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The Evolution and Ecology Program at IIASA fosters the devel-
opment of new mathematical and conceptual techniques for un-
derstanding the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Evolution and Ecology Program
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.
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Abstract1

Several recent models have shown that frequency-dependent disruptive selection2

created by intraspecific competition can lead to the evolution of assortative mating3

and, thus, to competitive sympatric speciation. However, since most results from these4

models rely on limited numerical analyses, their generality has been subject to consider-5

able debate. Here, we consider one of the standard models, the so-called Roughgarden6

model, with a simplified genetics where the selected trait is determined by a single7

diallelic locus. This model is sufficiently complex to maintain key properties of the8

general multilocus case, but still simple enough to allow for a comprehensive analytical9

treatment. By means of invasion fitness analysis, we describe the impact of all model10

parameters on the evolution of assortative mating. Depending on (1) the strength and11

(2) shape of stabilizing selection, (3) the strength and (4) shape of pairwise competition,12

(5) the shape of the mating function, and (6) the type of assortative mating, which may13

or may not lead to sexual selection, we find five different evolutionary regimes. In one14

of these regimes, the evolution of complete reproductive isolation is possible through15

arbitrarily small steps in the strength of assortative mating. Our approach provides16

a mechanistic understanding of several phenomena that have been found in previous17

models. The results demonstrate how, even in a simple model of competitive speciation,18

results depend in a complex way on ecological and genetic parameters.19

2



Introduction1

Interest in sympatric speciation has strongly increased in recent years. Empiricists have2

uncovered several likely examples of this mode of speciation in nature (Schliewen et al. 1994;3

Gı́slason et al. 1999; Savolainen et al. 2006). At the same time, theoreticians have made4

substantial progress in understanding the potential mechanisms leading to sympatric lineage5

splitting (Dieckmann et al. 2004). One of these mechanisms is intraspecific competition. The6

idea of competitive speciation (Rosenzweig 1978) goes back to Darwin (Darwin 1859, pp. 113-7

114) and has recently been studied in a series of models (e. g., Doebeli 1996; Dieckmann and8

Doebeli 1999; Matessi et al. 2001; Gavrilets 2004; Bürger et al. 2006; Bürger and Schneider9

2006; Doebeli et al. 2007). In particular, Dieckmann and Doebeli (1999) used individual-10

based simulations of a competition model that goes back to MacArthur (1969, 1972) and11

Roughgarden (1972) to demonstrate that frequency-dependent disruptive selection on an12

ecological trait affecting resource competition can promote the evolution of assortative mating13

in a process similar to reinforcement. Sufficiently strong assortative mating then leads to14

reproductive isolation and speciation.15

The fact that differential competition between phenotypes can induce frequency-dependent16

disruptive selection is commonly accepted (e. g., Seger 1985; Bolnick 2004a; Rueffler et al.17

2006). What is controversial, however, is under exactly what circumstances such selection18

leads to the evolution of strong assortative mating. In particular, it has been questioned19

how much of the results from Dieckmann and Doebeli (1999) depend on model details, and20

this question has lead to intense debate (Doebeli and Dieckmann 2005; Doebeli et al. 2005;21

Gavrilets 2005; Polechová and Barton 2005; Waxman and Gavrilets 2005b). The reason for22

the continuing disagreement among evolutionary biologists lies in the non-intuitive nature23

of frequency-dependent selection and in the complexity of the models, which often allow24

only for a limited analysis based on computer simulations. For example, in the model by25

Dieckmann and Doebeli (1999), populations are subject to three different selective forces:26

stabilizing selection, frequency-dependent selection due to competition, and sexual selection27

due to assortative mating. In the genetically explicit version of the model, these forces act28

on two or three different traits, each of which is influenced by multiple loci.29

Our aim in this study is to gain a more thorough understanding of the phenomena in com-30

petitive speciation models by a systematic analytical treatment. To this end, we discuss the31
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evolution of assortative mating in a Roughgarden model with a simple genetic architecture,1

in which the ecological trait is determined by a single locus with two alleles. The same trait2

(or a pleiotropically related trait) serves as a marker for assortment. This corresponds to the3

first model of Dieckmann and Doebeli (1999), in which there is no separate marker trait for4

assortative mating. We thus concentrate on a “one-trait model” sensu Fry (2003), akin to the5

“one-allele model” in the original classification by Felsenstein (1981). Our approach extends6

the study by Matessi et al. (2001), who also investigated the evolution of assortative mating7

due to frequency-dependent disruptive selection acting on a single diallelic locus. In contrast8

to Matessi et al. (2001), we do not use a weak-selection approximation for the underlying9

fitness functions. This allows us to analyze a larger parameter space and selection pressures10

of any size. As it turns out, much more of the complexity of the original Dieckmann and11

Doebeli (1999) model is maintained in this way.12

As our main analytical tool, we develop a simple invasion criterion that enables us to study13

the evolution of assortative mating in the entire parameter space. In addition, by comparing14

versions of the model with and without sexual selection, we clarify the roles of sexual and15

natural selection for competitive speciation. Our analysis reveals a remarkably complex16

structure: If the ecological locus remains polymorphic there are five qualitatively different17

evolutionary regimes, including two regimes previously described by Matessi et al. (2001).18

Our results show that predictions about the likelihood of competitive speciation require a19

detailed understanding of the underlying genetic and ecological factors – in models as well20

as in natural systems.21

Model description22

We consider a population of sexually reproducing hermaphrodites, which are characterized by23

two quantitative traits: an ecological trait that determines competition and, in the absence of24

competition, is under stabilizing selection, and a mating trait that determines the tendency25

for assortative mating with respect to the ecological trait. The timescale is chosen such that,26

per unit of time, each individual participates on average in one mating (playing either the27

male or the female role).28
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Stabilizing selection and competition1

Stabilizing selection in our model is the consequence of a carrying capacity K that depends2

on the ecological phenotype X. We assume that K(X) is maximal for X = 0 but its shape3

can be quite general otherwise. In the original Roughgarden model (e. g., Roughgarden 1972;4

Dieckmann and Doebeli 1999), K(X) has a Gaussian shape, that is,5

K(X) = K0 exp

(
− X

2

2σ2
K

)
, (1)

where σ2
K is the variance and the scaling parameter K0 is the carrying capacity for individuals6

with phenotype X = 0. An alternative choice for K is a (truncated) quadratic function7

(Matessi et al. 2001).8

Competition between a pair of individuals with phenotypes X and Y is described by a9

symmetric function γ(X, Y ) = γ(Y,X). Many models assume that γ depends only on the10

phenotypic distance |X − Y |, as in the standard Gaussian competition function11

γ(X, Y ) = exp

(
−(X − Y )2

2σ2
c

)
(2)

with variance σ2
c , but we will also consider more general shapes. The total amount of com-12

petition experienced by an individual with phenotype X is13

C(X) =
∑
Y

γ(X, Y )N(Y ), (3)

where N(Y ) is the number of individuals with phenotype Y . C(X) can be seen as the14

“ecologically effective population size” experienced by the focal individual.15

Assortative mating16

Assortative mating is modeled as female choice (more precisely, choice by hermaphrodites in17

their female role) and is based on phenotypic similarity with respect to the ecological trait18

(Dieckmann and Doebeli 1999; Matessi et al. 2001; Bürger et al. 2006; Bürger and Schneider19

2006). The probability μ(X, Y ) that an encounter between a male and a choosy female leads20

to mating depends only on their phenotypic distance, μ(X, Y ) = μ(|X−Y |). We set μ(0) = 121

5



for normalization and assume μ(x) ≤ 1 (i.e., we do not allow for disassortative mating). The1

shape of the mating probability function depends on one or several variables that measure2

the degree of female choosiness. For most of our results, we will use a Gaussian mating3

function,4

μ(|X − Y |) = exp

(
−(X − Y )2

2σ2
m

)
, (4)

where the shape is determined by a single parameter for the variance σ2
m. Here, small σ2

m5

corresponds to strong choosiness. The value(s) of the shape parameter(s) depend on the6

female mating genotype and can evolve.7

Even though the aim of this study is to understand the evolution of female choosiness (i.e., the8

evolution of the shape of the mating probability function), most of the following analysis will9

be concerned with populations that are monomorphic with respect to the mating genotype.10

Polymorphic populations will only appear in the invasion analysis in Appendix 2, where the11

fate of rare mutants with a modified mating genotype is studied. To simplify our notation, we12

will therefore not include the explicit dependence on the mating genotype into the definition13

of the population-level variables. An appropriate notation to deal with different mating14

genotypes will be defined in Appendix 2, where it is needed.15

We assume (for now) that the population is monomorphic for the mating genotype. Even in16

this case, assortative mating may lead to genotype-specific mating rates φ = (φfemale+φmale)/217

on the population level, where female and male mating rates are separately defined as18

φfemale(X) =
∑
Y

N(Y )μ(X, Y )M(X), (5a)

φmale(X) =
∑
Y

N(Y )μ(X, Y )M(Y ). (5b)

(Note that Matessi et al. (2001) use the term mating rate in a different sense.) Here, we have19

introduced additional factors M(X), which describe female mating activity. The idea is that20

females with different genotypes may have different encounter rates with males. In general,21

M may also depend on the genotype distribution in the population. By different choices of22

M , we can model different types of assortative mating in a common framework.23

6



In particular, we will consider two models in the following. Both models assume that choosi-1

ness has no direct costs for females. This means that the mating rate of an individual female2

does not depend on her mating genotype, because differences in the mating probabilities3

μ are compensated by differences in the mating activities M . Even with this assumption,4

assortative mating may or may not lead to sexual selection, depending on whether or not the5

mating rates φ differ between the ecological genotypes:6

Model 1: No sexual selection. In our first model, assortative mating does not lead7

to sexual selection on the ecological trait. The mating activity factors M(X) are chosen8

such that all phenotypes contribute to the offspring pool according to their frequency in the9

mating population. This is achieved by setting φ(X) = 1 for all X and solving the resultant10

linear equation system (see Appendix 1).11

Model 2: Sexual selection against rare males. Our second model follows Dieckmann12

and Doebeli (1999). Here, M(X) is thus chosen such that all females have the same normal-13

ized mating rate φfemale(X) = 1 (see Appendix 1). This means that each female is guaranteed14

to eventually find a mate whom she does not reject. In contrast, male mating rates are not15

normalized but depend on X. Therefore, female choice entails sexual selection on males and16

leads to a disadvantage for rare ecological phenotypes. Note that, in this paper, we only17

study sexual selection that arises as a consequence of assortative mating based on the eco-18

logical trait (see Kirkpatrick and Nuismer 2004; Gourbière 2004). We do not consider sexual19

selection due to female preference for male display traits, which by itself has been discussed20

as a potential cause of sympatric speciation via Fisherian run-away processes (Higashi et al.21

1999; van Doorn et al. 2004; Arnegard and Kondrashov 2004).22

Population dynamics and fitness23

In the following, we assume that time is continuous (generations are overlapping) and popu-24

lation sizes are large enough to ignore stochastic processes such as genetic drift. All mated25

individuals are assumed to produce an equal number of offspring, r. Therefore, the fertility26

of individuals with phenotype X is rφ(X), that is, all differences in fertility are due to dif-27

ferences in the mating rates. While fertility is the rate at which a phenotype gives birth, the28

7



birth rate B(X) is the rate at which individuals with phenotype X are born. For our model,1

B(X) = r
∑
Y,Z

N(Y )N(Z)μ(Y, Z)M(Z)RY Z→X, (6)

where RY Z→X = RZY→X is the probability (depending on genetic details) that a mating2

between Y and Z individuals produces X offspring.3

We can now write down the population dynamics, which follow a Lotka-Volterra model,4

Ṅ(X) = B(X)−N(X)d(X), (7)

where the per-capita death rate d(X) is equal to the ratio of the effective population size and5

the carrying capacity,6

d(X) =
C(X)

K(X)
. (8)

This model is commonly interpreted in terms of competition among phenotypically variable7

consumers for a continuum of (demographically rapid) resources (e. g., MacArthur 1969;8

Ackermann and Doebeli 2004). The canonical example is birds with different beak sizes9

specializing on differently sized seeds (Schoener 1965). Then, K(X) describes the availability10

of resources favored by consumers with phenotype X, and γ(X, Y ) describes the overlap in11

resource use between two individuals with phenotypes X and Y. The standard deviation σc12

determines the range of resources used by a single individual, that is, the individual niche13

width (Bolnick et al. 2003). If σc is small, selection arising from competition is strongly14

frequency-dependent.15

Finally, the (Malthusian) fitness of individuals with phenotype X is given by the rate at16

which individuals give birth minus the rate at which they die, that is, by17

W (X) = rφ(X)− d(X). (9)

In other words, fitness can be separated into two components, one related to mating success18

and one to survival. In the following, we will use the notion that d(X) describes natural19

selection due to stabilizing selection and resource competition, whereas φ(X) describes sexual20

selection due to female choosiness. Equation (9) will be the basis for the invasion analysis21

8



that allows us to study the evolution of female choosiness. In the remainder of this paper,1

we will set r = 1. This is without loss of generality, because a different value of r can be2

accounted for by changing the timescale in equation (7) and rescaling the carrying capacity3

parameter K0 to rK0.4

Genetics5

To allow for a detailed analytical treatment, we now make the simplifying assumption that6

the ecological trait is determined by a single diploid locus with two alleles, ‘+’ and ‘−’.7

We ignore environmental variation and assume that the allelic effects are symmetric with8

respect to the maximum of the carrying capacity K(X). Individuals with genotype (+/+)9

have phenotype x, individuals with genotype (+/−) have phenotype 0, and individuals with10

genotype (−/−) have phenotype −x. We call x the allelic effect of the ecological locus.11

As there are only three ecological phenotypes, we can use a simplified notation. We will12

denote the numbers of individuals carrying these genotypes by N+
hom, Nhet, and N−

hom, respec-13

tively, where ‘hom’ and ‘het’ stand for homozygotes and heterozygotes. Similarly, we will use14

K±
hom = K(±x) and Khet = K(0) = K0, and analogous subscripts for the other parameters.15

Furthermore, we will denote average parameter values over both homozygote classes by, for16

example, Nhom = (N+
hom +N−

hom)/2 and Khom = (K+
hom +K−

hom)/2. The strength of stabilizing17

selection will be described by two (dimensionless) variables18

k± = 1− K
±
hom

Khet

, (10a)

and the competition and mating functions by three and two values, respectively,

c± = 1− γ(±x, 0), (10b)

c′ = 1− γ(−x, x), (10c)

m = 1− μ(x), (10d)

m′ = 1− μ(2x). (10e)

Frequency dependence induced by competition increases with c± and c′, which parametrize19

the niche shape. Female choosiness increases with m and m′, which measure the probabilities20

for females to reject males with a different phenotype. This parametrization makes it possible21

9



to consider very general shapes of the functions K, γ, and μ. All we assume in our analytical1

derivations is that k±, c±, c′, m,m′ ∈ [0, 1] and that m′ is a non-decreasing function of m that2

extends from m′ = 0 for m = 0 to m′ = 1 for m = 1. This implies that mating modifiers3

cannot change m and m′ in opposite directions. (For all figures, a Gaussian mating function4

with (1−m′) = (1−m)4 was assumed.) Explicit expressions for the mating rates and fitness5

components in terms of these parameters, as well as a table summarizing the major model6

parameters, are given in Appendix 1.7

For simplicity, we will restrict our presentation in the body of this paper to symmetric cases8

with k+ = k− = k and c+ = c− = c. Furthermore, if not otherwise stated, we will employ the9

Gaussian functions (2) and (4) for γ and μ, where c′ = 1−(1−c)4 and m′ = 1−(1−m)4. The10

general asymmetric case is treated in Appendices 2 and 5. A major simplification arising from11

the symmetry assumption is that, in a population with a monomorphic mating genotype, the12

polymorphic equilibrium of equation (7) is also symmetric with N+
hom = N−

hom = Nhom. At13

this equilibrium, the genotype distribution is fully described by the ratio of heterozygotes to14

homozygotes,15

n =
Nhet

Nhom

, (11)

which equals 0 for complete reproductive isolation and 2 at Hardy-Weinberg equilibrium.16

Parameters of assortative mating are determined by the alleles at (one or several) modifier17

loci. Since we assume that there is no cost of choosiness, modifier alleles do not change the18

fitness of their carriers. They are therefore pure modifiers in the sense of classical modifier19

theory (Karlin and McGregor 1974). In our analytical treatment, we assume that modifier20

mutations are rare and that at most a single mating modifier (at recombination distance21

ρ from the ecological locus) segregates at a given time. We also assume that individual22

modifiers have a small effect, but we do not need to specify the genetic basis of the mating23

trait any further at this point.24

Analytical methods25

The main goal of this study is to understand the evolution of female choosiness. To this end,26

we use an invasion fitness approach for mating modifiers (Karlin and McGregor 1974; Metz27

10



et al. 1992) and ask when a rare mutant with higher or lower choosiness can invade a resident1

population with a monomorphic mating genotype. Our main tool is the following2

Invasion criterion. Assume that the population is at a (symmetric or asymmetric) poly-3

morphic equilibrium of the ecological locus. A mutant modifier allele for stronger female4

choosiness (larger m and m′) is able to invade a resident population with monomorphic mat-5

ing genotype if and only if the homozygote residents have higher fitness than the heterozygote6

residents, Whom > Whet.Vice versa, a mutant with smaller m and m
′ is able to invade if and7

only if Whom < Whet.8

Thus, the direction of selection on female choosiness is determined by the sign of ΔW =9

Whom − Whet, and an evolutionary equilibrium is reached if ΔW = 0. This criterion is10

independent of potential linkage between mating modifiers and the ecological locus. A formal11

proof is given in Appendix 2. Intuitively, the idea is as follows: Since we have assumed that12

there is no cost of choosiness, the mating strategy of the mutant has no direct influence on13

its fitness. However, the mating genotype of females determines the distribution of mutant14

genotypes in the next generation (and beyond). Since females with a higher choosiness15

than the residents will have proportionally more homozygous offspring (with respect to the16

ecological genotype), corresponding mutants are favored for ΔW > 0, and vice versa. In17

accordance with equation (9), ΔW can be written as the sum of two components stemming18

from sexual and natural selection, respectively,19

ΔW = Δφ + Δd, (12)

where Δφ = φhom − φhet and Δd = −(dhom − dhet).20

Simulation methods21

In addition to the invasion analysis, we carried out individual-based simulations. The aim22

of the simulations was twofold: First, to check the validity of the analytical results for finite23

populations (i. e., in the presence of genetic drift and demographic stochasticity), and second,24

to see how the likelihood of speciation depends on the genetic architecture of the mating trait.25

For this purpose, we now specify that female choosiness is determined by one diploid, additive26

11



locus with a continuum of possible alleles. New alleles are created by mutations occurring1

at rate u per individual and generation and follow a stepwise mutation model at the scale2

of m (e. g., if the step size is 0.1, an allele coding for m = 0.5 can mutate to m = 0.43

or m = 0.6, which of course leads to a non-constant step size at the scale of σm). There4

are no mutations at the ecological locus. The ecological locus and the choosiness locus are5

unlinked. Initial populations are polymorphic at the ecological locus (with allele frequencies6

0.5) but monomorphic at the choosiness locus. Gaussian functions for K, γ, and μ are7

assumed throughout. Simulations are run for a maximum of 100, 000 generations, where one8

generation is defined by 2N birth or death events (where N stands for total population size).9

Speciation, in the simulations, is defined as the absence of heterozygotes.10

Results11

In the following, we investigate the evolution of female choosiness, starting with the sym-12

metric model without sexual selection. We find three evolutionary regimes, which are then13

complemented by two further regimes identified in the symmetric model with sexual se-14

lection. Next, we examine the stability of ecological polymorphisms and the implications15

of non-Gaussian competition functions, before presenting simulation results to corroborate16

and complement our analytical findings. Results for asymmetric models are presented in17

Appendix 5.18

Evolution of female choosiness in the model without sexual selection19

In the model without sexual selection (i. e., with φ = 1), the evolution of female choosiness20

is determined by natural selection alone. As shown in Appendix 3.1, for each parameter21

combination, natural selection favors a unique value n̂ of the heterozygote-to-homozygote22

ratio n (eq. A36). Female choosiness then evolves in such a way that n matches n̂, within23

the constraints that m and m′ must be between 0 and 1 (because we do not allow for dis-24

assortative mating). This leads to three qualitatively different evolutionary regimes (Fig. 1a,25

b):26

12



Random-mating (R) regime. The population evolves to random mating (m = m′ = 0)1

if n̂ ≥ 2, that is, if2

k ≥ c′

4− 2c
(13)

(solid line in Fig. 1a, b). This is the case if stabilizing selection is strong (k, x large) or3

competition induces weak frequency dependence (c small, σc large). Random mating is4

stable for any value of c if k > 0.5, that is, if the carrying capacity of homozygotes is less5

than half of that of heterozygotes.6

Complete-isolation (C) regime. The population evolves to complete reproductive iso-7

lation (m = m′ = 1) if n̂ ≤ 0, that is if8

k ≤ c′ − 2c

2− 2c
(14)

(dashed line in Figure 1a, b). This is the case if stabilizing selection is weak (k, x small) and9

competition induces moderate frequency dependence (intermediate c and σc).10

Partial-isolation (P) regime. If neither condition (13) nor condition (14) is fulfilled,11

the population evolves to an intermediate level of choosiness, entailing partial reproductive12

isolation.13

Two observations from Figure 1 are noteworthy. First, the often-cited condition for the14

emergence of frequency-dependent disruptive selection in the Gaussian model, σc < σK (or,15

equivalently, c > k; Christiansen and Loeschcke 1980; Dieckmann and Doebeli 1999), is16

necessary but not sufficient for complete (or even partial) isolation in this model. The17

reason is the rigid genetic architecture that results from the allelic effect x being constant:18

Even if disruptive selection favors lineage splitting in a continuous genotype space, this will19

not happen if x is too large and, consequently, stabilizing selection against homozygotes20

is too strong. The above condition is reproduced in the limit x → 0, as can be seen from21

equations (13) and (14) with c′ = 1−(1−c)4 → 4c. Second, partial isolation replaces complete22

isolation if competition induces strong frequency dependence (large c). This is because, if23

competition among homozygotes and heterozygotes becomes very weak, heterozygotes will24

occupy a third ecological niche.25

13
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Figure 1: Evolutionary regimes for female choosiness in the Gaussian models without and with sexual

selection. (a) and (c) show the results as a function of k and c (which are direct measures of selection

strength), whereas (b) and (d) show the same results in the alternative parameter space spanned by the

ecological parameter σc and the genetic parameter x. Note that the orientation of the σc axis is downwards.

All plots assume σK = 1 (without loss of generality) and Gaussian fitness and mating functions (eq. 1, 2,

and 4). In the model without sexual selection, (a) and (b), there are three regimes: complete-isolation

(C), partial-isolation (P), and random-mating (R). The boundaries of the R regime (solid line) and the

C regime (dashed line) are defined by (13) and (14). With sexual selection, (c) and (d), there are two

additional bistable regimes: the R/C regime, where, depending on initial conditions, the population evolves

either random mating or complete isolation, and the P/C regime, where it evolves either partial or complete

isolation. Local stability of random mating (to the right of the solid line) is identical to the case without

sexual selection. Stability of complete isolation (to the left of the thick dashed line) is now given by (15). In

the hatched area, the polymorphic equilibrium at the ecological locus is unstable for intermediate values of

choosiness. To the left of the thin dotted line, the monomorphic equilibria are locally stable if choosiness is

sufficiently large (see 18).

Evolution of female choosiness in the model with sexual selection1

In the model with sexual selection, homozygote and heterozygote males may differ in their2

mating rates. Therefore, evolution of choosiness is determined by both natural and sexual3

selection. We analyze the evolutionary equilibria using the invasion criterion based on the sign4

of ΔW =Whom−Whet (Figures 2); all derivations for this section are given in Appendix 3.2. As5

in the model without sexual selection, evolutionary equilibria can be characterized by random6

mating, partial isolation, or complete isolation. Random mating is evolutionarily stable under7

the same condition as in the model without sexual selection, given by inequality (13), because8

sexual selection does not act if mating is random. Complete isolation (m = m′ = 1) is stable9

14



if1

k <
2− 4c+ c′ − (2− c′)

(√
1 + 2/κ− 1

)
κ

4− 4c
(15)

where κ = limm,m′→1(1 − m′)/(1 − m). For a Gaussian mating function with (1 − m′) =2

(1 − m)4, κ = 0, and condition (15) is considerably less strict than condition (14) in the3

model without sexual selection (compare thick dashed lines in Figure 1c and d versus a and4

b). In general, inequality (15) shows that the evolutionary equilibria depend on the shape of5

the mating function. Finally, the invasion analysis reveals that, in addition to the random-6

mating (R), partial- isolation (P), and complete-isolation (C) regimes, where there is only one7

possible evolutionary outcome, the model with sexual selection has two additional bistable8

regimes (Fig. 1c, d, 2, 3):9

Bistable regime with random mating or complete isolation (R/C). In a large part10

of parameter space (small c and intermediate k), random mating and complete isolation are11

both locally stable. The evolutionary outcome then depends on the initial level of choosiness.12

Bistable regime with partial isolation or complete isolation (P/C). In part of13

the parameter region where random mating is unstable and complete isolation is stable,14

there are two additional intermediate equilibria, one stable and one unstable. A population15

that starts at random mating and whose choosiness evolves in small steps will reach the16

stable intermediate equilibrium, and only a population that starts with an already high level17

of choosiness (or evolves in large steps) can evolve to complete isolation. This threshold18

phenomenon has previously been described by Doebeli (1996) and Matessi et al. (2001).19

Natural versus sexual selection20

To understand the evolution of female choosiness in this model, we need to consider the21

joint action of natural and sexual selection as the population moves from random mating22

to complete isolation. Natural selection for homozygotes (favoring assortative mating) is23

described by Δd (eq. 12 and A8), which satisfies24

Δd ∝ (c− k)n+ c′ − 2c− 2k(1− c). (16)

15
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Figure 2: Selection on female choosiness in the five evolutionary regimes of the model with sexual selection.

The plots show the fitness advantage of homozygotes, ΔW = Whom−Whet (thick solid line), as a function of

female choosiness m. ΔW is the sum of two components, Δφ = φhom−φhet (thin solid line) and Δd = −(dhom−
dhet) (dashed line), which describe the direction of sexual selection and natural selection, respectively. Arrows

indicate the resultant direction of selection on m. Parameters: x = 1.2, σc = 0.9 (R); x = 0.4, σc = 0.2 (P);

x = 0.3, σc = 0.3 (C); x = 0.7, σc = 0.9 (R/C); x = 0.5, σc = 0.4 (P/C). Fitness and mating functions are

assumed to be Gaussian.

For c > k, selection on the ecological phenotype is disruptive and Δd is monotonically increas-1

ing with n (i. e., selection for homozygotes increases with the frequency of heterozygotes).2

This means that competition leads to negative frequency dependence, so that rare phenotypes3

are favored. Since n generally decreases with increasing m and m′, this explains the shape of4

Δd in Figure 2 (where c > k is always fulfilled). In contrast, for c < k, natural selection on5

the ecological phenotypes has a net stabilizing effect, and Δd is decreasing with n. Intuitively,6

this means that an increase in the number of heterozygotes has a stronger negative effect on7

the homozygotes (which have a lower carrying capacity) than on the other heterozygotes. In8

other words, natural selection in this case induces positive frequency dependence.9

Sexual selection on the ecological phenotype is always positively frequency-dependent (fre-10

quent phenotypes are more likely to find a mate). It favors homozygotes when they are11

common and disfavors them when they are rare. For given n, Δφ (see eq. 12) is positive12

(favoring homozygotes) if and only if13

16



n < 2− m
′

m
. (17)

Under the reasonable assumption that m′ ≥ m, assortative mating must be strong enough1

for the phenotype distribution to become bimodal (n < 1) before sexual selection favors2

increased choosiness. Similarly, increased choosiness is never favored as long as the mating3

function is concave (m′ > 2m, which is possible only for m < 0.5).4

The thin solid line in Figure 2 shows the fitness difference caused by sexual selection, Δφ, as5

a function of m (and at the equilibrium value of n). Δφ equals zero at random mating and6

initially decreases (i. e., becomes negative) with increasing m, thus acting against further7

increase in choosiness. This is because, at low m, heterozygotes are sufficiently common to8

be favored by sexual selection. Near complete isolation, however, where n is small and m9

and m′ are close to 1, Δφ is always positive. For parameter values where complete isolation10

is evolutionarily stable (and assuming a Gaussian mating function), it reaches its maximal11

possible value of 1/2 at m = m′ = 1. For parameter values where complete isolation is12

unstable, Δφ at m = 1 drops back to zero (see Appendix 3.2 for more details).13

Thus, sexual selection can have two different effects (see Fig. 2): (1) For low m and m′,14

sexual selection creates a barrier against further increase of choosiness. For complete repro-15

ductive isolation to evolve, natural selection from competition must overcome this barrier.16

Otherwise, the population gets stuck at an intermediate equilibrium (as in the P/C regime),17

where natural selection (favoring increased choosiness) balances with sexual selection (favor-18

ing decreased choosiness). (2) For already high levels of choosiness (leading to a bimodal19

phenotype distribution), sexual selection is a potent force that can drive populations towards20

complete reproductive isolation. Since Δφ reaches a maximum at m = m′ = 1 for n → 0,21

whereas Δd decreases (assuming c > k), the relative importance of sexual versus natural22

selection increases towards this limit. This is particularly evident in the R/C regime, where23

sexual selection can maintain complete isolation even though natural selection favors random24

mating.25

17



Stability of the ecological polymorphism1

So far, we have assumed that the ecological locus is always at a polymorphic symmetric2

equilibrium, with the proportion of heterozygotes determined by female choosiness. This3

equilibrium is, indeed, always favored by natural selection (for c > k by frequency-dependent4

disruptive selection, and for c < k due to heterozygote advantage). However, monomorphic5

equilibria (containing either only the + or the− allele) may become stable due to the positive6

frequency dependence of sexual selection. Obviously, evolution of complete isolation is only7

possible if the ecological locus remains polymorphic. In Appendix 3.2, we show that the8

monomorphic equilibria are locally stable if9

m

2
> c+ k − ck, (18)

that is, if sexual selection from female choosiness is strong enough relative to natural selection10

(thin dotted line in Figure 1c and d).11

Whether the polymorphic equilibrium is locally stable can be determined numerically by12

standard linear stability analysis (i. e., by numerically calculating the eigenvalues of system13

A10). When the polymorphic and the monomorphic equilibria are both locally stable, their14

respective domains of attractions can be estimated by iterating system (A10) with different15

initial allele frequencies. The polymorphic equilibrium is unstable for small x and interme-16

diate m (dark grey area in Fig. 3; Bürger and Schneider 2006; Bürger et al. 2006). This17

parameter range does not overlap with the domain of the complete isolation regime (see the18

hatched area in Fig. 1c, d). A polymorphic population evolving in the complete isolation19

regime may enter an area where the monomorphic equilibria are locally stable. However,20

their domain of attraction is very small (very light grey area to the left of the dashed line in21

Fig. 3). Therefore, a sufficiently large population will almost certainly remain polymorphic22

and safely reach complete isolation. For the P/C regime, our numerical analysis for the Gaus-23

sian model shows that a polymorphic population starting from random mating and evolving24

in small steps will always reach the stable intermediate value of m before the monomorphic25

equilibria become locally stable (see Fig. 3, where the thick black line lies below the grey26

area). Matessi et al. (2001) found similar results for a quadratic model.27
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Figure 3: Stability of the ecological polymorphism and evolutionary equilibria of female choosiness m as a

function of the allelic effect x (assuming Gaussian fitness and mating functions). In the dark grey area, the

polymorphic equilibrium is unstable. To the left of the dashed line, the monomorphic equilibrium is locally

stable (see inequality 18). Shades of grey indicate the size of the domain of attraction of the polymorphic

equilibrium in terms of the frequency of the + allele (white: polymorphic equilibrium is globally stable;

dark grey: polymorphic equilibrium is unstable). Black lines show stable equilibria and gray lines unstable

equilibria for m. Arrows indicate the direction of selection on m. Each plot illustrates the succession of

evolutionary regimes along a horizontal line in Figure 1d. For example, the complete isolation regime exists

for intermediate x if σc = 0.5 but not if σc = 0.7. Note that evolution of m will come to a halt if the

population moves into the dark grey area where the polymorphism at the ecological locus is unstable.

Non-Gaussian competition functions1

Figures 1 to 3 are based on the Gaussian functions (1), (2), and (4), but the analytical results2

in equations (13) to (18) hold for arbitrary symmetric fitness functions. In the following,3

we analyse, in more detail, the influence of the shape of the competition function. In the4

symmetric model, this shape is characterized by the two parameters c and c′. In the Gaussian5

model (eq. 2), 1− c′ = (1− c)4, but other relationships are no less possible. Assuming that6

the strength of competition does not increase with phenotypic distance (c′ ≥ c), two extreme7

cases are given by c′ = c and c′ = 1. In the first case, different homozygotes compete as8

strongly with each other as they do with the heterozygotes. Therefore, competition induces9

less strong frequency dependence than in the Gaussian model. In the second case, different10

homozygotes do not compete at all, and competition induces stronger frequency dependence11

than in the Gaussian model.12

As one should expect, weaker frequency dependence (c′ = c) makes reaching complete isola-13

tion less likely. Indeed, in this case, the complete-isolation regime is entirely missing (Fig. 4a14

and c). In contrast, if frequency-dependent selection is stronger than in the Gaussian model15
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Figure 4: Evolutionary regimes for female choosiness with non-Gaussian competition functions. In (a)

and (c) competition between different homozygotes is as strong as competition between homozygotes and

heterozygotes (c′ = c). Without sexual selection, complete isolation cannot be evolutionarily stable. With

sexual selection, complete isolation can be an evolutionarily stable state, but it cannot evolve from random

mating in small steps (i. e., the C regime is absent, and only the bistable R/C and P/C regimes exist). In (b)

and (d), homozygotes with different phenotypes do not compete with each other (c′ = 1). The parameter

range corresponding to the complete-isolation regime is larger than in the Gaussian model. For more details,

see Figure 1.

(c′ = 1), the domain of the complete-isolation regime expands (Figure 4b and d) and now in-1

cludes areas with arbitrarily small c. Furthermore, a bistable regime (R/C) exists also in the2

absence of sexual selection (but only for c < k). The bistability can be explained by the fact3

that, for c < k, natural selection induces positive frequency dependence (see above). Finally,4

the polymorphic equilibrium of the ecological locus is always locally stable. A more general5

analysis for arbitrary values of c and c′ is given in Appendix 4. The influence of asymmetry6

in the carrying capacity and the competition function is discussed in Appendix 5.7

Simulation results8

Our analytical results for the model with sexual selection are qualitatively confirmed by the9

individual-based simulations. In particular, we did not find any new equilibria or evolu-10

tionary regimes. In the random-mating, partial-isolation, and complete-isolation regimes,11

the expected equilibrium was always reached, independent of initial conditions. For the12

complete-isolation regime, simulations with different parameter combinations showed that,13

for given mutational step size, the time required for reaching complete isolation depends only14

20



on the product of population size and mutation rate (results not shown), as predicted by the1

canonical equation of adaptive dynamics (Dieckmann and Law 1996). In the bistable R/C2

regime, the outcome of the simulations depends on initial conditions, as predicted by our3

analytical results.4

In the P/C regime, a finite population that starts at random mating can evolve towards5

three possible equilibria. (1) It can lose the polymorphism at the ecological locus, (2) it6

can end up at the stable equilibrium with intermediate m, and (3) it can end up at the7

stable equilibrium corresponding to complete isolation (m = 1), thereby jumping over the8

unstable intermediate equilibrium (see Figure 2). For a very small population (K0 = 500),9

the polymorphism at the ecological locus is always lost for parameter combinations for which10

the polymorphic equilibrium becomes unstable for intermediate m (Figure 5, see also the11

hatched area in Figure 1c, d). Outside of these areas, the population often evolves to an12

intermediate degree of choosiness. Evolution of complete isolation is most likely for parameter13

combinations close to the complete- isolation regime. At these parameters, the valley of m14

values within which selection acts against homozygotes (i. e., against an increase in choosiness;15

ΔW < 0) is narrow, such that the jump needed to reach complete isolation is relatively easy.16

The probability of reaching complete isolation in this manner also strongly depends on the17

mutational parameters. In our model, reaching complete isolation requires high mutation18

rates and relatively large mutational effects (Figure 6). Furthermore, for given mutational19

parameters, the probability of jumping does not increase with increasing population size20

(results not shown).21

Discussion22

Under what conditions can intraspecific competition lead to sympatric speciation? – This23

question has been at the focus of much recent debate (Doebeli and Dieckmann 2005; Doe-24

beli et al. 2005; Gavrilets 2005; Polechová and Barton 2005; Waxman and Gavrilets 2005b).25

In this paper, we have studied a genetically simplified version of the model by Dieckmann26

and Doebeli (1999), where the evolution of assortative mating is governed by the relative27

fitness of homozygotes and heterozygotes. This simple criterion allowed us to gain a detailed28

overview of what can happen in a model of competitive speciation, along with a mecha-29

21
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Figure 5: Alternative evolutionary outcomes in the P/C regime (model 2), and fitness advantage of homozy-

gotes, for various values of x and σc. The rectangular panels show ΔW = Whom−Whet as a function of female

choosiness m (as in Fig. 2). The pie charts are based on 20 simulation runs each and show the probability

that the polymorphism at the ecological locus is lost (grey), complete isolation is reached within 100, 000

generations (white), or the population is “stuck” at the stable intermediate equilibrium for m (black). Other

parameters: K0 = 500, mutation rate u = 4 · 10−4, mutational step size is 0.1.

nistic understanding of the relevant selection pressures. Our analysis leads to three major1

conclusions.2

First, we find that evolution of complete reproductive isolation – and, as a consequence, sym-3

patric speciation – is possible in a relevant area of parameter space under biologically realistic4

conditions. In the complete-isolation (C) regime, speciation does not require any unusual as-5

sumptions about the strength of selection, nor does it depend on extreme initial conditions6

or unrealistically high mutation rates and mutational effects (Waxman and Gavrilets 2005a).7

Second, we find that another frequent evolutionary outcome is partial reproductive isolation8

(see Doebeli 1996; Matessi et al. 2001). Partial isolation evolves if selection against inter-9

mediate phenotypes stops once they are sufficiently rare. It can be either locally or globally10

stable. At partial isolation, heterozygotes are still present in the population, but they are less11

frequent than at Hardy-Weinberg equilibrium. For most parameter combinations, the phe-12

notypic distribution at the partial isolation equilibrium is still unimodal (results not shown).13

For parameters close to the domain of the complete isolation regime, however, the phenotypic14

distribution becomes bimodal, and isolation may be strong enough to imply, or eventually15

cause, speciation. We note that strong, but not complete isolation is also a common outcome16

of the Dieckmann and Doebeli (1999) model (see Fig. 3 in Dieckmann and Doebeli 1999,17

and Fig. 2 in Doebeli and Dieckmann 2003). In general, we suggest that the possibility of18
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complete isolation when there were no heterozygotes left. Other parameters: σc = 0.4, x = 0.5, K0 = 500.

As can be seen from the corresponding panel in Figure 2, the width of the fitness valley that must crossed is

about 0.4.

partial isolation as a stable outcome of frequency-dependent disruptive selection deserves1

more attention than it currently receives. In particular, partial isolation between natural2

populations (e. g., Knudsen et al. 2006; Strecker 2006) does not necessarily imply incipient3

speciation (see also Bolnick 2006).4

Finally, we find that whether competition leads to speciation or not depends on the combi-5

nation of many parameters, both ecological and genetic. For example, for complete isolation6

to evolve in small steps, frequency-dependent selection due to competition must be neither7

too weak nor too strong, and speciation can be both facilitated or inhibited by sexual se-8

lection, the shape of the competition and mating functions, and the genetics of the mating9

trait. Therefore, conclusive quantitative predictions about the likelihood of various evolution-10

ary outcomes cannot be made without good knowledge about the distribution of parameter11

values in nature. Simple comparisons of the size of various evolutionary regimes can be12

misleading. To emphasize this point, note that the hatched area corresponding to loss of13

polymorphism looks much more impressive in Figure 1c than in Figure 1d, but the differ-14

ences between the two figures are brought about solely by a change in the parameters used15

to define the axis. Unfortunately, relevant data are difficult to obtain and largely absent to16

date. Given the multitude of parameters that jointly play a role, it may in fact be impossible17

to ever know all the relevant details for a specific empirical system. A more viable approach18
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is to test statistical model predictions for the influence of various factors in a multi-species1

comparison.2

Natural and sexual selection3

In our model, evolution of assortative mating shows a remarkably complex equilibrium struc-4

ture, which results from the interplay of natural and sexual selection. Natural selection5

includes stabilizing selection due to the dependence of carrying capacity on phenotype and6

frequency-dependent selection due to competition. In the model without sexual selection,7

evolution of complete reproductive isolation is possible if the resource supply for both ho-8

mozygote classes is sufficiently high and their overlap in resource use is sufficiently low. If9

both conditions are satisfied, the two evolving species can occupy two distinct ecological10

niches. If, however, the competition function is too narrow, a third niche at an intermediate11

phenotype opens up that is filled by the heterozygotes, thus preventing complete isolation.12

The size of this third niche determines the “optimal” ratio of heterozygotes to homozygotes13

in the population, and female choosiness then evolves to such a value that this optimal ratio14

is produced. If the niche for heterozygotes gets sufficiently large, natural selection stabi-15

lizes random mating. As long as natural selection is disruptive (c > k), it favors a unique16

evolutionary equilibrium, and the ecological polymorphism is always stable. We, therefore,17

find three evolutionary regimes: complete-isolation (C), partial-isolation (P), and random-18

mating (R).19

Sexual selection against rare males can either enhance or oppose the effects of natural selec-20

tion. It favors heterozygotes when they are common and disfavors them when they are rare.21

Thus, sexual selection promotes speciation if female choosiness is already high, but impedes22

it as long as choosiness is low. This positive frequency-dependence can cause bistability of23

the evolutionary equilibria: In the R/C regime, natural selection favors random mating, but24

sexual selection can maintain complete isolation once it has been established. In the P/C25

regime, natural selection favors partial or complete isolation, but sexual selection favors het-26

erozygotes at low levels of choosiness and creates a barrier against the evolution of stronger27

assortative mating. An intermediate equilibrium is reached if natural and sexual selection28

balance. This equilibrium has previously been observed by Doebeli (1996) and Matessi et al.29

(2001), but these authors did not provide a mechanistic explanation. As a consequence of the30
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above barrier, sexual selection does not increase the area where complete isolation can evolve1

from random mating in small steps, although it usually increases the area in parameter space2

where complete isolation is locally stable (Fig. 1). In addition, sexual selection can lead to3

the loss of the ecological polymorphism, as previously described by Gourbière (2004), Kirk-4

patrick and Nuismer (2004), Bürger et al. (2006), and Bürger and Schneider (2006). This is5

most relevant for small populations where frequency-dependent selection due to competition6

is weak and a monomorphic equilibrium is almost always reached (see Figure 5).7

In summary, there are three mechanisms that can prevent the evolution of complete reproduc-8

tive isolation, even if selection is disruptive: (i) Natural selection can stabilize a sufficiently9

small proportion of heterozygotes in a third niche, (ii) sexual selection can favor heterozy-10

gotes while they are common, and (iii) sexual selection can cause the loss of the ecological11

polymorphism. The distinction between the latter two mechanisms has not always been made12

clear in the past. For example, Bürger and Schneider (2006) described the loss of polymor-13

phism as a consequence of the evolution to an intermediate optimum for female choosiness.14

However, our analysis shows that these phenomena are based on different mechanisms. An15

infinite population that takes small mutational steps will always evolve to partial isolation16

without losing the polymorphism (see Figure 3). A finite population, however, can (and of-17

ten will) lose the polymorphism if it moves past the stable intermediate equilibrium by drift18

(Figure 5).19

Discussion of the modelling approach20

Our approach in this study was to analyze a simplified version of the model by Dieckmann21

and Doebeli (1999). This approach allowed us to (a) derive a simple invasion criterion that22

yielded general analytical results and enabled us to exhaustively analyze the model in a23

seven-dimensional parameter space, (b) to gain a detailed and intuitive understanding of24

the interaction between the various selective forces, and (c) to unify, in a single model, a25

large number of phenomena that have previously been studied or described only in separate26

studies. The latter include (i) the role of natural versus sexual selection (see Gourbière27

2004; Kirkpatrick and Nuismer 2004), (ii) conditions for the maintenance or loss of the28

ecological polymorphism (see Kirkpatrick and Nuismer 2004; Bürger and Schneider 2006;29

Bürger et al. 2006), (iii) potential evolutionary stability of incomplete isolation (Doebeli30

25



1996; Matessi et al. 2001), and (iv) the importance of ecological niches and the resulting1

nonlinear relationship between niche width and the likelihood of speciation (Seger 1985;2

Dieckmann and Doebeli 1999; Gourbière 2004; Bolnick 2006; Bürger et al. 2006).3

In addition, our approach allowed us to analyze fitness functions of different shape. Many4

previous models have used Gaussian functions like those in equations (1), (2) and (4), but this5

is more for mathematical than biological reasons. Indeed, several authors have pointed out6

that the Gaussian version of the Roughgarden (1972) model can show non-generic behavior (e.7

g., Sasaki and Ellner 1995; Sasaki 1997; Gyllenberg and Meszéna 2005; Polechová and Barton8

2005; Doebeli et al. 2007). Therefore, it is important to know how the likelihood of speciation9

depends on the Gaussian assumption. In our model, the shape of the competition function10

determines which regimes are possible. For example, in the absence of sexual selection,11

complete isolation is evolutionarily stable if and only if the competition function is convex12

(i. e., if the strength of competition decreases more than linearly with phenotypic distance).13

Matessi et al. (2001) used a quadratic competition function, which can be seen as a weak-14

selection approximation of more complex functions. Under this approximation, heterozygotes15

always have the highest death rate and (for c > k) complete isolation is always locally stable.16

Therefore, Matessi et al. (2001) found only two of our five regimes, complete isolation and17

P/C. It is in the regions where the weak-selection approximation is not valid that we find18

the other three regimes. It is worth pointing out that in the absence of sexual selection,19

neither the quadratic nor the Gaussian function captures the full complexity of the model20

(see Fig. A1a). Indeed, even for weak selection, where the two functions approximate each21

other, the quadratic function does not allow for the partial-isolation regime, whereas the22

Gaussian function does not allow for the R/C regime (at c < k). This shows that apparently23

small details can have a qualitative influence on the behavior of the model, and that it is24

important to study the complete parameter space. Remarkably, potential asymmetries of the25

competition and the carrying capacity function seem to have a relatively small effect on the26

regime pattern (see Appendix 5).27

The key to our analysis is the invasion criterion, according to which choosiness increases28

evolutionarily whenever homozygotes have a higher fitness than heterozygotes. This criterion29

can be shown to hold true for different modes of sexual selection, and the approach can be30

readily extended, for example, to cases in which also males are choosy. However, the criterion31
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is not valid if there is a direct cost of choosiness. In this case, the fitness of a mutant depends1

not only on the mating strategies in the resident population but also on the strategy of2

the mutant itself. Costs of choosiness can arise, for example, if choosy females must spend3

more energy during mate choice or if they are less likely to find a suitable mate eventually.4

Considerable debate has focused on the question whether costs of choosiness are likely to5

prevent competitive speciation (Doebeli and Dieckmann 2003; Bolnick 2004b; Doebeli and6

Dieckmann 2005; Gavrilets 2005; Waxman and Gavrilets 2005a,b). Some recent models7

indicate that moderate costs of choosiness are not necessarily detrimental for the possibility8

of speciation (Doebeli and Dieckmann 2003, 2005; Schneider and Bürger 2005; Bürger and9

Schneider 2006; Doebeli et al. 2007). Nevertheless, including costs of choosiness would be an10

important extension of our model. One way to do so might be by a direct derivation of the11

invasion fitness in a modified model along the lines of Appendix 2.12

The key simplification in our model is the assumption that the ecological trait is determined13

by a single locus with two alleles. How general are our results with regard to this genetic14

architecture? On the one hand, it seems reasonable to expect that the five regimes, which15

we have described here, are generic also for other genetic architectures, because the interplay16

of natural and sexual selection should be qualitatively independent of genetic details. This17

intuition is supported by the observation that a behavior similar to the P/C regime has also18

been found in a multilocus model by Doebeli (1996). Furthermore, evolution of strong repro-19

ductive isolation (leading to a multimodal phenotype distribution) has been demonstrated20

in a number of models with very different genetic assumptions, spanning the whole range21

from one-locus models (Matessi et al. 2001, this study), to multilocus models (Doebeli 1996;22

Dieckmann and Doebeli 1999; Bolnick 2006), and finally to quantitative genetic models that23

are based on an effectively infinite number of loci (Doebeli et al. 2007).24

On the other hand, the one-locus assumption has the obvious consequence that intermediate25

phenotypes can only exist as heterozygotes. Therefore, whenever more than two phenotypes26

can potentially coexist (i. e., whenever there are more than two ecological niches), natural27

selection tends to move the population toward partial isolation or random mating. In a28

model with a different genetic architecture, the evolution of assortative mating might instead29

lead to more than two reproductively isolated species (Bolnick 2006; Bürger et al. 2006). In30

addition, monomorphic equilibria could play a more prominent role if they exist very close31

to the fitness optimum (Bürger et al. 2006). The one-locus assumption is also essential for32
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the behavior of the model in the parameter range where stabilizing selection dominates over1

competition (c < k, or σc > σK in the Gaussian case). In a multilocus model, natural2

selection will then usually remove genetic variation from the ecological locus and keep at3

most one locus polymorphic (Christiansen and Loeschcke 1980; Spichtig and Kawecki 2004;4

Bürger 2005). In a single-locus model, however, this transition is not clearly visible, since5

heterozygote advantage guarantees the polymorphism of the locus even for c < k.6

A related question concerns the genetic architecture of female choosiness. Part of the contro-7

versy about sympatric speciation has centered on how the likelihood of speciation depends8

on the choice of mutational parameters for the loci determining assortative mating (Doebeli9

and Dieckmann 2005; Waxman and Gavrilets 2005b). In our simulations, we assumed that10

choosiness is based on a single additive locus with a continuum of possible alleles, and we11

have varied the mutation rate and mutational step size. Our results lead to two conclusions:12

First, in the complete-isolation regime, where speciation is possible from random mating in13

small steps, the evolutionary outcome should be independent of genetic details. In particu-14

lar, for a given mean mutational step size, the time to reach complete isolation depends only15

on the product of mutation rate and population size. Second, in the bistable P/C regime,16

the likelihood of speciation does, indeed, depend on the genetic architecture of the mating17

trait. In populations evolving in small mutational steps, the intermediate equilibrium for18

female choosiness forms a “barrier” against the evolution of complete isolation. However,19

our simulations suggest that a population can “jump” over this barrier if mutation rates20

and mutational effects are sufficiently high (Fig. 6). Probably, this is most likely in small21

populations under the influence of genetic drift.22

For more general genetic architectures, the likelihood of jumping the intermediate equilibrium23

is still an open question. For example, in the infinitesimal model of Doebeli et al. (2007),24

degrees of female choosiness are assumed to be normally distributed in the population, and the25

tail of this distribution contains individuals with very high choosiness, which might initiate26

the jump to higher degrees of isolation. A similar conclusion appears to hold in multilocus27

models, in which recombination can create an analogous tail (Dieckmann and Doebeli 1999).28

We, therefore, propose the following hypothesis: Speciation in the P/C regime is possible if29

choosiness has either a simple genetic basis, so that complete isolation can be reached in a30

small number of mutational steps, or if it is determined by a large number of loci that help31

maintain a high degree of genetic variation for choosiness.32
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Finally, another important assumption of our model is that the allelic effect of the ecological1

locus as well as the niche shape are constant. In principle, they might also be subject to2

selection (Kisdi and Geritz 1999; Geritz and Kisdi 2000; Ackermann and Doebeli 2004; Kopp3

and Hermisson 2006; van Doorn and Dieckmann 2006; Schneider 2007). The joint evolution4

of assortative mating with genetic architecture and / or individual specialization (Ackermann5

and Doebeli 2004; Rueffler et al. 2006) is an interesting avenue for future studies.6
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Appendices1

Appendix 1: Equations for the one-locus, two-allele model2

In this Appendix, we spell out the equations for the one-locus, two-allele model (assuming3

all females are equally choosy). The male mating rates (see eq. 5b) are given by4

φ±male, hom = N±
homM

±
hom + (1−m)NhetMhet + (1−m′)N∓

homM
∓
hom, (A1a)

φmale, het = (1−m)N+
homM

+
hom +NhetMhet + (1−m)N−

homM
−
hom, (A1b)

and the female mating rates (eq. 5a) by5

φ±female, hom = N±
homM

±
hom + (1−m)NhetM

±
hom + (1−m′)N∓

homM
±
hom, (A2a)

φfemale, het = (1−m)N+
homMhet +NhetMhet + (1−m)N−

homMhet. (A2b)

In the model with sexual selection, φfemale = 1 for all genotypes, which is satisfied by the6

mating activity factors7

M±
hom =

[
N±

hom + (1−m)Nhet + (1−m′)N∓
hom

]−1
, (A3a)

Mhet =
[
(1−m)N+

hom +Nhet + (1−m)N−
hom

]−1
. (A3b)

In the model without sexual selection, φ = 1/2(φmale + φfemale) = 1 for all genotypes. The8

activity factors for a population that is monomorphic at the mating locus can be derived9

from the linear equation system φhom = φhet = 1. For the symmetric case, where N+
hom =10

N−
hom = Nhom, we find from equations (A1) and (A2),11

φhom = (2−m′)NhomMhom + (1−m)Nhet
Mhom +Mhet

2
= 1 (A4a)

φhet = NhetMhet + (1−m)Nhom(Mhom +Mhet) = 1, (A4b)

yielding12
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Mhom =
n+ (1− n/2)(1−m)

Nhom[(2−m′)(n+ 1−m) + n2(1−m)/2]
, (A5a)

Mhet =
2−m′ − (1− n/2)(1−m)

Nhom[(2−m′)(n+ 1−m) + n2(1−m)/2]
. (A5b)

For a general polymorphic population, the activity factors follow from the additional condi-1

tion that female mating rate should not depend on the degree of choosiness, but only on the2

ecological genotype (see Appendix 2 for the case of invasion fitness).3

The genotype-specific birth rates (eq. 6) for both models are4

B±hom =N±
hom

(
N±

hom +
(1−m)Nhet

2

)
M±

hom+

Nhet

(
(1−m)N±

hom

2
+
Nhet

4

)
Mhet,

(A6a)

Bhet =N+
hom

(
(1−m)Nhet

2
+ (1−m′)N−

hom

)
M+

hom +
Nhet

2
+

N−
hom

(
(1−m′)N+

hom +
(1−m)Nhet

2

)
M−

hom.

(A6b)

Furthermore, the effective population sizes with respect to competition (see eq. 3) are given5

by6

C±hom = N±
hom + (1− c±)Nhet + (1− c′)N∓

hom, (A7a)

Chet = (1− c+)N+
hom +Nhet + (1− c−)N−

hom, (A7b)

and the death rates (see eq. 8) by7

d±hom =
C±hom

K±
hom

, dhet =
Chet

Khet
. (A8)

With these definitions, the fitness functions of the three ecological genotypes (according to8

eq. 9) can be written as9

W±
hom =

1

2
(φ±female, hom + φ±male, hom)− d±hom, (A9a)

Whet =
1

2
(φfemale, het + φmale, het)− dhet. (A9b)
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B+

hom
, Bhet, B

−

hom
Birth rates of the three genotype classes

C+

hom
, Chet, C

−

hom
Total amount of competition felt by a genotype (“ecologically effective population size”)

K+

hom
, Khet, K

−

hom
Genotype-specific carrying capacities

N+

hom
, Nhet, N

−

hom
Number of individuals in the three genotype classes

M+

hom
, Mhet, M

−

hom
Genotype-specific female mating activities

W+

hom
, Whet, W

−

hom
Genotype fitnesses

c+, c− Strength of competition between a heterozygote and one of the homozygotes

c′ Strength of competition between opposite homozygote individuals

d+

hom
, dhet, d

−

hom
Death rates

k+, k− Strength of stabilizing selection acting on the two homozygotes

m Probability that a heterozygote female rejects a homozygote male or v.v.

m′ Probability that a homozygote female rejects an opposite homozygote male

n Ratio of heterozygote to (average) homozygote population size ( Nhet

Nhom

)

x Allelic effect of the ecological locus

γ(X, Y ) Strength of competition between phenotypes X and Y

μ(|X − Y |) Probability that mating takes place between X and Y if they meet

σk, σc, σm Standard deviations of carrying capacity, competition and

mating probability functions in the Gaussian model

φ+

hom
, φhet, φ

−

hom
Genotype-specific mating rates

φmale, φfemale Male and female mating rates

Table A1: Major model parameters. Averages over the two homozygote classes are expressed by corre-

sponding parameters without a ± index, e. g., Nhom = (N+

hom
+ N−

hom
)/2.

Finally, the dynamics of genotype frequencies (see eq. 7) are given by1

Ṅ±
hom = B±hom −N±

homd
±
hom, (A10a)

Ṅhet = Bhet −Nhetdhet. (A10b)

Appendix 2: Invasion analysis2

Here, we prove for the general asymmetric model that a mutant with stronger female choosi-3

ness (higher m and m′) than the resident will be able to invade the population at the poly-4

morphic equilibrium of the resident if and only if Whom > Whet. Vice versa, a mutant with5

weaker assortative mating will invade if and only if Whom < Whet. Rare assortment modifiers6

are neutral (i.e., have zero invasion fitness) if and only if W+
hom =Whet = W−

hom = 0.7
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Note first that, at equilibrium, W+
hom and W−

hom always have the same sign and Whet has the1

opposite sign. This is a direct consequence of the equilibrium condition for + and − alleles2

in the population,3

2N+
homW

+
hom +WhetNhet = 0, (A11a)

2N−
homW

−
hom +WhetNhet = 0, (A11b)

which implies N+
homW

+
hom = N−

homW
−
hom.4

Consider now a resident population with choosiness m and m′ and a rare mutant allele at the5

choosiness locus that leads to larger (or smaller) values m̃ and m̃′. As the mutant allele is6

rare, an individual carries at most one copy, and matings among mutants can be ignored. For7

simplicity, we will first treat the case of free recombination between the ecological locus and8

the mating locus (recombination rate ρ = 1/2). We can then identify the two types of double9

heterozygotes and denote their number by νhet. Similarly, ν+
hom and ν−hom are the numbers of10

ecological (+/+) and (−/−) homozygotes that carry the mutant choosiness allele.11

The dynamics of the mutant population is then governed by the following equations:12

ν̇het = B̃het←female + B̃het←male − νhetdhet, (A12)

ν̇±hom = B̃±hom←female + B̃±hom←male − ν±homd
±
hom, (A13)

where the dot denotes the time derivative. Here, for example, B̃het←female is the birth rate13

of heterozygote mutants that have inherited the mutant allele from their mother. Note that14

for a female parent, but not for a male parent, these rates depend on the mutant choosiness.15

Explicitly,16
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B̃het←female =
1

4
NhetνhetM̃het +

1

2
(1− m̃′)(N−

homν
+
homM̃

+
hom +N+

homν
−
homM̃

−
hom) (A14)

+
1

4
(1− m̃)

(
Nhet(ν

+
homM̃

+
hom + ν−homM̃

−
hom) + (N+

hom +N−
hom)νhetM̃het

)
,

B̃het←male =
1

4
NhetνhetMhet +

1

2
(1−m′)(N−

homν
+
homM

−
hom +N+

homν
−
homM

+
hom) (A15)

+
1

4
(1−m)

(
Nhet(ν

+
hom + ν−hom)Mhet + (N+

homM
+
hom +N−

homM
−
hom)νhet

)
,

B̃±hom←female =
1

8
NhetνhetM̃het +

1

4
(1− m̃)N±

homνhetM̃het (A16)

+
1

2
N±

homν
±
homM̃

±
hom +

1

4
(1− m̃)Nhetν

±
homM̃

±
hom,

B̃±hom←male =
1

8
NhetνhetMhet +

1

4
(1−m)N±

homνhetM
±
hom (A17)

+
1

2
N±

homν
±
homM

±
hom +

1

4
(1−m)Nhetν

±
homMhet.

Here, it was taken into account that only half of the offspring of a choosiness heterozygote1

carry the mutant choosiness allele. M and M̃ denote the activity factors of female residents2

and mutants, respectively. We can write the mutant dynamics in matrix form, v̇ = Av,3

⎛
⎜⎜⎜⎝
ν̇+

hom

ν̇het

ν̇−hom

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝
ν+

hom

νhet

ν−hom

⎞
⎟⎟⎟⎠ . (A18)

The matrix depends on the mating genotypes of the residents and the mutants, A = Am,m̃,4

where m = (m,m′) denotes the vector of mating parameters. For the following, it will5

be convenient to express the elements aij of Am,m̃ (partly) in terms of the mating rates6

φ±hom = (φ±male, hom + φ±female, hom)/2 and φhet = (φmale, het + φfemale, het)/2. We can then use the7

fact that the mating rates of invading mutants are equal to the equilibrium mating rates of8

the resident. For the male mating rates φmale, this is simply because mutant females are rare.9

For the female mating rates, it is a consequence of our assumption that changes in choosiness10

come without direct costs. In particular, the mating genotype does not affect the female11

mating rate (we have φfemale = 1 − φmale = const. for model 1 and φfemale = 1 for model 2).12

Explicitly, we obtain13
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Am,m̃ =

⎛
⎜⎜⎜⎝

1
2
φ+

hom − d+
hom +Q+ 1

4
φhet +R 0

1
2
φ+

hom −Q+ 1
2
φhet − dhet

1
2
φ−hom −Q−

0 1
4
φhet −R 1

2
φ−hom − d−hom +Q−

⎞
⎟⎟⎟⎠ (A19)

with1

Q±(m, m̃) =
1

4

(
M̃±

hom

(
N±

hom − (1− m̃′)N∓
hom

)
+ [M±

homN
±
hom − (1−m′)M∓

homN
∓
hom]

)
,

(A20)

R(m, m̃) =
1

8

(
M̃het(1− m̃)(N+

hom −N−
hom) + (1−m)(N+

homM
+
hom −N−

homM
−
hom)

)
. (A21)

In both R and Q, the first and second terms correspond, respectively, to cases where the2

mutant allele is carried by the female or the male partner. Before we proceed, we note3

several elementary facts:4

1. Let I be the identity matrix. Then Â := A+(d+
hom+dhet+d

−
hom)I is positive semi-definite5

(and its square is strictly positive). According to the Perron-Frobenius theorem, Â has6

a unique dominant eigenvalue and the corresponding left and right eigenvectors have7

strictly positive entries. Since A and Â have the same eigenvectors, the same is true8

for A.9

2. The columns of Am,m̃ sum up to the genotype fitnesses, i.e., W+
hom = a11 + a21 + a31,10

Whet = a12 + a22 + a32, and W−
hom = a13 + a23 + a33.11

3. For m = m̃, the matrix Am,m reproduces the population dynamics of the resident12

population (Eqs. A10). The dominant eigenvalue of this “resident matrix” Am,m is 013

and the corresponding right eigenvector is proportional to the equilibrium distribution,14

(N+
hom, Nhet, N

−
hom).15

For the next step, we consider the leading left eigenvector of the resident matrixAm,m, which16

describes the “reproductive values” of the three ecological genotypes (cf. Caswell 2000, p.17

92). Denote this eigenvector by v := (v+, vhet, v
−). Without loss of generality, we can set18

vhet = 1. Then19
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v+ = −a21

a11
= − a21

W+
hom − a21

=
2N+

homa21

2N+
homa21 +WhetNhet

, (A22)

v− = −a23

a33
= − a23

W−
hom − a23

=
2N−

homa23

2N−
homa23 +WhetNhet

, (A23)

where we use (A11). Since W±
hom ≷ 0⇔Whet ≶ 0, we conclude that1

v± ≷ vhet ⇔ W±
hom ≷Whet. (A24)

To establish the rank order of v+ and v−, we use the explicit expressions for a21 and a23 (eq.2

A19) to obtain3

N+
homa21 ≷ N−

homa23 ⇔ N+
hom(M+

hom +Mhet) ≷ N−
hom(M−

hom +Mhet)⇔ N+
hom ≷ N−

hom, (A25)

where we use the fact that N+
homM

+
hom ≤ N−

homM
−
hom ⇔ N+

hom ≤ N−
hom in both of our models.4

Using N+
homW

+
hom = N−

homW
−
hom,5

d

dx

x

x+WhetNhet

=
WhetNhet

(x+WhetNhet)2
, (A26)

and the fact that the sign of W±
hom is opposite to the sign of Whet, we conclude that6

v+ ≷ v− ⇔W+
hom ≷ W−

hom. (A27)

Denote, now, the dominant eigenvalue of the full mutant matrix Am,m̃ as λ(m, m̃). In7

the terminology of adaptive dynamics theory (Metz et al. 1992; Dieckmann and Law 1996;8

Geritz et al. 1998), λ is the invasion fitness. The mutant can invade the resident whenever9

λ > 0. Let w := (w+, whet, w
−) be the leading right eigenvector of the mutant matrix Am,m̃10

(whereas v is defined as the leading left eigenvector of the resident matrix Am,m). We can11

then express λ as12

λ(m, m̃) =
vAm,m̃w

vw
=
v(Am,m̃−Am,m)w

vw

= (vw)−1
(
w+(v+ − vhet)ΔQ

+(m, m̃)

+ w−(v− − vhet)ΔQ
−(m, m̃) + whet(v

+ − v−)ΔR(m, m̃)
)

(A28)
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with1

ΔQ±(m, m̃) = Q±(m, m̃)−Q±(m,m)

=
1

4

(
M̃±

hom

(
N±

hom − (1− m̃′)N∓
hom

)−M±
hom

(
N±

hom − (1−m′)N∓
hom

))
,

(A29)

ΔR(m, m̃) = R(m, m̃)− R(m,m)

=
1

8

(
M̃het(1− m̃)(N+

hom −N−
hom)−Mhet(1−m)(N+

hom −N−
hom)

)
.

(A30)

The activity factors of female mutants, M̃±
hom and M̃het, must be calculated for rare mutant2

invaders. Using the condition that the mutant allele does not change the female mating rate3

we obtain from equation (A2)4

M̃±
hom =

N±
hom(1−m′)N∓

hom + (1−m)Nhet

N±
hom(1− m̃′)N∓

hom + (1− m̃)Nhet

M±
hom, (A31)

M̃het =
(1−m)(N+

hom +N−
hom) +Nhet

(1− m̃)(N+
hom +N−

hom) +Nhet

Mhet. (A32)

Note that, in general, M̃ depends on both m and m̃ (e.g., for our model 1; for model 2, the5

m-dependence cancels). Therefore, the activity factor M̃ of invading mutants deviates from6

the activity factor in a monomorphic mutant population. We can now derive the change of7

ΔQ± and ΔR with the mutant variables,8

∂(ΔQ±)(m, m̃) =
M̃±

hom

4

( N±
homNhet − (1− m̃′)N∓

homNhet

N±
hom + (1− m̃)Nhet + (1− m̃′)N∓

hom

∂m̃,

+
2N+

homN
−
hom + (1− m̃)N∓

homNhet

N±
hom + (1− m̃)Nhet + (1− m̃′)N∓

hom

∂m̃′
)

(A33)

∂(ΔR)(m, m̃) =
M̃het

8

−(N+
hom −N−

hom)Nhet

(1− m̃)(N+
hom +N−

hom) +Nhet

∂m̃. (A34)

For a Gaussian mating function with (1−m′) = (1 −m)4 and ∂m′ = 4(1 −m)3∂m we see9

from (A33) that ΔQ± is strictly monotonically increasing with increasing choosiness. Since10

ΔQ±(m,m) = 0, this implies ΔQ± ≷ 0 for m̃ ≷ m. Similarly, (A34) implies ΔR ≷ 0 for11

m̃ ≷ m if and only if N+
hom < N

−
hom, and hence W+

hom > W
−
hom. If W+

hom < W
−
hom, ΔR has the12

opposite sign. Note that we reach the same conclusions for many alternative (non-Gaussian)13

choices of the mating function (such as m′ = m). With some obvious adjustments it is even14
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possible to allow for different mating preferences of heterozygotes with (+/+) and (−/−)1

homozygotes.2

We now have available all the ingredients to complete our proof. Assume that W±
hom > 0 >3

Whet and (without restriction)W+
hom > W

−
hom. We have shown that in this case v+ > v− > vhet4

and ΔQ±,ΔR > 0 for a modifier that increases female choosiness. Since all elements of the5

vectors v andw must be positive, equation (A28) implies that the leading eigenvalue ofAm,m̃6

is positive. Hence, the modifier will invade. Similarly, it follows thatW±
hom < 0 < Whet implies7

that modifiers for weaker choosiness will invade. Finally, for W+
hom = W−

hom = Whet we find8

v+ = v− = vhet and the invasion fitness of all modifiers vanishes.9

These results can be extended to a model in which the ecological and mating locus are10

linked. We then need to split the heterozygote mutant individuals νhet into two classes, ν±het,11

depending on whether the mutant allele at the mating locus is associated with the + or the12

− allele at the ecological locus. Let ρ > 0 be the recombination rate between the two loci.13

Then the dynamical equations can again be given in matrix form, ν̇ = A
(4)
m,m̃ν, with the14

4-dimensional mutant vector ν = (ν+
hom, ν

+
het, ν

−
het, ν

−
hom) and transition matrix15

A
(4)
m,m̃ =⎛

⎜⎜⎜⎜⎜⎝

1
2
φ+

hom − d+
hom +Q+ 1−ρ

2
(φhet + 2R) ρ

2
(φhet + 2R) 0

1
2
φ+

hom −Q+ 1−ρ

2
(φhet − 2R)− dhet

ρ

2
(φhet − 2R) 0

0 ρ

2
(φhet + 2R) 1−ρ

2
(φhet + 2R)− dhet

1
2
φ−hom −Q−

0 ρ

2
(φhet − 2R) 1−ρ

2
(φhet − 2R) 1

2
φ−hom − d−hom −Q−

⎞
⎟⎟⎟⎟⎟⎠

(A35)

with Q± and R as defined above. The crucial observation now is that if w = (w+, whet, w
−)16

is the dominant right eigenvector of the three-dimensional matrix Am,m̃ as defined in equa-17

tion (A19), then w(4) = (w+, whet/2, whet/2, w
−) is the dominant eigenvector of the four-18

dimensional matrix A
(4)
m,m̃ with the same eigenvalue λ(m, m̃). Neither the dominant eigen-19

value nor the corresponding eigenvector depend on ρ. We thus find that the invasion prop-20

erties are independent of the recombination rate. This is consistent with similar findings by21

Matessi et al. (2001) for the symmetric model and weak selection. Consequently, our above22

results, which were derived for ρ = 0.5, apply equally for any value of ρ.23
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Note that the preceding analysis is valid for mating modifiers of arbitrary size. However,1

only for small modifiers are invading mutants also guaranteed to reach fixation (unless the2

population is at an evolutionary equilibrium; Geritz et al. 2002; Geritz 2005). Furthermore, at3

a stable equilibrium with intermediate m, the invasion fitness for all modifiers is zero. Since4

this implies that the second derivative of the invasion fitness in the mutant direction is also5

zero, this is a non-generic case of an evolutionary singularity according to the classification6

of Geritz et al. (1998). In particular, polymorphisms of m may be maintained in the vicinity7

of the singularity, but there is no “evolutionary branching”.8

Appendix 3: Evolutionary equilibria9

3.1 Analysis of the symmetric model without sexual selection10

Here we show how to derive the evolutionary equilibrium with respect to female choosiness11

in the symmetric model without sexual selection. From equation (A9) (and because φhom =12

φhet), the equilibrium condition for intermediate levels of choosiness (0 < {m,m′} < 1),13

Whom = Whet (Appendix 2), requires dhom = dhet. Using equation (A8), this latter condition14

is fulfilled if15

n = n̂ =
2(c+ k − ck)− c′

c− k . (A36)

The resulting phenotypic distribution is bimodal (i. e., n < 1) if k < (c′ − c)/(3− 2c). Note16

that n̂ is the ratio that would be reached in an asexual population of three competing clones17

with phenotypes −x, 0, and x. In the sexual case, n = n̂ can be reached if assortative mating18

can evolve. To obtain the equilibrium value for m and m′, observe first that mean fitness at19

the equilibrium must be 0. We thus find dhom = 1 and therefore Bhom = Nhom = Nhomφhom,20

using (A10a) and the fact that φhom = 1. Using equations (A4a) and (A6a), this condition21

can be expressed as22

Nhom

(
(m′ − 1)Mhom +

n2

4
Mhet

)
= 0. (A37)

Plugging in the expression for Mhom and Mhet (A5a) and rearranging leads to23
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1−m =

n2

4
+ (1−m′)

(
n2

4
− n

)
(

n2

4
+ 1−m′) (1− n

2

) . (A38)

For 0 < n < 2, this condition can be solved numerically (for a given functional relationship1

between m and m′) to yield the evolutionarily stable value of m. Assuming that m′ is an2

increasing function of m, the left-hand side of equation (A38) decreases with m whereas the3

right-hand side increases with m (because n2/4− n < 0). Therefore, there can be only one4

intersection point, and the solution is always unique. For n̂ ≤ 0 in (A36), m = m′ = 1, and5

for n̂ ≥ 2, m′ = m = 0.6

Appendix 3.2: Analysis of the symmetric model with sexual selection7

Our aim here is to derive an analytical expression for ΔW = Δφ + Δd as a function of8

the mating parameters m and m′ at the symmetric equilibrium. Using φfemale = 1 and9

φmale, het(n/(2 + n)) + φmale, hom(2/(2 + n)) = 1, we obtain10

Δφ =
1

2
(φmale, hom − φmale, het) =

2 + n

4

(
1− φmale, het

)
(A39)

and with equation (A10)11

Δd = −(dhom − dhet) =
Bhet

Nhet
− Bhom

Nhom
. (A40)

Using equations (A4) and (A6), these are functions of m, m′, and n = Nhet/Nhom. We12

therefore need a solution for n at the ecological equilibrium. Using Bhom = Nhomdhom and13

Bhet = Nhetdhet (from eq. A10), we find14

n =
dhomBhet

dhetBhom
=
Khet

Khom
· Chom

Chet
· Bhet

Bhom

=
1

1− k ·
2− c′ + (1− c)n

2− 2c+ n
·
(
2− 2m′

2 + (1−m)n + (2−m′ + (1−m)n)n/2

)
.

(A41)

This is a fourth-order equation in n that can be solved analytically (e.g., by using Mathe-15

matica). For most of the parameter space only a single positive solution exists. In some rare16

cases (in our example with c′ = 1 with very low c and high m and m′) there are three positive17

solutions and the ecological system (A10) is bistable. However, only a single solution for n18
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was found at the evolutionary equilibrium for m and m′ in all cases considered. Evolutionary1

equilibria at random mating and complete isolation can be found analytically (see below).2

For equilibria with partial isolation, the condition ΔW (m,m′) = 0 is solved numerically for3

m and m′.4

Sexual selection and mating rates. According to equation (A39), sexual selection is5

determined by φmale, het, the mating rate of heterozygous males, which, at the symmetric6

equilibrium, can be written as7

φmale, het =
2(1−m)

2 + n(1−m)−m′ +
n

2(1−m) + n
. (A42)

Sexual selection disfavors heterozygotes (and, thus, favors homozygotes) if φmale, het < 1,8

which is the case if equation (17) is true.9

Stability of complete isolation. Complete isolation is characterized by m = m′ = 1.10

Note that this does not yet imply n = 0. For Nhet > 0, we find Bhom = Nhom + Nhet/4 and11

Bhet = Nhet/2 and obtain an ecological equilibrium with dhom = 1 + n/4 and dhet = 1/2.12

However, since also φmale, het = φmale, hom = 1, this implies Δd < 0. The equilibrium is13

therefore evolutionarily unstable.14

For n = 0, we obtain dhom = φhom = 1 and Whom = 0. For ecological and evolutionary15

stability, we need to consider the limit m,m′ → 1 and n → 0. To leading order, we obtain16

Bhet = 2(1 −m′)Nhom + Nhet/2 and thus, from (A10b), that Nhet = 0 is ecologically stable17

for m′ → 1 if and only if dhet > 1/2. Evolutionary stability with respect to the invasion of18

modifiers for decreased choosiness is given if and only if Whet = (1 + φmale, het)/2− dhet < 0.19

For m′ and m near 1, (A10b) implies n = 4(1−m′)/(2dhet− 1) at the ecological equilibrium.20

Using this value for n in (A42), the mating rate of heterozygote males is21

φmale, het = lim
m,m′→1

1−m′
(dhet − 1/2)(1−m) + (1−m′) . (A43)

Defining limm,m′→1(1−m′)/(1−m) = κ, we obtain the following condition for the evolutionary22

stability of complete isolation:23
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dhet >
1

2

(
1− κ+

√
κ2 + 2κ

)
. (A44)

With dhet = (2− 2c)Nhom/K0 and Nhom/K0 = (1− k)/(2− c′) (from dhom = 1) we obtain the1

stability condition (15).2

Stability of monomorphic equilibria at the ecological locus. The local stability of3

a monomorphic equilibrium (say with the ‘+’ allele fixed) can be determined analytically by4

focusing on the fitness of an invading (mutant) ‘−’ allele. As long as this allele is rare, it5

will occur almost exclusively in heterozygotes. The monomorphic equilibrium is stable if the6

mutant allele cannot invade, which is the case if Whet < 0. It is easy to see (from equations7

A1b and A8 for Nhom = Khom and Nhet → 0) that φmale, het = 1−m and dhet = (1−c)(1−k).8

Together with equation (A9b), this leads to condition (18).9

Appendix 4: General non-Gaussian competition functions10

In Figure 4, we analyzed the model for two extreme cases of non-Gaussian competition11

functions (c′ = c and c′ = 1). Here we present a general analysis of what stable evolutionary12

equilibria are possible in the symmetric model for arbitrary choices of c and c′.13

Model without sexual selection. In the model without sexual selection (Fig. A1a), the14

complete-isolation equilibrium is stable if condition (14) is true. This is possible only if the15

numerator on the right-hand side is positive, which is the case if16

c′ > 2c. (A45)

Furthermore, the partial-isolation regime requires that, for some k, neither condition (13)17

nor (14) is fulfilled. This is possible only if the right-hand side of inequality (13) is greater18

than the right-hand side of inequality (14), which is the case if19

c′ < 4c− 2c2. (A46)

Plugging this conditions into inequality (14), we see that, in this case, complete isolation is20

stable if and only if c > k. Vice versa, the bistable R/C regime is possible only if c′ > 4c−2c2.21
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Using (13) we see that for c′ larger than this value, random mating is stable if and only if1

k > c. Thus, the partial-isolation regime can only exist for k < c and the R/C regime only2

for k > c, showing that the situation in Figure 4a is generic for the model without sexual3

selection.4

If the competition function is quadratic (as in Matessi et al. 2001) then c′ = 4c (possible only5

for c < 1/4). As 4c > 4c−2c2, the partial-isolation regime is never possible for this function,6

complete isolation is always locally stable, and random mating can be stable only for k > c.7

It can be shown that these conclusions also hold for the model with sexual selection.8

Finally, in the model without sexual selection, there is no P/C regime. This is because9

the equilibrium condition ΔW = 0 is never fulfilled for more than one value of m (see10

Appendix 3.1).11

Model with sexual selection. In the model with sexual selection (Fig. A1b), the complete12

isolation equilibrium is stable if condition (15) is true. This is possible only if the numerator13

on the right-hand side is positive, which is the case if14

c′ > 4c− 2. (A47)

This condition is always fulfilled if the competition function is convex, that is, if c′ > 2c.15

Furthermore, the partial-isolation regime requires that, for some k, neither condition (13)16

nor (15) is fulfilled, which is possible only if17

c′ < 10− 4(
1

c
+ c). (A48)

The reverse condition holds for the R/C regime.18

The above results are summarized in Figure A1. Several observations are of interest. (1)19

Stability of complete isolation is favored by large c′, but disfavored by large c. In particular,20

without sexual selection, complete isolation can be stable only if the competition function is21

convex (c′ > 2c). (2) For some combinations of c and c′, either the partial isolation or the R/C22

regimes are impossible. In particular, the partial-isolation regime does not exist for quadratic23

competition functions (which is why it was not found by Matessi et al. 2001), whereas the R/C24

regime does not exist in the absence of sexual selection for Gaussian competition functions25

43



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

c’

c

(a)

Without
sexual selection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

c’

c

(b)

With
sexual selection

Figure A1: Possible evolutionary equilibria of female choosiness m as a function of the competition pa-

rameters c and c′. The dashed line corresponds to a Gaussian competition function (eq. 2), and the dotted

line to a quadratic one (as in Matessi et al. 2001). The dash-dotted line represents the case c′ = c (see

Fig. 4a,c), and the upper boundary of the graph the case c′ = 1 (see Fig. 4b,d). For each point, the grayscale

indicates which evolutionary equilibria occur for different choices of the parameter k (i. e., along a horizontal

line in Fig. 1 and 4). There are three different domains with increasing stability of complete isolation. In the

white domain, complete isolation cannot be stable, and the only possible regimes are R and P. In the light

gray domain, complete isolation cannot be stable if random mating is stable, and therefore the bistable R/C

regime does not exist. For the model without sexual selection, stability of complete isolation further requires

disruptive selection (c > k). In the dark gray domain, complete isolation is stable whenever random mating is

unstable, and thus the P regime does not exist. Furthermore, in the model without sexual selection, stability

of random mating is restricted to c < k.

(Fig. 4b, d). (3) For the model without sexual selection, the partial-isolation and R/C regimes1

can only exist for disruptive selection (c > k) and stabilizing selection (c < k), respectively.2

Appendix 5: Asymmetric model3

So far, we have assumed a symmetric shape of the carrying capacity K(X) around the het-4

erozygote phenotype at X = 0. Both homozygote phenotypes thus have the same carrying5

capacity. As a consequence, the two homozygote classes can be lumped at the symmetric6

polymorphic equilibrium, which simplifies the analysis. In the following, we relax this as-7

sumption. In addition to the parameter k that measures the average strength of stabilizing8

selection, we introduce an additional asymmetry parameter Δk that determines the difference9

of the selection parameters for opposite homozygotes k+ and k−,10
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k± = k(1±Δk). (A49)

Similarly, we can also use an asymmetric competition function and define1

c± = c(1±Δc). (A50)

Our general invasion analysis in Appendix 2 shows that a vanishing invasion fitness is char-2

acterized by the (necessary and sufficient) condition W+
hom = Whet = W−

hom = 0. Below,3

we will use this condition to derive the boundary lines for the stability of random mating4

and complete isolation. Also the conditions for stability of the monomorphic equilibria are5

easily extended. A complication for the asymmetric model arises from the fact that, for6

intermediate values of female choosiness, a full analytical solution of the population dynam-7

ical equations (A10) is no longer possible. We therefore need to rely more extensively on8

numerical analysis.9

The boundary line for the stability of random mating (m = m′ = 0) can be found from the10

conditions d±hom = dhet = 1 (from A9) and N2
het = 4N+

homN
−
hom (from A10). After elimination11

of N±
hom and Nhet from this system (using A8), we obtain a lengthy quadratic expression in12

k that can be solved for arbitrary parameters c, c′,Δc, and Δk. For simplicity, we focus on13

the case Δc = 0 and the corresponding solution14

k =
cc′ − (4c− 2c2 − c′)(√1 + Δ2

kc
′(4c− c′)− 1)

2c(2− c)− 2Δ2
k(2c(2− c)− c′)2

. (A51)

For complete isolation (m,m′ → 1, Nhet = 0) we can follow the derivation in the symmetric15

case and obtain d±hom = 1 from B±hom = N±
hom. From the definition of the death rates in (A8)16

we then obtain17

dhet =
2ck

c′
ΔcΔk +

2(1− c)(1− k)
2− c′ . (A52)

As in the symmetric case, the condition for stability of complete isolation can be derived18

from the condition for Whet ≤ 0 in the limit Nhet → 0. For model 1, we again find that this19

is equivalent to dhet ≥ 1, hence20

k ≤ (c′ − 2c)c′

2(1− c)c′ − 2cΔcΔk

. (A53)
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For model 2 and with κ = limm,m′→1[(1−m′)/(1−m)], we get 2dhet − 1 = −κ +
√
κ2 + 2κ,1

again as in the symmetric case. With (A52) this translates to2

k ≤ (2 + c′ − 4c)c′ − (2− c′)c′κ(
√

1 + 2/κ− 1)

4(1− c)c′ − 4cΔcΔk

. (A54)

Finally, we obtain two different stability conditions for the two opposite monomorphic equi-3

libria by substituting k and c in the conditions for the symmetric model by k+ and c+, or by4

k− and c−, respectively. For model 1 without sexual selection, monomorphic equilibria are5

stable if and only if6

1− (1− c±)(1− k±) ≤ 0. (A55)

This is only possible if either c± ≤ 0 or k± ≤ 0 (and hence K±
hom ≥ Khet, i. e., the resource7

distribution is no longer stabilizing). For model 2, the condition is (see eq. 18)8

m

2
≥ c± + k± − c±k±. (A56)

Figure A2 shows the evolutionary regimes of the model with an asymmetric carrying ca-9

pacity (Δk = 1/3), but symmetric competition function. The condition for the stability10

of random mating is changed only slightly as compared to the symmetric case (eq. A51).11

The stability condition for complete isolation changes only if also the competition function12

is asymmetric (eq. A53, A54). Thus, the structure of the five evolutionary regimes appears13

to be very robust. Marked deviations from the symmetric case appear only with regard14

to the stability of the ecological equilibria in the model with sexual selection (eq. A56 and15

numerical results). Not surprisingly, an asymmetric carrying capacity tends to increase the16

stability of the monomorphic equilibrium containing the fitter type of homozygotes. It also17

increases the region where a stable polymorphic equilibrium does not exist (hatched area in18

Fig. A2). Whereas, in the symmetric case, the stable polymorphic equilibrium is always at19

allele frequency 1/2, in the asymmetric case, it may approach the monomorphic equilibrium20

for intermediate or large m. For some parameter values, no (stable or unstable) polymorphic21

equilibrium exists. However, non-existence or instability of the polymorphic equilibrium is22

still largely restricted to parameter combinations with k 
 c.23
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Figure A2: Evolutionary regimes for female choosiness in the model with an asymmetric carrying capacity

(see Fig. 1 for details). The asymmetry parameter Δk = 1/3 implies that k+ = 2k−, i.e., stabilizing selection

on the (+/+) homozygotes is twice as large as on the (−/−) homozygotes. The thin dotted line (stability

of monomorphic equilibrium) refers to the monomorphic equilibrium with the (+/+) homozygotes. The

analogous curves for the symmetric model (Δk = 0, see Figure 1) are shown in red. Note that the condition

for stability of complete isolation (thick dashed line) is independent of Δk (see eq. A53 and A54). The

boundary of the complete-isolation (C) regime in the model with sexual selection was calculated numerically

and, at this resolution, is indistinguishable from the analogous curve for the symmetric model.
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Gı́slason, D., M. M. Ferguson, S. Skúlason, and S. S. Snorasson. 1999. Rapid and coupled19

phenotypic differentiation in Icelandic Arctic char (Salvelinus alpinus). Canadien Journal20

of Fisheries and Aquatic Sciences 56:2229–2234.21

Gourbière, S. 2004. How do natural and sexual selection contribute to sympatric speciation?22

Journal of Evolutionary Biology 17:1297–1309.23
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