is C�� and its base is ���t�� t�� � ����� for
the arguments t� � �
� t� � ��� Fig� ��� show the graphs of function ���t�� t�� and its
derivatives for two di
erent values of t��

Closing this section� we characterize ���t�� t�� as a function of t��

L emma �� Let Assumptions 
 and � be true� Then the payback period �� � ���t�� t���

considered as a function of t�� has the following properties� Let a point t� � ��� t�� be �xed�
Then ���t�� t�� is constant in the interval ��� t��� ���t�� t�� 	 g��t��
 it decreases to g��t��
in the interval �t�� t� � g��t���
 and it is constant again if t� � t� � g��t��� ���t�� t�� 	

g��t��� If t� � �t�� t��� �� then ���t�� t�� is de�ned only for t� such that
TR
t�

���t j t��dt � C��

it decreases for t� � t��� and is constant on �t��� � T ��

�� Best Reply Functions

As in the previous section we study the situation from the point of view of participant ��
The goal of this section is to to solve Problem �� i�e�� to construct the best reply t���t� j ���
of participant � to a strategy t� of participant �� Recall that t���t� j ��� is de�ned in ������
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Fig����� The bene�t rate ���t�jt�� for t� � �� � �t�� t�� and the corresponding payback
period ���t�� t���

Fig�	��� The derivative ����t�� t�	
�t�

for two di
erent values of t�� A � D are the
discontinuity points�
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Let us introduce the following notations�

p���t� �
����t�

����t � g��t��
� �����

p���t� �
����t�

����t � g��t��
� �����

q���t� �
����t�

����t� g��t��
� ���	�

q���t� �
����t�

����t� g��t��
� �����

L emma �� Let Assumptions 
 and � be true� Then the functions p���t�� p���t�� q���t�
and q���t� are continuous and monotonously increasing in their domains of de�nition�
Noreover� for each t the next inequalities hold�

q���t� � q���t� � p���t�� q���t� � p���t� ���
�

P r o o f� The inequalities ���
� follow directly from the assumed inequalities ����t� �
����t� � g��t� � g��t� and the monotonicity of ��j�t� � To prove that p���t�� p���t�� q���t�
and q���t� are increasing� let us estimate their derivatives� We have�

dp���t�

dt
�

d����t�
dt

����t� g��t��� ����t�
d���
dt

�t � g��t���� �
dg��t�
dt

�

�����t� g��t��
�

d����t�
dt

����t� g��t��� ����t�
d���
dt

�t � g��t�� � ����t�
d���
dt
�t� g��t��j

dg��t�
dt

j

�����t� g��t��
�

Due to the monotonicity and concavity of ����t� we have

����t� g��t�� � ����t�

and
d����t�

dt
�

d���

dt
�t� g��t���

Therefore�

dp���t�

dt
�

����t�
d���
dt

�t� g��t��j
dg��t�
dt

j

�����t� g��t��
� ��

The monotonicity of p���t�� q���t� and q���t� is stated similarly�

Let us �x an �� such that

q����� � �� �� � p�j�t
��

� � �j � �� �� �����

and de�ne points t�� � t
�
� � t

q
� and t

q
� as solutions to the following equations

t�� � p���t� � �� ���

t�� � p���t� � �� ���
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t
q
� � q���t� � �� ���

t
q
� � q���t� � �� ���

Note that such an �� � � exists and the roots of the above equations are de�ned
uniquely� Based on ��� we construct the function t�� � t���t� j ��� �which can be multi�
valued at some points�� Due to inequalities ���
� we have tq� � t

q
� � t�� and t

q
� � t�� �

Generally� there are several opportunities for the location of t�� with respect to t
�
� and t

q
��

In what follows� we deal with the case

t
q
� � t

q
� � t�� � t�� �����

�other locations of t�� can be studied similarly��

Th e o r em �� Let Assumptions 
 and � be true�
a	 If � � t� � t

q
�� then t���t� j ��� � t�� �

b	 If t� � t
q
� and t��t�� � t

q
�� then the set t���t� j ��� consists of one or two points�

���t�� and t�� � where ���t�� is the unique solution to the equation

�������

������ � ������ t���
� �� ��� �����

c	 If t���t�� � t
q
�� then ���t�� t�� � g��t�� and t

q
� is the root of equation ����	� If

t
q
� � t���t�� � t�� � then the set t���t� j ��� contains the unique point t���t���

d	 If t� is such that t���t�� � t�� � then the set t���t� j ��� contains the unique point t�� �

P r o o f� From Assumptions � and � and Lemmas ��� it follows that for �� speci�ed
above the minimum of f��t�� t� j ��� with respect to t� is achieved only in the points where

the derivative

f��t�� t� j ���


t�
changes its sign from ��� to ��� �the boundary points are

excluded�� The above derivative

���t�� t��


t�
����� has the same properties as


���t�� t��

t�

�

Namely� it has a structure shown in Fig� 	��� The curve located on the right to point
B �see Fig� 	��� coincides with the graph of function p��� and while t� increases point B
moves along this curve� In the same time� point A belongs to the graph of function q��
and moves along it� Point C lies on curve q��� Finally� point D moves along curve p���

and the part of the graph of

���t�� t��


t�
which is located on the left to D� coincides with

curve p��� Note that for small t� points C and D vanish� while as t� approaches the �nal
time T points A and D vanish�

The above properties and the relations between functions p�j and q�j allow us to
prove the theorem� Let t� grow from zero to T � In case a� point A lies below the line
l � f 	 �� ��� and the signle minimum point is t�� � In case b� another possible minimum
point appears� ���t��� Graphically� it represents the intersection of line l and curve CA�
Due to �	���� starting from some value for t�� point t

�
� becomes no longer �suspicious�

as a minimum point� and the unique solution is ���t�� or t���t��� At the latter point the
function is discontinues �case c��� As point D reaches line l� we switch to curve p�� and
�nd the unique solution t�� �case d��� This �nalizes the proof�

Note that in the case under consideration the structure of function t���t� j ��� is similar
to the one presented in ��� but does not fully coincide with it� Namely� in ��� the domain
of de�nition of function t���t� j ��� consists of two intervals� in each of which the function



� 
�

is constant� in our situation� we also have two intervals and in one of them the function is
not constant �it is constant only on a subinterval with the end point t� � t���t�� � t�� ��

In section �� we provide an example of a best reply function �Fig� 
��

�� Nash Equilibrium Solutions

Recall that the domain of de�nition of function t�i �tj j �i� �i� j � �� �� i �� j� contains
an interval in which t�i �tj j �i� is not constant� This fact makes it di�cult to state the
existence of Nash equilibrium solutions straighforwardly and to de�ne an algorithm for
their construction�

L emma �� A pair fbt��bt�g is a Nash equilibrium solution if and only if fbt��bt�g considered
as a point on the �t�� t�� plane belongs to both graphs t� � t���t� j ��� and t� � t���t� j ���
plotted on the �t�� t�� plane�

The lemma follows straitforwardly from the de�nition of Nash equilibrium solutions�
To �nd Nash equilibrium solutions� we use Theorem � and construct the curves indi�

cated in Lemma 
� If these curves have common points� these points represent the sought
Nash equilibrium solutions� Fig � shows an example illustrating the case of two Nash
equilibrium solutions�

In the rest of this section we construct an algorithm for searching Nash equilibrium
solutions in the case where the best reply functions are approximated by piecewise�constant
functions� This case is meaningful for practice� A similar algorithm can also be applied
to more general situations when each participant has more than two scenarios for bene�t
rates� which correspond to multiple operation modes for the gas pipelines� In what follows�
the set of Nash equilibrium solutions will be denoted as NEP�

Let the best reply function for participant �� t�� � t���t� j ���� take a �nite number of
values t��n� n � �� � � � � N in intervals ��n��� �n�� respectively� At points �n � n � �� � � � � N��
the set t���t� j ��� consists of the two points t��n and t���n��	� Similarly� for function

t�� � t���t� j ��� we denote by t��m the constant values it takes on intervals �
m��� 
m�
respectively� m � �� � � � �M � We set �� � 
� � �� �N � 
M � T � We put the points
t��m in the increasing order� note that the boundaries of the intervals� on which function
t�� � t���t� j ��� takes values t

�
�m are not ordered�

Let us describe a �nite�step algorithm for �nding the set NEP�
�A�� At step � mark points t���� � � � � t

�
�k�

� ���� ���� If there are no such points� we go
to step �� If such points exist� for each m � �� � � � � k� we check the relation

t��n � �
m��� 
m�� �
���

If this relation holds true� then the pair ft��n� t
�
�mg is attributed to the set NEP�

�A�� For an arbitrary step n� we observe the index kn�� formed at the previous step�
kn�� corresponds to points t��m that have already been analyzed� If kn�� � M � the
algorithm stops� If kn�� � M � new points t��m � ��n��� �n�� m � kn���� are marked� and
a new value for kn is formed� Next� for m � kn����� � � � � kn one checks the relation �
����
The pairs ft��n� t

�
�mg� for which �
��� holds true� are attributed to the set NEP� If kn � M �

one unit is added to n� and we go to step n � �� If kn �M � the algorithm stops�

Th e o r em �� In case of piecewise�constant best reply functions� algorithm �A
	 � �A�	
�nds the set NEP of all Nash equilibrium solutions�



��� �

	� Example

In this section we specify the above constructions for an example� in which the bene�t
rates are linear� Assume that

�ij�t� � aijt � bij � �����

where � � ai� � ai�� � � bi� � bi�� � � t � T � i � �� �� In this case Assumption � holds if

ai�T
� � �bi�T � �Ci� �����

We easily �nd explicit formulas for points t�i � ti� ti and t��i and function t�i�tj�� i �� j� In
particular�

t�i �
�

ai�
��bi� �

q
b�i� � �ai�Ci��

ti �
�

ai�
��bi� �

q
b�i� � ai��ai�T � � �bi�T � �Ci��

Let us also give formulas for �i�t�� t�� and

f�

t�

in the simplest case where a�� � a�� � a��

We have�
���t�� t�� �

�

���������
� �a� �a�t� � b�� �

p
�a�t� � b���� � �a�C�� � � t� � t���t��

� �a� �a�t� � b�� �
p
�a�t� � b���� � �a�C� � ��b��� b����t� � t��� t���t�� � t� � t�

� �a� �a�t� � b�� �
p
�a�t� � b���� � �a�C�� t� � t� � t

��

��t���


f�


t�
�

�������������
�� � ��

a�t� � b��p
�a�t� � b���� � �a�C�

� � t� � t���t��

�� � ��
a�t� � b��p

�a�t� � b���� � �a�C� � �a��b��� b����t� � t��
t���t�� � t� � t�

�� � ��
a�t� � b��p

�a�t� � b���� � �a�C�

t� � t� � t
��

��t���

If � � �� � �� the expressions for t
�

� and t
�
� take the form�

t�� �
�

a��

�
�b�� � ��� ���

s
�a��C�

����� ���

�
�

t�� �
�

a��

�
�b�� � ��� ���

s
�a��C�

����� ���

�
�

Assumption � imposes stronger constraints on parameter values� Note that these con�
straints are feasible �we omit a rigorous formulation involving a number of technical de�
tailes��

We �nalize the section by presenting some numerical results� Let both participants
have same coe�cients in equality ������ de�ned as follows�

aij � ���� bi� � �� bi� � ��
� i� j � �� ��

We set �i � ��
� T � ��� Ci � ��� It is easy to �nd points ������ We have t
�

i � ������

ti � 		���� and Assumption � is true� Functions �i�tijtj� and �i�ti� tj� are shown in Fig�
���� The derivative of �i�ti� tj� is shown in Fig� 	��� Finally� Fig� 
�� present a graphical
illustration of the best reply function and Nash equilibrium solutions� Note that in the
considered situation �both participants have the same parameters� the Nash solutions are
symmetrical� see ������� ������ and ������� ����� ��



��� �

Fig�
��� Best reply function and Nash eqilibrium points�


� Conclusion

This paper is motivated by the issue of planning and putting into operation new gas
pipeline systems� We proposed a new problem setting re�ecting situations in which the
price formation mechanism had not a purely market character� Mathematically� we for�
mulated the problem as a non�cooperative two�person game� We analyzed the best reply
functions and described an algorithm for �nding Nash equlibrium solutions in the game�
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