
A FRESH APPROACH TO DATA BASE ~~AGEMENT SYSTEMS
PART I: CONCEPTS, CONSIDERATIONS AND JUSTIFICATIONS

Wm. Orchard-Hays

December 1978 WP-78-64

Working Papers are ifiternal publications intended
for circulation within the Institute only. Opinions
or views contained herein are solely those of the
aut.hor(s) .

2361 I
Laxenburg International Institute for Applied Systems Ana lysis
Austria





A FRESH APPROACH TO DATA BASE MANAGEMENT SYSTEMS

Part I: Concepts, Considerations and Justifications

Wm. Orchard-Hays

FOREWORD

This paper is in two parts. In this part~. some of the concepts and

considerations in the design of a data base management system are set

forth, together with justifications for some of the decisions made. In

Part II, a particular system is described, essentially in the form of a

tutorial users manual. Some further justifications are given there as

well as a couple of more discussions of a conceptual nature. Although

the two parts are intended to form a set, they can each stand largely

alone. A few definitions given in Part I are used in Part II without

restatement.

INTRODUCTION

One of the difficulties -- probably the greatest one -- in designing

and implementing a data base management system is the abstract quality of

data. It is hard to avoid the feeling or concept that one is dealing with

real things of some kind. Thus, for example, one tends to think of a

personnel "record" as a concise entity "belonging to" -- in the sense of

being identified with -- a real individual. The personnel files certainly

exist because of real individuals and the records for one person or a group

of persons can be taken as a surrogate for the person or persons in the

sense used, for example, in mathematical models. Furthermore, there are

real data items -- albeit electronically recorded and manipulated -- which

go to make up a data base and the records can be presented visually or on

hard copy. However, in using a data base, one is interested in much more

than retrieving and printing the input records.

One way to approach the problem -- probably the only way -- is through

formal, abstract definitions which define items implicitly. Actually, this

is at best an approach to only part of the problem. In addition to the

conceptual structure of the data, as such, there are three other conside~

ations:

(1) the "physical" structure of data in the sense of compute~stored files;

(2) the means of specifying and referencing data by a human which requires

some kind of language which, in turn, involves further abstractions; and



-2-

(3) the relational structure imputed to the body of data which permits

using the data for new or unanticipated purposes.

The last is at best a vague idea even though this is often averred to be

the main purpose of a data base. It is the thesis here that whatever

relational structure exists is a consequence of the designed conceptual

structure and human beings' ability to use it effectively and cleverly.

Nevertheless, a well-designed system can, in a sense, create new informa­

tion or at least aid in its creation.

The physical layout of computerized entities and the routines to

manipulate them present tough problems in programming. Furthermore,

massive data bases may so overtax physical capacities as to lead to a

number of practical problems which have very little to do wi~ the initial

purposes but which must be anticipated in any practical design. Although,

for an initial conceptual approach, one would like to ignore all but the

most obvious of the problems arising from a massive amount of data -- after

all, current data processing systems are powerful and have large capacities

-- it may not be possible for both practical and theoretical reasons. A

basic dichotomy appears justified separating large bibliographic data bases,

and more highly structured systems of refined data used in analyses and for

input to other computerized procedures, such as models. The emphasis here,

and definitely in Part II, is toward the latter. There is also a third

kind of data bank, so-called, which involves records of a huge number of

measurements, such as telemetered "data" from a satellite. No pretense is

made at addressing this sort of records.

As to the means for interfacing the system with human users, two

fundamentally different viewpoints are held, at least superficially. One

is that a natural-language-like formalism should be provided to make it as

easy as possible for almost anyone to use the data base. The other is

that a formal, specialized language is much better suited to the task and

that it is to the users' advantage to take the trouble to learn it. Those

that are unable to should not attempt to work with something they don't

understand. Both these positions are extreme and, in practice, both are

modified considerably. It is, in fact, impossible to use a natural lan­

guage in full generality; only narrowly constricted, specialized subsets

of a natural language are really programmable. Furthermore, facility in

such a sub language does very little to clarify difficult concepts which

must somehow be phrased. On the other hand, a formal language is seldom

used in its pure form by ordinary users. Various simplifications



-3-

and combinations are usually defined and given reasonable-looking labels.

Indeed, with either approach, a substantial part of the working language

consists in words which were defined by the user, using the basic capabil-.

ities, however expressed. Natural-language proponents admit that an under­

lying formal language is necessary and the natural language capabilities

are a superstructure. Any such superstructure will be ignored here. Nevep­

theless, the language presented in Part II is not strictly a formal lan­

guage. It looks about like the command-style English found in mathematical

papers but is rigorously defined.

So much work has been done in this area for such a long time that it

is perhaps presumptuous to speak of a "fresh approach", particularly in

a short poper. The term can be interpreted in the sense of "let's try

again" or "back to first principles". Sometimes this can bring new clarity

without actually inventing radically new concepts or mechanisms.

BASIC CONCEPTS AND DEFINITIONS

Of what or in what does data consist? This is not a trivial question

in spite of our intuitive feeling that we know what data is. The question

here is not whether some set of data is correct but in what sense a number,

symbol, or other representation has meaning. There is a dual nature to

data: its meaning and its representation. It is almost impossible to fully

specify representations; we always rely on a great amount of cultural and

technical background. How can one define ~ .. initio an alphabet, the arabic

numerals, word structure, floating point representation, graphs, etc., not

to speak of bits, bytes, words, records, files, etc., in a computer system?

Whole books are written on such subjects. Particular characters, such as

the greek letter pi or the plus sign, are understood to have meaning on the

basis of an extensive and almost universal cultural background. Representa­

tional structures are an important aspect of data but they are not its

conceptual structure even though there may be some correspondence. In some

cases, the representational structure may even appear to be part of the

concept -- a matrix, for instance. One of our most fundamental concepts

is the distinction between right-hand and left-hand. It is natural to use

representations which somehow picture such concepts. It is a trap, however,

to suppose that any graphic representation really defines what it stands

for, even though mental images of the representation may greatly facilitate

thought processes, such as calculation or puzzle-solVing.



-4-

Although it is even hard to decide what constitutes the basic elements

of representations, let alone data units, they are specifiable through

various conventions which are widely or universally accepted by people

with any reasonable degree of education for the purpose at hand. It would

be merely pedantic, and futile, to try to explain, justify, change or define

in more basic terms those conventions which are recognized by most people

with an interest in what is being discussed.

The conceptual structure of data is more subtle and less direct or

intuitive. A representation which may appear understandable, even pronoune­

ible or with exact numeric value, is not a piece of data in isolation. The

representations

PRODUCTION 2.135 * 10
6

are readable but have no meaning standing alone. We will term a representa­

tion like either of the above, or any of several other possible forms, a

datum. In a workable system, the allowable forms for a datum must be speci­

fied, of course, but that is a subject for Part II.

We encounter a deficiency in natural language here and will take care

of it immediately. What is the plural of "datum"? A datum is not in and

of itself a piece of data. Hence the rather infantile-sounding "datums"

will be used for the plural. Data (Which we construe as a collective singu­

lar) is represented by datums but has an abstract structure which gives it

meaning over and above representations.

In order for a set of datums to constitute a piece of data, two things

are necessary. At least some of the datums must represent values of dif­

ferent attributes and the set of attributes represented must be logically

related to some conceptual item. We define these ideas more precisely as

follows:

An attribute is an abstract quality or characteristic which can be

measured by and only by a finite number of discrete and distingu­

ishable values, represented by datums. The attribute must have

a unique identifier in context but its allowable values need not

be unique independently, i.e., among different attributes.

An item is a member of a set defined by a particular set of attributes.

An item is defined implicitly by a particular set of values for

the attributes defining the set to which it belongs. At least one

combination of attributes must have unique sets of values over

the set of items if identification of items is to be possible.



-~

A data structure is an organized set of datums to which meaning is

imputed, first by its rules of organization, and second by the

means of accessing it.

An inferior is a substructure which is accessible only through a

superstructure, called its superior.

A peer group is a set of structures all of which have the same superior.

If all members of the peer group are actually hooked to the same

superior, the group is called an echelon. If a superior has only

one hook to the inferior group, all members of the group have

the Same structure, and they are connected to each other (including

the one hooked to the superior) by some ordering principle, the

group is called an inferior set. Any member of a peer group may

have its own inferior group which is a peer group. The inferior

groups of a peer group are said to be at the same level regardless

of the connecting rules.

We interrupt to comment on the two forms of peer groups. It might be supposed

that the strictly hierL,chical echelons are simpler, more natural and hence

more efficient and usefLl. This is not the case, however. The organization

presented in Part II is based on inferior sets which have advantages both

for storage and searches.

A data bank is a collection of data structures which themselves form

a grand data structure. One and only one data. structure, called

the~, is a superior without a superior and without peers in the

context of the data bank. The root is regarded as level zero.

A data base management system (DBMS) is a system for creating, modify­

ing, manipulating and using a particular style of data banks.

The DBMS consists of a system of computer routines, one or more

languages for controlling these routines and for specifying various

forms of datums, and manuals for explaining and documenting all

parts of the DBMS including themselves. However, the DBMS should

be distinguished from any particular data bank and related material

which is implemented using the DBMS, except possibly an illustra­

tive example or embryonic structures common to all uses of the DBMS.

It mayor may not be possible to separate a DBMS from a particular type

of computer. We do not regard such inseparability as a fault, nor porta­

bility at the expense of worthwhile characteristics as a virtue. These are

questions of implementation which require different viewpoints and jUdgments



from those taken here. One cannot completely ignore the style of computer

system used, however. Good character and charactep-string manipulation

capability, adequate central and peripheral storage, fast execution speeds

and high data transmission rates, and extensive provision for supporting

numerous types of perioheral devices and telecommunication lines are all

necessary for effective implementation of an elaborate DBMS. Interactive

operation is also a requirement. We are not interested in the question

of how small or inadequate a computing system can be "supported".

Some readers may feel that the general concept of data banks and OBMSs

have already been overly constricted by the foregoing discussions and

definitions. As a practical matter, however, it is difficult to see where

one Can begin with much less bounding of the problem area. When one gets

to actual specifications and design, many further limitations have to be

imposed.

FURTHER BASIC CONSIDERATIONS

Certain terms used in the definitions of the preceding section were

neither intuitively clear nor defined. This was necessary since the intent

was to first briefly encompass the range of the subject.

Let us first distinguish between data entities and functions of sets

of entities. The definition of an attribute is normally an entity. An_item,

on the other hand, mayor may not be an entity but the set to which it

belongs is at any rate a function of a set of attributes. An entity must

have some form of identifier by which it can be referenced, and be extractable

as a unit when once located. The set of identifiers for all attributes

defining a set of items may itself be collected together and given an iden­

tifier, in which case it has the formal structure of an attribute. However,

regarding it as such involves one in a logical morass. Rather, the identi­

fier for the set of attribute identifiers is effectively the referent to

the set of items. This is only the first of many examples where great care

must be taken to distinguish between formal structure and conceptual structur.e.

The following definitions will be useful.

A erimitive set is a set of datums deliberately defined for some pUP­

pose with fixed formats and specified values, arranged in the form

of a set of items embracing or as though embracing one or more

attributes. The set of items and, optionally, the attributes

are given pre-defined referents which have the status of reserved

words, either in a language or the meta-language defining it.

(One of the difficulties with a natural language is that it is its own

meta-language and hence c~~ot be rigorously defined.)



-7-

A symbol is a character string restricted in form by convention and

used as the name of something. A typical restriction is that the

first character be a letter, that only letters, digits and perhaps

one or two other characters (such as the period or currency sign)

be used, and that total length not exceed eight characters (some­

times six). (Less restrictive conventions are also in use but

too much latitude creates problems for both designer and user.)

Special characters are characters which are given special meaning,

usually wherever they appear. The set of special characters are

usually further differentiated into operators, punctuation,

flags, etc. (Their definitions are an instance of primitive sets.)

The use of special characters is unavoidable and no one would want to

do away with all of them. However, beyond those universally accepted --

such as the arithmetic operators, comma, and such like -- there is little

agreement on the meaning or desirability of further special Characters.

Their proliferation is limited by the availability of graphics on various

peripheral devices alth8ugh the number of available graphics has been

increasing. Unfortunatel.y theE'e has been little standardization with respect

to keyboard positions, internal codes, and local meaning (SUCh as typing

controls). Even the standard special characters are often used with non­

standard mea~ings or traditionally have multiple meanings depending on context.

The asterisk, for example, may mean multiplication, indicate a comment, be

used as a universal character, or, doubled, represent exponentiation. One

cannot deny the naturalness of these various uses (except possibly the last)

but proliferation of special meanings for characters leads to logical

snarls, or at least untidiness. Some languages are built up carefully and

almost exclusively from special characters; if sui table to the purpose,

they may be highly efficient. However, such an approach seems unsuitable

for a DBMS language for the general user. Perhaps the cryptic nature of

some formal languages has been the chief motivation for proponents of

natural language.

It might be thought useful at this point to introduce the concept of

. divisions into data banks, in the sense of main functional subsystems,

somewhat as in COBOL. One might, for example, define a language division,

an operational diVision, and a data division. (Another main subsystem, the

underlying file system, is clearly necessary but it is best kept below the

view of the user.) A serious attempt was made to use the idea of divisions

-- in fact, the three just mentioned -- even to the point of trying to base



a preliminary design of the DBMS in Part II on it. It proved to be

unworkable when details were examined more closely. It is true that a

system has what may be termed dimensions, and three important ones are

the command and control language and mechanism, the operations and func­

tions existing in executable code, and the data files and other structures

upon which the system operates. However, these are quite dissimilar things,

even conceptually. While it may be possible to conceive of some super­

system which embraces the various subsystems as though they were special

cases of a unified formalism, this leads one into a number of difficult

problems in programming, computer science, logic and probably other areas.

At best, the solution of these problems, however elegant in concept, must

lead to inordinate complexity in the actual routines which do the work.

The practical problems to be dealt within a DBMS are already severe enough

without further burdening the system for the sake of abstruse ideas.

Furthermore, it does not appear that the idea of divisions really helps

the user or leads him to a more orderly breakdown of his work and material.

If anything, on the contrary, it blurs distinctions which ought to be kept

clearly in mind.

(The writer once designed and implemented a large system for a different

but not unrelated application area in which a similar kind of generaliza­

tion was largely achieved. The system was extremely disappointing in a

practical sense because of its inefficiency and continual respecification

of what was, in fact, already known. From B programmer's viewpoint it was

elegant and flexible but it solved the implementer's problems, not the users~

One can be deceived by the apparent similarity of all coding in the imple­

mentation language. The use of standardized techniques and structures in

the implementation language is to be recommended, even required, but these

often involve ~omplicBted formalisms which the user of the system is unfami­

liar with and should not be required to understand. However, if these

formalisms inhibit the practical and efficient application of the syst~,

the user has a right to complain. The user of a large system, particularly

a DBMS, is already dealing with a difficult problem area. The system should

assist him with his problems without bUrdening him with the implementer's

problems. Of course, if a clever conceot helps both -- as occasionally

happens -- it should by all means be used. It appears that the idea of

divisions helps neither.)

We will restrict attention here to what would have been termed the

data division, i.e. the data bank proper. Some further consideration of



~-

referents is in order. Even if these are restricted to symbols, one symbol

will seldom be sufficient. It is probably impossible and certainly undesir­

able to maintain uniqueness across all levels and data structures. Both

the meaning of a datum and the way it is accessed depend on the relational

path by which it is reached. If the data bank is hierarchical, as has

already been tacitly assumed, it is possible to record the most direct

path from the root node to any physical entry by a chain of referent symbols

or some kind of pointers. However, attempting to record these chains would

be silly since they would amount to a large set of predefined identifiers,

of varying length. Since they would not represent the type of relationship

frequently required, even a large set of them would represent only a small

fraction of the desired possibilities.

The above difficulty is resolved by recalling the distinction between

an attribute name (and form definition) and an attribute value, and by the

use of inferior sets rather than echelons. The inferior-set organization

endows the data bank with an unambiguous form of hierarchy which distributes

values in such a way that only inseparable relationships are recorded. That

is, the form of physical paths through the structure is fi~ed but the pos­

sible paths are very large in number and efficient on the average. The

attribute definitions are maintained at just the point where they are needed

and apply to the most nodes without duplication. This position is at the

unique connection of a node to its inferior set. If the idea of a key attri­

bute is introduced here, physical paths are then uniquely defined. One can

then search either strings of attributes by name, to locate a set, or strings

of values to collect members of an implicit set. The assignment of the key

attributes is critical of course and represents a restriction on the generality

of structure. However, since each one applies to only one (homogenous)

inferior set, the restriction is minimal. This concept is elaborated in

detail in Part II and defines the fundamental organi~ation of the data bank.

There is still a large question left as to the order in which a complicated

search command should be executed, and to what extent, if any, this should be

intermixed with parsing and interpretation of the command. But this problem

is close to the surface of the DBMS and can be improved independently,

without altering existing data structures.

ON ALLOWABLE KINDS OF DATA AND OPERATIONS ON IT

At first glance it would appear impossible to circumscribe allowable

kinds of data and operations on it without seriously reducing the generality



-10-

of a DBMS. Yet it seems that this must somehow be accomplished. We

begin by dividing the problem into parts, a not very novel idea.

There is, first, the matter of form which has two aspects: external

or graphic form, and internal or coded form. Although not completely

trivial, this aspect can be taken care of fairly easily.

Second, there is the matter of content. One's first reaction to

this is possibly the snip reply that we don't care what the content is

as long as there's not too much of it. On more careful thought, however,

content must be considered if only in a negative way. Voluminous data

or preliminary studies which cannot be abstracted and organized in some

fashion to give meaningful "handles", so to speak, cannot be much helped

by a DBMS. That is, content does have implications for the third matter

of our concern, namely, the induced structure which the DBMS must,be ade­

quate for. This conceptual structure becomes a kind of generalized syntax

for the material being organized.

Fourth, there is the matter of useful operations. These are not as

diverse in practice as might first be thought. The form of data restricts

the range of operations. The widest range of operations and functions is

for numerical data but this is also the easiest to deal with and to pass

to external procedures, if necessary, using standard or easily definable

conventions. The DBMS need not accept responsibility for the interpretation

or validity (other than for arithmetic and a few standard functions) of

numerical transformations. It is sufficient to produce the requested

inputs and to re-file the proferred results.

Fifth, as just implied, there is a distinction which should never be

forgotten between valid handling of data and valid interpretation. We

contend that no mechanistic system can impute meaning to data or deduce

interpretations. Data means at most what the user says it means (often

less). The DBMS need not be concerned with meaning or interpretation but

only with formal relationships. This introduces a large divisor between

the possible range of applications and the necessary range of processes

which must be carried out.

Sixth, there is the matter of the style of language, which has impli­

cations in restricting the range of operations. We are prepared to be

quite arbitrary, though hopefully consistent, with regard to language style.

There are two kinds of restrictions: those that prevent unnecessarily

complicated or difficult-to-execute statements, and those that deprive the



-11-

user of desired capabilities. Within reason, the latter restrictions

should bp. avoided. The former seem allowable; it is impossible to satisfy

everyone's tastes anyway and legitimate restrictions should not be shied

away from. It is always possible to build superstructures for convenience

on a clean language.

Seventh, and finally, the possibility of special versions should be

provided for. Almost any larqe application is likely to have special

requirements for which special provision should be made in the basic pro­

grams. This is not a suggestion that everyone tinker with the system or

that it should be necessary in general. But large, complex applications

will almost surely have a life of many years and the expense of a special

version may be very low when amortized over its lifetime. This depends,

however, on clean design in the first place.

In the following sections, the above aspects of the problem will be

dealt with in more detail tho~gh not strictly organized as numbered above.

DATA CONTENT

Ignoring for the mG~ent the distinctions between mere datums and data

to which some meaning can be imputed, how varied Can data content be?

If one approaches this question from the standpoint of subject matter,

there are virtually no bounds. Subject matter, per se, however, is of no

consequence to the design of a general DBMS. Nevertheless, some SUbjects

normally have a semantic content which is more readily organized than others.

Stastistical data, for example, is more manageable than textual reference

material though one subject may involve both. Textual material is itself

quite diverse; it might be reasonable to put a handbook for a scientific

area in a data bank but hardly a history book. At least some kind of

indexing 8ased on key words and phrases must be possible and even then

inclusion of an entire document may be impractical and unnecessary. Refer­

ences to encyclopaedias might be suitable content in a data bank but not

the encYclooaedias themselves. It must be admitted that some degree of

arbitrariness aopears involved here. It is not inconceivable that someone

might find it useful to have an encyclopaedia computerized, but a special

system would be more suitable for such a purpose.

The problem of abstracting material from scientific and scholarly

material is a very difficult one. Even professionals in this area don't

seem to always do a very effective job which no doubt reflects more the

difficulty of the task than on their competence. It would seem foolish



-12-

to attempt to make a contribution to so difficult an area in a DBMS. The

most that seems feasible is to mechanize the techniques which abstractors

would find useful in their work or use in presenting their results. Thus

a request to a DBMS to find all references to, say, "energy supply" in the

entire data bank would be a very inefficient use of the system unless

references under such a heading, perhaps under several superior headings,

had previously been created. It is true that computer programs exist -­

for example, context editors -- which will quickly find all occurrences

of any string in a body of material, but the volume of data through which

they search is comparatively smull, usually no more than a few thousand

characters, and the organization is simple. At around 100,000 characters,

perhaps the equivalent of 50 typewritten pages, search time begins to be

quite noticeable.

Should the user then be required to separate his material into distinct

classes, with clearly stated hierarchical organization? Most DBMSs require

this and there are several advantages as well as the apparent nea~ecessity.

A possible disadvantage is that it may make it difficult for others than

the developer to use the data bank but, first, this can be overcome by the

ability to display organizational structure, and second, what other approach

would make it easier for an unfamiliar user. A very important advantage

is that the developer of a complex data bank~ organize the material if

the result is to be worthwhile. The DBM6should aid in the process but not

be required to give good service without it.

The user must, in fact, organize his material in two ways: the concept-

ual structure which only he can create though with assistance from the DBMS,

and the separation of different fonns of material which require different

handling and which the DBMS can enforce. A discussion of foroms will clarify

the latter point.

DATA FORMS

As previously stated, data must be considered in both external and

internal fonns. Externally, it must also be further differentiated in part

according to whether it is input or output. A graph, for example, can not

be input and stored as such but can be output. Some output data appears

the way it does by virtue of a peripheral device, such as a plotter, and

is not properly an output of the DBMS itself. However, it is a waste of

time to be too picayune about such distinctions.

How many external forms for input are reasonable? Actually, not many,



-13-

and some distinctions are mere technical details, such as fixed-point

versus floating-point numbers. From one point of view, the following list

covers all reasonable possibilities:

1. Statements typed at a terminal which are structured but may contain

commands, numbers and some amount of text.

2. Computerized input files (tapes, cards and disks primarily) con­

taining arrays of numbers, possibly with some symbolic indicators.

3. Computerized input files containing larger amounts of text, perhaps

with some editing or indicative information.

4. Mass transfers from another data bank.

There are variants of some of these, such as input via remote telecommuni­

cation, possibly use of a light pen or an optical scanner, or the output

of another program, but these are not fundamental distinctions. If pro­

grams, per se, are to be dealt with, there are two possibilities: source

code to be put in the data bank itself, and executable code for extending

operational capabilities of the DBMS. The first does not pose any problem

different in kind from other textual data; it is probably even simpler to

organize appropriate reference relationships. Executable code, on the

other hand, does pose technical difficulties but, hopefully, these will

not be insurmountable though certain restrictions may be required. In

this connection, one must distinguish between macros in the language of

the DBMS itself, and linkage by the DBMS to an executable library of routines.

On the output side, the four types of input mentioned above all have

equivalences and, in addition, forms such as graphic displays, plotted

material, and possibly others are desirable. However, most of the addi­

tional forms are in the nature of post-processing of data produced by the

DBMS proper, that is, they can be added to the basic system as required.

General format control for printed output should be in the DBMS itself.

Internally, the major dichotomy is between rather stereotyped struc­

tures used in the command language and the varied forms in the data proper.

These should have an obvious relationship, however, and some overlap in

form. The first requirement for the data is the ability to store items

which are entities but which have a mixed-mode substructure. This implies

at least two more capabilities: some way to describe the format of the

substructure, and some way of relating the items to subject matter. These

obviously have implications for external syntax as well -- there must be

some way to specify these things and the way should seem natural. It is

probably to be recommended that stereotyped format descriptions be used

(except for report generation). This turns out to be natural for the

definitions of attribute forms once the allowable datum forms are defined



-14-

and given labels. No practical limitation need be made. A relatively few

forms can accomodate almost any reasonable kind of datum. There are some

limitations of a different kind, however. Many itemfi will have associated

data which may be fairly voluminous, such as a matrix, a table or actual

text. The case of actual text is the most difficult since it is uncertain

how to store an unstructured and unknown amount of input. It can be done

but it would seem reasonable to impose a fairly low upper limit on any

one such body of text. Searching should be done on abbreviated relational

and indicative data, with associated pointers to voluminous data, the latter

being stored separately and retrievable only in large units. As an analogy,

it is usually better to consult a card index in a library rather than wander­

ing through the book stacks. However, the ability to do some amount of

browsing may be desirable.

The question of packing sparse data is also important. For example,

suppose ten different attributes are embraced by a set of items but, on

the average, six of them are void. Without packing, fiJojo of the storage

space is wasted (though packing eats up some fraction of the saving).

Packing in itself is not so much of a problem but both updating packed data

and searching it can be awkward and inefficient. Perhaps the best that

Can be done is to allow the user an option as to whether packing is reason­

able or not, at least for arrays attached to an entity. If identifying

attributes are often void, it is QUestionable whether the defining set of

them is properly defined itself.

These are some of the considerations which must be taken into account

in detailed design. We must pass on now to other aspects.

INDUCED STRUCTURES AND OPERATIONS ON DATA

To illustrate the concept and problems of induced structure, let us

consider a small example. Suppose a personnel file consists of items,

which are entities, with the following twelve fields:

name, exmplyee no., social security no., sex, data of birth,

department, title, salary, fixed deductions, dependents.

(Several more would be required in a real personnel file of course, but the

above is sufficient for illustration.) First we note that different formats

are required for the fields. Down through salary, these can be fixed for

all employees although "name" would then require maximum length which would

be needed for only a very few. (The wastage could easily average 10 char­

acters per person.) But "fixed deductions" and "dependents" require sUb­

structures of their own unless only totals are recorded; this might be



-15-

sufficient for "dependents" but hardly for the other. 50 already there is

a problem of storage organization. There are, of course, many solutions

to it but they all complicate searching of items, especially for particular

attribute values. If one is concerned only with the personnel file, some

"best" organization can be determined statistically, but how can this be

done for a general data bank and how many rules can a DBM5 support?

5econd, only the second and third fields are absolutely unique to the

real individual, and hence to the file; even names may duplicate. At the

same time, no field will have consecutive values over items no matter how

the latter are sequenced.

Third, there are several possible orderings of the items which are

"sensible": alphabetically by name, monotonically increasing by employee no.,

major by grade, major by department, minor by name within department, and

so on. Only ordering by employee no. (if assigned sequentially over time)

will guarantee that no inserts need be made, although deletions will be

required.

Such problems are familiar enough to anyone who has had to deal with

such files. But our personnel file is essentially the simplest kind

possible; it is quite homogeneous with only a couple of possible exceptions.

5uppose it is stored in order on employee no. but we chain together all

employees in the same department and also with the same grade. First we

must decide on the order of chaining. Perhaps we want a department chained

alphabetically by name, and grade by department. We have then induced two

more sUbattributes, "after" and "before", to each of the attributes "grade"

and "department" and fields must be provided for each in at least one direc­

tion. Furthermore, anchors for these chains, for each department and each

grade, must be provided. Already the overall structure, both conceptually

and mechanistically, has taken a quantum jump in complexity.

Of course, the above requirements could be satisfied in other ways

such as searching and sorting. Indeed, the ordinary user would probably not

consider chaining but would siQlply request, for example, "all employees in

department xyz, alphabetically by name". If chaining had not been done,

the implied search and sort would be the only way to get the information.

5uppose, however, that chaining had been done but this user didn't know it.

Should the DBMS be able to take advantage of the chaining automatically?

This might not be unreasonable if the attributes and any subattributes were

properly recorded internally. What would be too much to ask is that the

DBMS be able to do the chaining automatically when the items were stored,



-16-

that is, without specific instruction.

A department manager might want merely an up-to-date listing of his

employees but, more likely, some executive would want a distribution-by

department of salaries and perhaps other attributes like sex and l~ce (or

whatever circumlocation is in vogue). This leads us to the question of

what standard functions should be provided. Should "distribution by ••• "

be available or must someone program it from more basic operations? In

the latter case, if the request were frequent, it would be desirable to

store the program as a new operation. In one situation, a decision could

be made but if we turn to other kinds of data, an entirely different type

of operation is needed. For example, if one is dealing with sets of en­

codings which must be combined in various ways, operations like concatena­

tion, masking and symbolic incrementing are needed. Again, for some kinds

of data, one wants means, standard deviations and other statistical tools.

The four arithmetic operations, square root, exponentials and logarithms,

and similar basic tools are frequently needed.

The criteria for primitive operations should probably be generality

and difficulty of programming with any others built up as storable macros

or accessible in a subroutine library. With this approach, the content

of the basic routines in the DBMS can be minimized and specialized, providing

robustness without excessive size. The basic and general operations and

functions usually require more polished implementation than more comprehen­

sive functions. For example, square root can be programmed from the arith­

metic operations (indeed must be at some level) but an efficient and robust

square root routine is not trivial to program. Even the arithmetic opera­

tions for mixed modes and precisions are rather complicated. (Compilers

hide all this from the average user of a higher-level language.) However,

given general summation, counting and square root, the mean of a set of

values is trivial to program. In the case of symbolic operations, such

things as masking, concatenation and symbolic incrementing are tricky to

code but, given such primitive capabilities, quite complicated symbolic

functions are readily programmed. The set of primitive operations should

be much larger than those mentioned above, of course, but not excessive.

Rather than trying to be too comprehensive, optional inclusion of both user­

defined macros and standard or usep-provided subroutines should be made

easy and workable.

Desirable as it might seem to be able to extend the set of primitive

operations, that is, by the user, this not only leads to severe implemen-



-17-

tation problems but requires the user to be aware of and take into account

numerous considerations with which he is most probably not familiar, and

should not be required to be. As previously remarked, when special situa­

tions justify special versions of the DBMS, they should be created by those

who are familiar with internal intricacies and can guarantee reliable use.

EPILOGUE TO PART I

Clearly much more could be said on any of various parts of the subject

raised in the foregoing sections. Equally clearly, not all readers will

be satisfied with what has been said and this includes the writer. Still,

no purpose is served by endless discussion. At some point, the principles

and suggestions elicited by discussion (albeit a monologue) must be tried

and the results evaluated. It seems that that point has been reached.

In Part II, a design for a DBMS will be presented. Some concepts

presented vaguely or by mere reference in this part will be given greater

precision as a matter of course. Other features will appear which have

not been discussed. Son,e will be justified, others will be left to the

reader's own evaluation.

Order of presentation is itself a problem. No justification or explan­

ation for the order used will be given in Part II. The writer has followed

what seemed to him a logical sequence which minimizes the number of terms

used which, at any point, have not previously been explained. It does not

seem possible to find any order in which this can be completely avoided.

When serious misunderstanding appears possible, forward references or interim

definitions are used.


