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Abstract

The emphasis is on results of a numerical analysis performed for a simplified dynamical
model of the international market for greenhouse gases emissions permits, which is one of
the Kyoto flexible mechanisms. For the model, an optimal control problem is formulated,
and a procedure for constructing optimal strategies of Russia’s behavior is suggested. A
possibility of obtaining algorithm’s input data from different integrated assessment models
is discussed.
Keywords :International market for greenhouse gases emissions permits, optimal control

problem with phase constraints, numerical solving methods
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1 Introduction

The driving forces of the global climate change, one of the most actual problems in the
modern world, are not completely studied yet. Ecological, social, and economic conse-
quences of this process are rather disputable and complicated. However, experts are in
agreement that the dramatic climate change observed in the recent times is explained to
some extent by the increase of the atmospheric concentration of greenhouse gases (GHG),
first of all, CO2, due to human impact characterized by an essential increase in fossil fuel
consumption. One of the major efforts the international community suggests to control the
environmental impacts is the Kyoto Protocol developed by the United Nations Framework
Convention on Climate Change in December 1997. After the waivers of the ratification
of the Kyoto Protocol by the main countries producing GHG emissions, USA and China,
the future of the Protocol directly depended on the position of Russia. However, even
after the ratification of the Kyoto Protocol, the debate in Russia about future costs and
benefits of being a Party to the Protocol has continued with hardly mitigated intensity
since many statements of the Protocol and mechanisms of its application seemed to have
an ambiguous value in the context of developing Russia’s economy. In the discussion,
arguments of the proponents and opponents of Russia’s participation in the Kyoto Pro-
tocol are often based on results of application of various mathematical models (mainly,
integrated models for evaluating regional and global effects of GHG reduction policies,
and optimization models).
In the present paper, a model-oriented approach to constructing optimal strategies

for Russia’s behavior on the international market for emissions permits is applied. This
market is one of the Kyoto flexible mechanisms. The proposed simplified model assumes
Russia’s monopoly in the trade with the Annex B countries and an opportunity of banking
permits and optimizing their sales over time. Due to a collapse of the industrial sectors in
the 1990s, Russia actually does not need to reduce emissions for selling permits, since the
amount of the so-called Russian “hot air” is large enough. Therefore, Russia’s monopoly is
considered as a first approximation to a more complicated multi-pole market. The model
uses a demand function describing the market price for emissions permits in the Annex B
countries, a cost function for emissions abatement in Russia, and a temporal dynamics of
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the “hot air”. To obtain specific dependencies, different integrated assessment models are
applied.

2 Statement of an optimal control problem for a model of
dynamics of the stock of permits

To describe the process of emissions permits banking with an opportunity, at every time
moment, to sell some amount on the market and/or to increase the stock by emissions
abatement, we use a dynamical controlled system. Let x(t) be the stock of permits that
are banked at time t; h(t) be the amount of the “hot air” available for sale (this function is
actually regulated by the Protocol and assumed to be known); q(t) be the size of emissions
abatement; u(t) be the amount of permits supplied for sale. The last two functions are
control parameters. It is natural to equate the rate of the stock of permits, ẋ(t), with
the difference of two values, h(t) + q(t) and u(t). This results in the following differential
equation:

ẋ(t) = h(t) + q(t)− u(t), t ∈ [t0, T ]. (1)

We assume that the initial time is a moment t0 when the stock of permits equals zero, i.e.,

x(t0) = 0. (2)

It is evident that the “hot air” h(t), the emissions abatement q(t), and the amount of
permits u(t) supplied for sale can not exceed some definite values; this can be expressed
as the following constraints:

a1(t) ≤ q(t) ≤ b1(t), a2(t) ≤ u(t) ≤ b2(t), a3(t) ≤ h(t) ≤ b3(t), (3)

a1(t) ≥ 0, a2(t) ≥ 0, a3(t) ≥ 0,

x(t) ≥ 0. (4)

Note that constraints (3) imply x(t) ≤ K, where K is a constant, which can be written
out explicitly. Therefore, (4) can be naturally replaced by

0 ≤ x(t) ≤ K. (5)

We assume that all the scalar functions from the right-hand side of (1) belong to the
space L2([t0, T ];R), and functions ai(·), bi(·), i = 1, 2, 3, are continuous. In what follows,
we consider function h(·) as a known one. Any functions q(·) and u(·) satisfying (3) will
be called admissible controls. The set of all admissible controls will be denoted by U∗. A
solution of equation (1) is understood as a Caratheodory solution and belongs to the space
of all absolutely continuous functions on [0,T] A([t0, T ];R). A solution corresponding to
a pair of admissible controls (q(·), u(·)) ∈ U∗ will be denoted by x(·; q(·), u(·)).
Now, we formulate a problem of optimal control for system (1)–(3), (5).
Problem P1. It is required to find functions q∗(·) and u∗(·) solving the extremal

problem

max
u,q
F (u, q), (6)
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F (u, q) =

T∫
t0

β(τ)[P (u(τ))u(τ)−C(q(τ))q(τ)] dτ + β(T )π(T )x(T ), (7)

x(T ) =

T∫
t0

(h(τ) + q(τ)− u(τ)) dτ, (8)

and satisfying (3) and (5).
Here β(t) is a discount rate; P (u(t)) is a price of the permits, which, as a rule, is

inversely proportional to the amount of permits on the market; C(q(t)) is a cost function
for marginal abatement, which is, as a rule, proportional to the abatement level. π(t) is
an expected price of the permits. Thus, the integral term in (7) characterizes the total
income from market operations minus abatement costs, whereas the terminal one repre-
sents the cost of all emissions permits banked till the final time T ; both with discounting.
Optimization problems of a similar type have been investigated by many authors (see, for
example, [1], [2], [3]).
Note that the model implements the idea of banking the permits, which can be prof-

itable due to growth of demand and can, in a remote perspective, reduce the abatement
costs.
We assume that the functions P (·) and C(·) are such that the functional F (u, q) is

strongly convex with respect to u and q. In view of (8) the functional (7) can be rewritten
in the form:

F (u, q) =

T∫
t0

[(β(τ)P (u(τ))− β(T )π(T ))u(τ)− (β(τ)C(q(τ))− β(T )π(T ))q(τ)+

+β(T )π(T )h(τ)] dτ. (9)

Let us formulate an auxiliary problem of optimal control.
Problem P2. It is required to find functions qα(·) and uα(·) solving the extremal

problem

max
u,q
Fα(u, q), (10)

Fα(u, q) =

T∫
t0

[(β(τ)P (u(τ))− β(T )π(T ))u(τ)− (β(τ)C(q(τ))− β(T )π(T ))q(τ)+

+β(T )π(T )h(τ)− αx2(τ)] dτ, (11)

x(τ) =

τ∫
t0

(h(ξ) + q(ξ)− u(ξ)) dξ,

and satisfying constraints (3) and (5). Here α > 0 is a small parameter.
Note that, in virtue of the strong convexity of the functionals (9) and (11) with respect

to u and q, and convexity, boundedness, and closedness (in L2([t0, T ];R)×L2([t0, T ];R) ) of
the set U∗, each of Problems P1, P2 has a unique solution,
(q∗(·), u∗(·)) ∈ U∗ and (qα(·), uα(·)) ∈ U∗, respectively.
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Theorem 1. Let any α > 0 functions qα(·) and uα(·) solve Problem P2. Then, for
the functional sequence (qα(·), uα(·)),

(qα(·), uα(·))→ (q∗(·), u∗(·)) weakly in L2([t0, T ];R)× L2([t0, T ];R) as α→ 0 (12)

where (q∗(·), u∗(·)) is the unique solution of Problem P1.

Proof. We have (see (6) and (10))

(q∗(·), u∗(·)) = argmax
q,u
{F (q(·), u(·)) : (q(·), u(·)) ∈ U∗} , (13)

(qα(·), uα(·)) = argmax
q,u
{Fα(q(·), u(·)) : (q(·), u(·)) ∈ U∗} . (14)

Let

I(q(·), u(·)) = −F (q(·), u(·)),

y(t) = y(t; q(·), u(·)) be a solution of the equation

ẏ(t) = x2(t; q(·), u(·)), y(t0) = 0.

Then yα(t) = y(t; qα(·), uα(·)). In virtue of (11), (14), the following inequality is valid for
any (u, q) ∈ U∗:

I(q(·), u(·))+ αy(T ; q(·), u(·))≥ I(qα(·), uα(·)) + αyα(T ) ≥ I(qα(·), uα(·)).

Consequently,

I(q(·), u(·))≥ I(qα(·), uα(·))− αy(T ; q(·), u(·)) ∀(u, q) ∈ U∗. (15)

To prove the theorem, it is sufficient to show that if αk → 0 and

(qαk(·), uαk(·))→ (q̄(·), ū(·)) weakly in L2([t0, T ];R)× L2([t0, T ];R)

as k →∞, then the equalities

q̄(·) = q∗(·), ū(·) = u∗(·) (16)

are fulfilled. Note that

sup {‖y(T ; q(·), u(·))‖ : (q(·), u(·)) ∈ U∗} ≤ C <∞.

Therefore,

αy(T ; q(·), u(·))→ 0 as α→ 0 (17)

uniformly with respect to all (q(·), u(·)) ∈ U∗.
Referring to [4], we state that the functional I(q(·), u(·)) is weakly lower semicontinu-

ous. Therefore,

lim
k→∞

I(qαk(·), uαk(·)) ≥ I(q̄(·), ū(·)). (18)

From (15), in virtue of (17) and (18), it follows that

I(q(·), u(·))≥ I(q̄(·), ū(·)) ∀(u, q) ∈ U∗. (19)

However, the solution of Problem P1 (problem (13)) is unique. This and (19) imply
(16). The theorem is proved.

Taking into account convergence (12), we solve the auxiliary Problem P2 instead of
Problem P1.
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3 Algorithm for solving optimal control problem

Problem P2, being a problem of optimal control under phase constraints, needs special
solving methods. The algorithm used in the present work is described in [5]. It is based on
the suggested in [6] and developed in [7, 8, 9] method named “constraint aggregation”. The
algorithm consists in reduction of solving the problem with phase constraints to solving a
sequence of classical optimal control problems.
According to [5], an iterative procedure is designed for solving Problem P2. At each

step k of this procedure, we solve the problem of finding functions z∗(·), w∗1(·), and w∗2(·)
such that

(z∗(·), w∗1(·), w∗2(·)) =

= arg max
z,w1 ,w2

{
F 1α(z, w1, w2) : (z(·), w1(·), w2(·)) ∈ Q

}
. (20)

Here Q stands for the set of Lebesgue measurable functions z(·), w1(·), w2(·) (acting
as controls) satisfying the conditions

0 ≤ z(t) ≤ K,

a1(t) + h(t) ≤ w1(t) ≤ b1(t) + h(t), a2(t) ≤ w2(t) ≤ b2(t), (21)

and transferring a phase trajectory of the equation

η̇(t) = gkC(t)z(t)− gkD(t)w1(t) + gkD(t)w2(t), t ∈ [t0, T ], (22)

from the initial state

η(t0) = 0 (23)

to the terminal state

η(T ) = 0. (24)

The performance criterion F 1α takes the form

F 1α(z, w1, w2) =

T∫
t0

[(β(τ)P (w2(τ))− β(T )π(T ))w2(τ)−

−β(τ)C(w1(τ)− h(τ))(w1(τ)− h(τ)) + β(T )π(T )w1(τ)− αz2(τ)] dτ. (25)

The control z(·) corresponds to the given system’s phase variable x(·), the control w1(·)
corresponds to the value q(·)+h(·), and the control w2(·) corresponds to the function u(·).
The coefficients at the controls in (22) are found by the formulas:

gkC(t) = r
k
α(t), g

k
D(t) =

T∫
t

rkα(τ) dτ, (26)
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where

rkα(t) = x
k
α(t)−

t∫
t0

(h(τ) + qkα(τ)− ukα(τ)) dτ. (27)

The functions (xkα(·), qkα(·), ukα(·)) are calculated at the step k−1 (at the step 0, the values
x0α(·), q0α(·), and u0α(·) are chosen as functions providing the maximum of functional (11)
under constraints (3)–(5); in particular, x0α(t) = 0). Let (z

k
α(·), wk1α(·), wk2α(·)) be a solution

of problem (20)–(27). The passage to the step k+1 is realized according to the following
scheme. First, we calculate the function

ρkα(t) = z
k
α(t)−

t∫
t0

(wk1α(τ)−wk2α(τ)) dτ (28)

and the coefficient (so called step size)

τkα = arg min
0≤τ≤1

‖(1− τ)rkα(·) + τρkα(·)‖2L2. (29)

Here the symbol ‖x(·)‖L2 means the norm of x(·) in the space L2([t0, T ];R), i.e., ‖x(·)‖L2 =( T∫
t0

|x(τ)|2 dτ
) 1
2
.

Then we obtain the (k + 1)th approximation to the solution of the given problem:

xk+1α (t) = xkα(t) + τ
k
α(z

k
α(t)− xkα(t)),

qk+1α (t) = qkα(t) + τ
k
α(w

k
1α(t)− h(t)− qkα(t)),

uk+1α (t) = ukα(t) + τ
k
α(w

k
2α(t)− ukα(t)). (30)

The following theorem is true [5].

Theorem 2. For each α > 0, the sequence (qkα(·), ukα(·)) defined by (27)–(30) strongly
converges in L2([t0, T ];R)× L2([t0, T ];R) to (qα(·), uα(·)) ,

(
qkα(·), ukα(·)

)
→ (qα(·), uα(·)) as k→∞.

To solve problem (20)–(27), we apply Pontryagin’s maximum principle [10]. Below
α is omitted for brevity. Consider the case when the functions C(v(t)) and P (v(t)) (see
functional (11)) are piece-wise linear with respect to their arguments for each t ∈ [t0, T ],
i.e.,

C(v(t)) = αi1(t)v(t) + α
i
2(t),

αi1(t) > 0, v(t) ∈ [vi1(t), vi+11 (t)], i = 0, . . . , n1 − 1,

P (v(t)) = −βi1(t)v(t) + βi2(t),

βi1(t) > 0, v(t) ∈ [vi2(t), vi+12 (t)], i = 0, . . . , n2 − 1,
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where {vi1(t)}
i=n1
i=0 and {vi2(t)}

i=n2
i=0 are partitions of the ranges of possible changes of

w1(t)−h(t) and w2(t) at the moment t (i.e., [a1(t), b1(t)] and [a2(t), b2(t)]) into n1 and n2
subintervals, respectively.
Following the maximum principle, we construct the Hamiltonian for problem (20)–(27):

H(ψ, z, w1, w2) = ψ(t)(q
k
C(t)z(t)− qkD(t)w1(t) + qkD(t)w2(t))+

+(β(t)P (w2(t))− β(T )π(T ))w2(t)−

−β(t)C(w1(t)− h(t))(w1(t)− h(t)) + β(T )π(T )w1(t)− αz2(t).

The given problem has a solution that provides the maximum of the Hamiltonian over
parameters (z(t), w1(t), and w2(t)). We use the conditions

∂H
∂z = 0,

∂H
∂w1
= 0, and ∂H∂w2 = 0.

Omitting unwieldy reasonings, we write out the solution depending on the adjoint variable
ψ(t):

zk(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ(t)qC(t)
2α , if 0 <

ψ(t)qC(t)
2α < K,

0, if ψ(t)qC(t)
2α ≤ 0,

K, if ψ(t)qC(t)
2α ≥ K;

wk1(t) = arg max
i∈[0,n1−1]

J i(wki1 (t)),

J i(v) = −αi1(t)β(t)v2 + (2β(t)αi1(t)h(t)− β(t)αi2(t) + β(T )π(T )− ψ(t)qkD(t))v−

−αi1(t)β(t)h2(t) + β(t)αi2(t)h(t), v ∈ [vi1(t), vi+11 (t)],

wki1 (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

di∗(t), if vi1(t) < d
i
∗(t) < v

i+1
1 (t),

vi1(t), if di∗(t) ≤ vi1(t),

vi+11 (t), if di∗(t) ≥ vi+11 (t),

di∗(t) =
2β(t)αi1(t)h(t)− β(t)αi2(t) + β(T )π(T )− ψ(t)qkD(t)

2αi1(t)β(t)
;

wk2(t) = arg max
i∈[0,n2−1]

Gi(wki2 (t)),

Gi(v) = −βi1(t)β(t)v2 + (β(t)βi2(t)− β(T )π(T ) + ψ(t)qkD(t))v, v ∈ [vi2(t), vi+12 (t)],
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wki2 (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

di∗∗(t), if vi2(t) < d
i
∗∗(t) < v

i+1
2 (t),

vi2(t), if di∗∗(t) ≤ vi2(t),

vi+12 (t), if di∗∗(t) ≥ vi+12 (t),

di∗∗(t) =
β(t)βi2(t)− β(T )π(T ) + ψ(t)qkD(t)

2βi1(t)β(t)
.

Then, solving the system of canonical equations

η̇(t) = gkC(t)z(t)− gkD(t)w1(t) + gkD(t)w2(t),

ψ̇(t) = 0,

we get

ψ(t) = c = const,

η(t) =

t∫
t0

(gkC(t)z(t)− gkD(t)w1(t) + gkD(t)w2(t)) dt.

Substituting the obtained controls (zk(t), wk1(t), w
k
2(t)) (depending on ψ(t)) into the last

equality and using the boundary condition η(T ) = 0, we find numerically the constant
function ψ(t). Then, we obtain explicit formulas for optimal controls in problem (20)–
(27).

4 Results of numerical modeling

To carry out numerical experiments, an interactive OptMars (Optimal Market Strategies)
program was created. This program allows one to specify input data, including data from
external Integrated Assessment Models, and parameter values for the solution algorithm
described in section 3, to trace iterations and to analyze simulation results. In the experi-
ments, system (1) was considered on the time interval [2010, 2030], under the assumption
that the Kyoto mechanisms are applicable on the whole interval (a “Kyoto Forever” sce-
nario), i.e., under the assumption that the emissions levels (regulated by the Protocol) for
the Annex B countries and the international market for emissions permits are preserved.
The stock of permits x(t) was measured in megatons of carbon equivalent (1 MtC);

respectively, the controls u(t) and q(t) as well as the function h(t) were measured in MtC
per year. The dynamics of carbon dioxide CO2 was studied. All prices were given in USD.
As a forecast of the dependence of the market price for emissions permits on the amount
of permits supplied for sale, under the conditions of Russia’s monopoly (actually, as an
estimate of the demand for permits in the Annex B countries), the demand function P (u(·))
from model GEMINI-E3 was chosen, see Fig. 1a. This model is a general equilibrium
model of the world economy [11]. The cost function C(q(·)) for the marginal abatement
depending on the level of abatement (a so called regional MAC curve) was taken from the
same model, see Fig. 1b. The linear interpolation was used between the pictured curves.
The constraints on the controls u(t) and q(t) were chosen as constants: a1(t) = a2(t) =

0, b1(t) = b2(t) = 250. We considered the process without discounting (β = 1), the
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Figure 1: Input data: (a) law of demand; (b) MAC curve of Russia. Functions for 2010,
2020, and 2030 are presented.

parameter α (see (11)) was equal to 0.01, the expected price of permits at the terminal
time π(T ) was equal to 0.
The main goal of the experiment was studying the dependence of the optimal dynamics

of control parameters u(t) and q(t), the stock of permits x(t), and the income obtained
by Russia from operations on the market for permits on the amount of the “hot air”,
additionally (to the abatement) available for sale, i.e., on the function h(t). Actually, the
value of the function h(t) is the difference between emissions at the moment t and the
known emissions level of 1990 (the Kyoto level for Russia, 646 MtC). Then, using different
scenarios of the economic development of Russia and applying different models forecasting
the dynamics of CO2 emissions, we obtained several scenarios of the dynamics of h(t), see
Table 1.

Table 1: Estimates for temporal dynamics of Russian “hot air”, MtC per year

time (1) (2) (3) (4) (5) (6) (7)

2010 155 169 155 132 85 186 300
2015 114 110 125 78 67 105 245
2020 69 52 93 19 57 41 199
2025 33 -13 60 -19 28 16 163
2030 -1 -85 25 -59 -3 6 136

Remarks. 1. Variants (1)–(7) correspond to the following forecasts:
(1) — the reference scenario of the International Energy Outlook 2006 [12];
(2) — the forecast of the Energy Research Institute of RAS [13];
(3) — the reference scenario of IV National Communication of RF [14];
(4) — the innovation-active scenario of IV National Communication of RF [14];
(5) — the simulation results by MERGE [15], [16];
(6) — the simulation results by EPPA [17];
(7) — the simulation results by GEMINI-E3 [11].
2. Between the points listed in Table 1, the linear interpolation was used.
3. Negative values were replaced by zeros.
In addition to variants (1)–(7), two “extremal” cases with constant functions h(t) were

computed: variant (0), where h(t) = 0, and variant (8), where h(t) = 163. The temporal
dynamics of the main output parameters was presented in Figs. 2–3.
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Figure 2: The temporal dynamics of (a) the amount of permits supplied for sale, u(t); (b)
the emissions abatement, q(t). Variants (0)–(8).

Figure 3: Modeling results: (a) the temporal dynamics of the price of permits; (b) the
Russian income from permits sale (in % from the maximum possible income in the model).
Variants (0)–(8).

Note that, due to the method’s error, there is a sense to limit the analysis by 2028.
It is evident that the income from permits sale (see extremal problem (10)–(11)) should
take a minimal (comparing with other variants) value in variant (0); this fact is confirmed
by simulations. It turns out that variant (8) provides a maximum possible income over
different functions h(t) (in the case when the remaining parameters of the problem are
fixed); the same result is obtained in variant (7). The maximality of the income in these
variants is explained by the zero optimal value of q(t) (see Fig. 2b). Note that the least
integer providing the maximum above was taken as the constant value of h(t) in variant (8).
As is seen in Fig. 2a, the amount of permits supplied by Russia for sale on the inter-

national market is varied in 2010 from 73 MtC up to 127 MtC, in 2020 from 119 MtC up
to 167 MtC, in 2028 from 142 MtC up to 187 MtC (in variant (0) and in variants (7),
(8), respectively). In all the variants, the amount of permits supplied for sale increases
with time, and the growth rate is approximately the same (varies from 2.0% up to 3.4%
per year). On the contrary, the emissions abatement is rather stable with time in all the
variants (see Fig. 2b; the most considerable growth is observed in variant (0)). The share
of emissions reduction in the amount of permits supplied for sale is changed from evident
0% in variants (7), (8) up to 94% in 2010, 65% in 2020, and 59% in 2028 in variant (4)
(with the exception of variant (0), when this index is not informative). In all the vari-
ants, it is inexpedient to use the disposable “hot air” at a time; the maximal banking
of permits (the abatement is also taken into account) with the purpose of future income
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increase is observed in variant (6): 160 MtC in 2010 (with the exception of variants (7),
(8), when this index is not informative). Note that the banking becomes possible due to
the intertemporal optimization (on the whole time interval). As to the market price of
permits (see Fig. 3a), it rises from 116 USD/tC in 2010 up to 229 USD/tC in 2028 in
variants (7), (8) (the minimal prices) and from 171 USD/tC in 2010 up to 287 USD/tC
in 2028 in variant (0) (the maximal prices), in all the variants rather slowly (from 2.9%
up to 3.9% per year) increasing with time.
For the comparative analysis of modeling results in variants (0)–(8), the histogram

(Fig. 3b), where the maximum possible income (for the whole time interval) is taken as
100%, is constructed. Analyzing the histogram, we conclude that the maximal income
loss over forecasts (1)–(7) is 10.6% (in variant (4)), whereas the maximum possible loss
is 20.5%. The average (over variants (1)–(7)) loss is rather small (6.2%). Hence, we
can deduce that domestic resources of Russia (namely, an opportunity of relatively cheap
(especially comparing with countries of European Union and Japan) emissions reduction
in Russia due to incomplete realization of the energy effectiveness and energy saving
potential) provide a considerable income from permits sale even in the case of unfavorable
situation with the “hot air”. It turns out that the dependence of the value of this income
on the function h(t) is not so essential, as one can suppose, when analyzing mathematical
model (1)–(11).

5 Concluding remarks

It should be noted that there is a high level of uncertainty in the specification of parameters
of the model in question. In the paper, several scenarios forecasting the temporal dynamics
of the “hot air” were studied. It is reasonable to consider the analysis of the dependence of
optimal strategies of Russia’s behavior on the international market for permits on variation
of different model parameters (in particular, the functions presented in Fig. 1) as one of
the basic perspective directions in modeling.

References

[1] B. Grimm, S. Pickl, and A. Reed, Management and optimization of environmental
data within emissions trading markets - VEREGISTER and TEMPI, In: Emissions
Trading and Business, ed. by R. Antes, B. Hansjürgens, and P. Letmathe, Physica-
Verlag HD (2006), 165-176.

[2] P. Criqui, L. Viguier, Kyoto and technology at world level: costs of CO2 reduction
under flexibility mechanisms and technical progress, International Journal of Global
Energy Issues, 14 (2000), 155-168.

[3] A. Bernard, A. Haurie, M. Vielle, and L. Viguier, A two-level dynamic game of
carbon emissions trading between Russia, China, and Annex B countries, NCCR-
WP4 Working paper 11, Swiss National Centre of Competence, University of Geneva
(2002).

[4] F.P. Vasil’ev, Methods of solution of extremal problems, Nauka, Moscow (1981).
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