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ABSTRACT

When environmental conditions vary stochastically, individuals accrue fitness benefits by exhib-
iting phenotypic plasticity. Such benefits may be counterbalanced by costs of plasticity that
increase with the exhibited degree of plasticity. Here we introduce and analyze a general dy-
namic-programming model describing an individual’s optimal energy allocation in a stochastic
environment. After maturation, individuals decide repeatedly how to allocate incoming energy
between reproduction and maintenance. We investigate the optimal fraction of energy invested
into reproduction and the resultant degree of plasticity in dependence on the variability and pre-
dictability of the environment. Our analyses reveal unexpected patterns of optimal energy
allocation. In environments with very low energy availability, al energy is allocated to reproduc-
tion, athough this implies that individuals will not survive after reproduction. Above a certain
threshold of energy availability, the optimal reproductive investment rapidly decreases to a
minimum, and even vanishes entirely when the environment is highly variable. With further im-
provement of energy availability, optimal reproductive investment gradually increases again,
until almost all energy is alocated to reproduction. Costs of plasticity affect this allocation pat-
tern only quantitatively. Our results show that optimal reproductive investment does not increase
monotonically with growing energy availability and that small changes in energy availability can
lead to major variations in optimal energy allocation. Our results help to unify two apparently
opposing predictions from life-history theory, that organisms should increase reproductive in-
vestment both with improved environmental conditions and when conditions deteriorate

(‘terminal investment’).
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INTRODUCTION

Phenotypic plasticity is the ability of a genotype to produce aternative phenotypes in different
environments. Organisms can benefit from such an ability to adjust their phenotype to a range of
environmental conditions (e.g., Lively 1986, Schlichting 1986, Kaitala 1991, Travis 1994, Dorn
et a. 2000), especialy if environments are heterogeneous in space or time (e.g., Clark and Har-
vell 1992, Gabriel and Lynch 1992, Gomulkiewicz and Kirkpatrick 1992, Houston and
McNamara 1992, Ernande and Dieckmann 2004, Lind and Johansson 2007). The evolution of
phenotypic plasticity requires that plastic individuals have a higher fitness than non-plastic indi-
viduals, with fitness defined as an average over al possible environments an individual may
encounter (Releya 2002b). Because of this averaging, the frequency distribution according to
which environments are encountered influences how much trait values resulting from evolution-
arily optimal plasticity in a given environment differ from trait values that would be
evolutionarily optimal if that environment were the only encountered. Naturally, a better match is
expected in environments that are encountered frequently and that provide high energy levels,
compared to rare and/or poor environments (Zhivotovsky et al. 1996, Ernande and Dieckmann

2004).

In stochastically fluctuating environments, the evolutionarily optimal degree of plasticity will
typically depend on statistical characteristics of the environmental stochasticity (Kaitala 1991,
Gabriel and Lynch 1992), suggesting that being highly plastic is not always a superior strategy.
Phenotypic plasticity should be reduced or absent when conditions are constant (Levins 1968,
Via and Lande 1985) or when costs associated with plasticity are high (De Witt 1998, Van

Tienderen 1991). Theoretical studies showed that evolutionarily optimal reaction norms for the
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phenotypic plasticity of life-history traits result from a balance between perfect adaptation and
the avoidance of costs originating from the effort of maintaining plasticity (Van Tienderen 1991,

Ernande and Dieckmann 2004).

Plasticity in reproductive investment strategies appears to depend strongly on the degree of envi-
ronmental heterogeneity. Several empirical studies (e.g., Kaitala 1991, Ellers and van Alphen
1997) have shown that in a variable environment, reduced survival prospects caused by a sudden
reduction in energy availability may lead to decreased reproductive investment, in favor of a
higher allocation of energy to maintenance and survival. On the other hand, there is empirical
evidence that reduced energy availability and the ensuing loss of survival probability favor ahigh
allocation to reproduction as a form of ‘terminal investment’ (e.g., Stelzer 2001). As yet, a theo-
retical framework is lacking that reconciles these two opposing predictions of life-history theory.
Moreover, it has not yet been explored systematically how important characteristics of stochastic
environments, namely their variability and predictability in time, influence the evolution of phe-

notypic plasticity in reproductive investment strategies.

Here we introduce a conceptual model to investigate the influence of stochastic environments (i)
on energy alocation to reproduction and (ii) on the degree of phenotypic plasticity in reproduc-
tive investment. In our model, the amount of energy available in the environment varies with
time, and the model organisms can repeatedly adjust their energy allocation. Using dynamic pro-
gramming, we investigate the evolutionarily optimal reaction norm for energy invested into
reproduction vs. maintenance during an organism’s lifetime when energy availability varies sto-

chastically. We analyze how this reaction norm and the implied degree of phenotypic plasticity
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depend on environmental variability and predictability, and extend our model to investigate how

costs of plasticity affect optimal energy allocation.

MODEL DESCRIPTION

We consider an individual at a specific moment in time after it has reached maturation. Growth is
assumed to be determinate and hence no energy is allocated to growth after maturation. We
model the life history from the age at maturation onwards. The age a is a discrete variable with

vaues a=0,1,2,...,T , with a =0 referring to the age at maturation. At each age a, the individ-

ual has access to a certain amount of energy e>0 available in the environment, which
characterizes the current state of the environment. The individual’s allocation of available energy
to reproduction vs. maintenance may plasticaly depend on e . For each age a, the reaction norm

f(a,e), with 0< f <1, describes how the fraction of energy alocated to reproduction varies

with the energy e currently available in the individual’ s environment. As we will show later, the

evolutionarily optimal alocation reaction norm f isindependent of age a . In line with this re-
sult and to keep notation simple, we do not make all arguments explicit but write f(e) when

referringto f(a,e).

The energy €, available for allocation (which could be lower than the energy e availablein the
environment owing to costs of plasticity; see equation (5) below) is split between reproduction,

e.(a), and maintenance, €, (a),

enet (a) = er (a) + em (a) ' (1)
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with the reaction norm f (e) specifying the split,

e(a)=1f(e) ey, (22)

e,() = (1 ()€ (2b)

Survival increases monotonically with maintenance energy. We thus assume that the dependence

on ¢, of the survival probability at age a isof Holling typel,

S(a,em):em—w), ©)
en(a)+ey,

where ¢,,, isthe energy allocation at which survival probability reaches %.. The smaller ¢, , the

steeper istheinitial increase of survival probability with €.

As we investigate energy allocation in stochastically fluctuating environments, the energy avail-
ability e is a random variable. We construct a stochastic process to describe how energy
availability varies over time. This process depends on two environmental characteristics, envi-
ronmental variability 4 and predictability z , which we will vary independently in our analysis
below (Fig. 1). Appendix A details the definition of this stochastic process and describes how the

two environmental parameters 4 and r emerge from this definition.

Our aim is to find the evolutionarily optimal allocation reaction norm f(e) that maximizes an

individual’s lifetime reproductive success. For this purpose, we use the technique of dynamic
6
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programming. Dynamic programming is a backward iteration approach for optimizing an inter-
dependent sequence of decisions (Houston and McNamara 1999, Clark and Mangel 2000). Asthe
fitness benefits of immediate reproduction will usually depend on how an individual chooses to
reproduce in the future, it is natural to work backwards in time when searching for optimal allo-
cation strategies. Dynamic programming is a deterministic procedure that allows us to identify
the evolutionarily optimal allocation reaction norm, for each age a before some terminal age T
and for a given combination of model parameters. For each possible energy availability e, we

find the optimal allocation strategy at age a by choosing f so that the reproductive success from

age a onwards, R(a,e), is maximized. The dynamic-programming equation specifies R(a,e),

R(a,e)=f(e)-e+S(a,(1- f(e))-e)-E(R(a+1e)). (4)

We thus seethat R(a,e) comprises two components: (i) current reproductive success at age a , as
determined by the energy allocated to reproduction at age a, f(e)-e, and (ii) expected future
reproductive success E(R(a+1,¢e)) from age a+1 onwards, weighted by the survival probability
S(a,(1- f(e))-e) from age a to age a+1. The expected future reproductive success is a func-
tion of future energy availabilities and future allocation decisions. The dynamic-programming
equation thus is recursive and can best be solved backward in time: starting at a chosen final age
a=T , reproductive success R(a,e) is maximized iteratively for younger and younger ages until
a =0 isreached. Determining in this manner the optimal valuesof f for al energy availabilities
e yieldsthe optimal allocation reaction norm f (e) that maximizes lifetime reproductive success.

A more detailed description of the dynamic programming technique is provided in Appendix B.
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Our evolutionary allocation model contains three parameters. the variability A of the environ-
mental dynamics, the autocorrelation time r of the environmental dynamics, and the energy
level e,,, at which survival probability reaches %2. Below we will systematically analyze how the
evolutionarily optimal alocation reaction norm f (e) and the implied degree of plasticity depend

on these parameters. We define the degree of plasticity of a reaction norm f as the range

f_—f . of reproductive investments across all possible environments, based on the maximum

max min

reproductive investment f _ =max f(e) and the minimum reproductive investment
e

m

f,=minf(e).

As an extension of the model specified above, we consider possible costs of phenotypic plasticity
C(a, f). The energy available at age a, e(a), is reduced by costs of phenotypic plasticity,

C(a, f),

e (a)=e(@)-C(a, f), (5)
yielding the net energy e, (a) at age a. We assume that maintaining plasticity may cause costs
for an individual (De Witt et al. 1998) and that these costs increase with the range of trait values
that can be expressed as a result of plasticity. Plasticity costs for a reaction norm f(e) are de-

fined as

C@, f)=c-(f —f. )% (6)
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where f,_, — f.., isthe degree of plasticity and ¢ scales the plasticity costs. The more plastic an

individual’s energy allocation is, and hence the more reproductive allocation f(e) varies across
energy availabilities e, the higher are these plasticity costs. If f(e) does not vary with energy

availability, sothat f_, = f;,, plasticity costs vanish. Constant reaction normsin our model are

thus cost-free, as was also assumed in the models of Van Tienderen (1991) and Ernande and

Dieckmann (2004).

The parameter b, with 0<b <1, determines how strongly plasticity costs decrease the energy

allocated to reproduction and maintenance,

e(a)="f(e)-e—b-C(a, f), (7a)

e (@=@0-"f(e)-e—(1-b)-C(a, ). (7b)

For b =0 plasticity costs only affect the energy allocated to maintenance, whereas for b =1 plas-
ticity costs only influence the energy allocated to reproduction. For comparison, we aso anayze

the implications of plasticity costs being split in proportion to energy allocation, b= f ,

e(a)=f(e)-(e-C(a f)), (88)

e,(a)=(1-f(e))-(e-C(a f)). (8b)

When costs of plasticity are included in the model, the mutual dependence between an evolution-

arily optimal reaction norm f and the associated plasticity cost necessitates an additional

iteration loop when solving equation (4). When we are determining the optimal f at age a, we

9
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start with costs set to zero, caculate the resultant optimal f , calculate the resultant plasticity
costs of f, and iterate the last two steps until f and its plasticity cost converge. This ensures

that we have found a self-consistent solution through which energy allocation is optimized.

The evolutionary allocation model extended by costs of plasticity has two additional parameters.
the maximum plasticity costs ¢, resulting when the degree of plasticity equals 1, and the propor-

tion b at which plasticity costs affect reproduction as opposed to maintenance.

RESULTS

Our evolutionary allocation model possesses the property of strong backward convergence
(Houston and McNamara 1999, p. 43). This means that, in the backward iteration process of solv-

ing equation (4), the evolutionarily optimal reaction norms essentially do not change with age (so

that for all ages a of interest |f (a+1) - f (a)| falls below some small threshold, such as 10°).

For ages a sufficiently before a=T , the evolutionarily optimal reaction norm f is thus not

only independent of the terminal reward R(T,e) but also of theage a, f(a,e) = f(e).

The age-independent evolutionarily optimal alocation reaction norms resulting from our model
do not predict reproductive investment to increase monotonically with energy availability, but
instead consistently show a characteristic non-monotonic shape. When energy availability is very
low, it is optimal to invest into reproduction alone (Fig. 2). With increasing energy availability,
the evolutionarily optimal reproductive investment rapidly decreases to a unique minimum (Fig.
2b) or may even vanish completely (Fig. 2a, 2¢, 2d). When energy availability improves further,

reproductive investment gradually increases again, until ailmost all energy is allocated to repro-
10
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duction. Depending on the precise shape of the evolutionarily optimal allocation reaction norm,
we distinguish between two classes of outcomes: (i) the optimal reproductive investment is posi-
tive for all energy availabilities, so the unique minimum in reproductive investment is greater
than zero (Fig. 2b), or (ii) the optimal reproductive investment decreases to zero over an interme-
diate range of energy availabilities, so reproduction is skipped within that range (Fig. 2a, 2c, 2d).
The four reaction normsin Fig. 2 are no more than examples and thus cannot capture all aspects
of the dependence of evolutionarily optimal reaction norms on environmenta variability 4 and
predictability . A full exploration of these effects is provided in Fig. 3, which highlights, e.g.,

that the dependence of the degree of plasticity on z isnot always monotonic.

As the degree of plasticity is determined by the range f__ — f.., of reproductive investments
across all possible energy availabilities that an individual may encounter, and since for al evolu-
tionarily optimal allocation reaction norms the maximum expressed reproductive investment was

found to be 1, the degree of plasticity resulting from an optimal reaction norm is 1-f . , and

thus determined by the minimal value f ... We can thusfocuson f for characterizing how the
evolutionarily optimal degree of plasticity depends on model parameters in general, and on the
statistical characteristics of environmental stochasticity in particular. Each point in the three-
dimensional parameter space in Fig. 3b represents a combination of the three parameters ¢,
(energy required for 50% survival), r (environmental predictability), and A (environmental
variability). The surfaces in the figure divide this parameter space into five ranges with different
degrees of phenotypic plasticity being exhibited by the optimal reaction norms resulting for each
parameter combination. In the range above the surface for f_,, =0, optimal reaction norms pos-

sess an intermediate region of skipped reproduction, while below this surface optimal

11
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reproductive investment is always positive (Fig. 3a, b). The three surfaces for f., =0, 0.25, and
0.5 continuoudly rise for increasing environmental predictability r . Surprisingly, the surface for
f.., =0.75 first drops with increasing environmental predictability, but eventualy rises again,

although only very slowly, as predictability is further increased. Thus, as environmenta predict-

ability r is enhanced, the evolutionarily optimal degree of plasticity drops when environmental

variability A is high, but rises when environmental variability is low. Also the parameter €,,,
affects plasticity. We recall that, when e, islow, little energy is needed to ensure survival. The

shown surfaces first slightly drop with decreasing e,,,, but when e;,, becomes small, the drop
first becomes steeper and then the behavior changes entirely: the surfaces suddenly curve up-

wards and thereby indicate how the optimal degree of plasticity rapidly decreases as e,

approaches 0 (Fig. 3b). Since survival becomes assured when e,,, approaches O, it is intuitive
that reproductive investment increases. The evolutionarily optimal allocation reaction norms thus
approach f(e)=1 for al energy availabilities e . As a result, the range of parameter combina-
tions below each of the shown surfaces expands. Of all three parameters, environmental
variability A, which determines the amplitude of stochastic fluctuations in energy availability,
has the strongest influence on the evolutionarily optimal degree of plasticity and thus on the

shapes of the corresponding reaction norms. When A is increased, the minimum f_. = of the op-
timal reaction norm lowers. For each combination of z and e,,,, onevalue of A existsfor which

the minimum f_. of the optimal reaction norm reaches zero. Increasing 4 beyond that value,

thus broadening and flattening the distribution of energy availabilities, enlarges the intermediate

range of energy availability for which reproduction is skipped (Fig. 4).

12
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Costs of phenotypic plasticity influence evolutionarily optimal energy allocation patterns only
quantitatively. As expected, the minimum of the optimal reaction norm rises with increasing
magnitude of plasticity costs ¢, so that the degree of plasticity decreases (Fig. 5a, b). Analysis of
the effect of increased plasticity costs in interaction with the other parameters reveals that the
qualitative dependence of optimal reaction norms on the parameters 4 and 7 is not atered for
different values of c. As can be expected, the region in parameter space in which plasticity is
maximal shrinks with increasing ¢ (Fig. 5b): the more costly it is to be plastic, the lower is the
evolutionarily optimal degree of plasticity. The line of combinations (zr,4) separating reaction
norms with maximum plasticity from those with less plasticity does not change shape, but only
moves towards larger values of A (and, equivalently, smaller values of 7 ) as plasticity costsin-
crease. Less plastic strategies thus become optimal under a wider range of conditions, occurring

for higher environmental variability and lower environmental predictability (Fig. 5b).

Also the parameter b, which determines the relative extent by which plasticity costs reduce the
energy available for reproduction, affects the optimal reaction norms only quantitatively. When

b is decreased, the surface of combinations (e,,,,7,4) separating reaction norms with maximum

plasticity from those with less plasticity hardly changes shape, but only moves towards smaller
values of 4 (Fig. 6). Decreasing b causes the minimum of the optimal reaction norms to de-
crease, and hence plasticity to increase. We obtained qualitatively similar results (not shown)
when assuming that costs affect maintenance and reproductive energy in proportion to energy

alocation, sothat b= f .

We tested the influence of a mortality component that cannot be diminished by higher energy al-

location e, to maintenance, by investigating surviva functions S =cae /(e +¢€,,) that reach

13
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their asymptotes at some maximal survival value o, with O<a <1, instead of at =1 asin
equation (3). Including this additional mortality component again does not change evolutionarily

optimal reaction norms qualitatively, but only leads to arise of their minimum f_, ~(results not

shown). Since the potentia for future reproduction diminishes when « is lowered, it is intuitive

that evolution responds by an increase in immediate reproduction.

Reproductive investment f in our model varies between 0 and 1, and evolution fixes it at 1 for

very low energy availability. We tested the influence of physiological limits that restrict the frac-

tion f of the available energy e that can be invested into reproduction, by introducing an upper
limit f,, with O< f, <1, for reproductive investment f , so that evolution had to respect the con-
straint f < f,. Once again, this does not alter the U-shape of the evolutionarily optimal allocation
reaction norm, but only prevents f from increasing all the way up to 1 for very low or very high
energy availability e . Asaresult, f equals f, for energy availabilities close to 0, decreases to a
minimum as e grows, and then rises again up to f, for increasing e . In other words, reproduc-

tive investment is as high as the physiological limit allows for low and high energy availability,

whereas it drops to a minimum in between.

DISCUSSION

We have investigated how evolutionarily optimal reproductive investment depends on the pre-
dictability and variability of energy availability in stochastic environments. Our model shows that
at certain energy levels a dlight change in energy availability must be expected to cause a mgjor

change in optimal energy allocation. Investment into reproduction alone is optimal when energy

14
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availability is low: mortality due to starvation is then likely, and options for future reproduction
are virtually non-existent. When energy availability is intermediate, the probability of future re-
productive success becomes high enough to outweigh the benefits of immediate reproduction.
Reproductive investment is then drastically reduced and reaches a unique intermediate minimum,
or reproduction is even skipped altogether. When energy availability is high, a high reproductive

investment occurs even in very variable environments.

Skipped reproduction is frequently observed in nature (in fish: Bull and Shine 1979, Rideout et
al. 2005, Engelhard and Heino 2006, Jargensen 2006a, b; in amphibians: Bull and Shine 1979,
Harris and Ludwig 2004; in reptiles: Bull and Shine 1979, Brown and Weatherhead 2004; in
birds: Illera and Diaz 2006). Poor individual condition or poor environmental quality are thought
of as the main causes for skipped reproduction (Bull and Shine 1979, Dutil 1986, Rideout et al.
2005), which is expected to occur when future reproductive success outweighs the benefits of
immediate reproduction (Engelhard and Heino 2005, Jargensen 2006a). However, to our knowl-
edge no previously anayzed life-history model has predicted the occurrence of skipped
reproduction only for intermediate environmental qualities, with high reproductive investment

being optimal at both ends of a gradient of environmental quality.

Interestingly, previous life-history theory made two apparently contradictory predictions about
optimal reproductive investment in stochastic environments. Theoretical studies concluded that
worsened environmental conditions favor decreased reproductive investment per reproductive
event (Erikstad 1998). This is supported by empirical evidence (Kaitala 1991, Ellers and van Al-
phen 1997) and agrees with the right-hand side of the evolutionarily optimal alocation reaction

norm resulting from our model. On the other hand, it has been hypothesized that when survival is

15
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suddenly reduced because of worsened environmental conditions, reproductive investment should
be increased as a form of ‘terminal investment’ (Gadgil and Bossert 1970, Michod 1979). Also
this prediction is supported by empirical results (Stelzer 2001) and agrees with the left-hand side
of the evolutionarily optimal allocation reaction norm resulting from our model. While so far
these two predictions were regarded as separate phenomena, our results suggest that they may
apply to different ranges of energy availability and thus are, in fact, part of the same reaction
norm. Our model results hence help reconcile these apparently contradictory previous life-history

predictions.

Why have U-shaped reaction norms for optimal reproductive investment in stochastic environ-
ments not been detected in earlier studies? In contrast to most previous theoretical studies, our
analysis describes reproductive investment by a reaction norm, and thus as a function of energy
availability. Early studies instead compared the fitness of fixed reproductive strategiesin variable
and constant environments (Murphy 1968, Schaffer 1974) and found that increased environ-
mental variability leads to a decrease in the optimal reproductive investment per reproductive
event. Both of these models did not allow for plasticity in reproductive investment, but only con-
sidered fixed reproductive strategies. The models by Gadgil and Bossert (1970) and Michod
(1979) of iteroparous life histories considered variations in reproductive investment at different
ages, but again did not allow for plasticity in reproductive investment at any specific age. Gurney
and Middleton (1996) demonstrated in a population model that mixed investment in both repro-
duction and growth can become a superior strategy in highly variable environments as opposed to
investment into growth followed by a switch to reproduction at a certain time in an individual’s
life. They also did not allow for plasticity in allocation strategies nor did they derive reaction

norms. More recently, Benton and Grant (1999) studied a matrix population model of optimal
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resource allocation that included density dependence and stochastic fluctuations in survival and
fecundity. They demonstrated through numerical simulations that as environmental variability
increases, the resultant change in the evolutionarily stable reproductive investment on average
also increases, which qualitatively agrees with our findings. Also in this study, no reaction norms
were considered. To our knowledge, Erikstad et al. (1998) is the only preceding theoretical study
that analyzed the reaction norm of optimal reproductive investment for a range of environmental
conditions in a stochastic environment. They reported that optimal reproductive investment in-
creases monotonically with improving environmental conditions. Erikstad et al. designed their
model to describe long-lived bird species with a fixed clutch size. Below a certain threshold of
environmental quality, they defined current reproduction to be zero, as the available energy
would not suffice for producing a clutch. Hence, while their findings agree with the right-hand
side of the U-shaped evolutionarily optimal allocation reaction norm found in our study, their
model did not allow detecting the left-hand side of this reaction norm, as reproduction at very low

energy levels was prevented a priori.

An experimental study on rotifersillustrated nicely that a single organism can exhibit both of the
effects predicted above when exposed to afull spectrum of food concentrations, from very low to
ad libitum (Stelzer 2001). Reproductive investment of rotifers, measured as energy flow into the
ovary during an egg-laying interval, was highest at very low food concentrations and decreased
when food availability was improved. High reproductive investment at low food concentrations
was often followed by immediate death after reproduction. When food concentration was im-
proved further, however, the reproductive rate of individuals increased, with more offspring
being produced per time unit. This transates into in a high reproductive investment when food

availability was high. Both of these observations are thus in agreement with our predictions.
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Costs of phenotypic plasticity have been predicted to impede the evolution of phenotypic plastic-
ity (e.g., Viaand Lande 1985, Gomulkiewicz and Kirkpatrick 1992, Scheiner 1993, De Witt et. a
1998, Ernande and Dieckmann 2004, Pigliucci 2005). A number of experimental studies identi-
fied costs of plasticity in different taxa and traits, including plasticity in behavioral,
morphological, and life-history traits in amphibian larvae (Releya 2002a) and freshwater snails
(DeWitt 1998) as a response to predators; plasticity in morphological traits in response to light
cues and resources in plants (Dorn et al. 2000, Van Kleunen 2000, Weinig et a. 2006, Dechaine
et a. 2007); and plasticity in flowering time in response to temperature (Stinchcombe et al.
2004). Each of these studies established support for the existence of costs of plasticity, at least for
some of the traits investigated. Still, the frequency of studies in which plasticity costs have been
detected is low relative to the total number of tests, and, even when detected, the magnitude of
such costs often turns out to be small, rendering general conclusions about the importance of
plasticity costs difficult. It has been suggested that plasticity costs have not often been detected
unequivocally because of the employed experimental setups and the genetic background of the
studied genotypes (Agrawal 2001, Weinig 2006). In particular, most studies testing for plasticity
costs sampled genotypes from natural populations, even though genotypes with high plasticity
costs, which may have been present initially, might subsequently have been removed during pro-

tracted evolution by natural selection (Weinig 2006).

Bearing in mind that the more general importance of plasticity costs is still unclear, we first re-
ported our main results in the absence of any such costs and then demonstrated the robustness of
these results in an extended model in which plasticity costs were taken into account. As expected,

our extended results show that when plasticity is costly, a reduced degree of plasticity is optimal.
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Surprisingly, however, our extended results reveal that evolutionarily optimal allocation reaction
norms were not qualitatively atered by plasticity costs. High plasticity costs just moved the op-
timal reaction norm toward the cost-free flat reaction norm, in agreement with previous findings

by Van Tienderen (1991) and Ernande and Dieckmann (2004).

It may be worth highlighting that we modeled costs of phenotypic plasticity as ‘maintenance
costs' sensu DeWitt et a. (1998), and also that our definition of plasticity costs includes costs of
acquiring information about the environment. Since we focus on the phenotypic expression of
plasticity and do not study the underlying genetic architecture, we do not address the conse-
quences of potential genetic costs of, or constraints on, plasticity originating from linkages or
epistasis between loci underlying plasticity and loci affecting other fitness-relevant traits (DeWitt
et al. 1998). We tested the robustness of our results against using another cost function, based on
the variance of reaction norms (Ernande and Dieckmann 2004), without finding any qualitative
departures from the predictions presented above (results not shown). This confirms that our re-
sults on the influence of plasticity costs are qualitatively robust and do not depend on a particular

form of the underlying cost function.

Our model allows us to vary how strongly costs of plasticity reduce the energy available for
mai ntenance as opposed to that available for reproduction. When plasticity costs mainly reduce
maintenance energy, the evolutionarily optimal degree of plasticity is enhanced by limiting re-

productive investment when energy availability islow, so asto ensure survival.

Various model approaches have been employed to explore the conditions favoring the evolution

of phenotypic plasticity (e.g., Via and Lande 1985, Van Tienderen 1991, Gomulkiewicz and
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Kirkpatrick 1992, Moran 1992, Ernande and Dieckmann 2004). Our results agree with findings
based on optimality models and quantitative genetics models in that plastic strategies are always
superior to fixed strategies in variable environments (e.g., Clark and Harvell 1992, Scheiner
1993). In contrast to earlier models (e.g., Moran 1992, Houston and McNamara 1992), we ana-
lyzed the gradual degree of plasticity, rather than just considering its presence or absence: a
unique property of our model is that we considered both environmental quality and the pheno-
typic response to the environment, in terms of reproductive investment, as continuous variables.
This alowed us to demonstrate how minor changes in environmental quality can imply major

changes in the evolutionarily optimal reproductive investment.

Some assumptions underlying our model might limit the generality of our results. We derived the
evolutionarily optimal allocation reaction norms as evolutionary endpoints in stochastic environ-
ments with different statistical characteristics. At these endpoints, the selection pressures on
energy allocation vanish. Such optima are of course unlikely to be exactly tracked by natura
populations, for three reasons. First, as with any evolutionary endpoint, selection pressures di-
minish as the endpoint is approached, so that evolution close to the endpoint becomes
increasingly slow. Second, ecological systems are changing continuously, so that their statistical
characteristics, even in terms of features as general as environmental variability and predictabil -
ity, might change faster than adaptation can occur. However, when evolutionary rates are not too
slow and changes in the statistical characteristics of the stochastic environment are not too fast,
we can expect evolution by natural selection to take populations close to the identified endpoints.
Third, as already mentioned above, we assume that evolving populations do not run out of ge-

netic variance as they respond to the existing selection pressures on energy allocation.
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Our approach assumes that the evolutionarily optimal allocation reaction norm is independent of
density. While density would influence resource abundance, and thus energy availability, it
should not alter an individual’s allocation decisions at a given energy level. Likewise, even
though density-dependent competition could change environmental variability and predictability,
these effects can be accounted for in our model as it treats environmental variability and predict-
ability as parameters. What our model does not capture is frequency-dependent selection. If, for
example, environmental variability and predictability become dependent on the reaction norm
currently prevalent in the population, an environmental feedback is created that precludes the use

of any optimality model.

Another critical assumption underlying our analysis is that the modeled organisms are ‘income
breeders’ that can acquire energy for reproduction and maintenance only during the current re-
productive period and that must thus spend all such energy during the current season (Stearns
1992, Jonsson 1997). This may explain why we found full investment into reproduction close to
starvation. An interesting extension of the framework presented here would be to investigate how
allocation decisions are affected by the possibility of energy storage between seasons, which isa
widespread strategy helping individuals to cope with temporarily poor environmental conditions
(e.g., Rogers 1987, Rogers and Smith 1993, Kooi and Troost 2006). Even though the possibility
of energy storage will affect evolutionarily optimal allocation reaction norms, it should be borne
in mind that there usually exists a fundamental asymmetry between investments into reproduction
and maintenance. When energy availability is high, many organisms can increase their reproduc-
tive success by investing more energy into reproduction by increasing, within physiological
limits, their reproductive frequency, their clutch size, and their investment into each individual

offspring. By contrast, all investments into maintenance cannot push the probability of survival
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above 1. This asymmetry is captured by the saturating survival function in our model and serves
as a conceptual cornerstone for understanding elevated investment into reproduction at high en-

ergy availability.

We conclude that stochastic environments can cause unexpected patterns of plastic energy alloca-
tion, with evolutionarily optimal reproductive investment not necessarily just increasing or
decreasing monotonically with energy availability. The U-shaped allocation reaction norms pre-
dicted here imply maximal reproductive investment at the extreme ends of environmental quality
and minimal reproductive investment for intermediate conditions. We find that the transitions be-
tween these three outcomes are quite sharp: consequently, evolutionarily optimal reproductive

investment in stochastic environments can be very sensitive to small changes in energy availabil-

ity.

APPENDIX A

Definition of stochastically fluctuating environments

A time series of environmental states {e,,e,.e;,....e; } isarealization of a stochastic process de-
scribing varying energy availability (Fig. 1), with the individual states applying at ages
a=12,..T of the model organism. Considering all possible realizations, we obtain the fre-

quency distribution of e at each age a. Thus, for defining the stochastic process we need to

make assumptions about the distribution of e at each age a .

In nature, the abundance of organisms and resources often follows a lognormal distribution
(Limpert et al. 2001), owing to the central limit theorem for multiplicative stochastic variables.
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We thus assume that energy availability e islognormally distributed with mean x and variance
o?, which implies that the logarithm of e is normally distributed, with mean g, and variance

o’ . Inline with this, we assume environmental dynamics to follow a multiplicative autoregres-

sive process of order 1, AR(1), which means that energy availability at a given age depends on
two factors, the energy availability at the previous age and a noise term. Consequently, energy

availability at age a+1, e,,,, isgiven by the product of energy availability at the previous age a,

e, , and an age-specific noiseterm ¢, , which is the source of randomness,

a+l eg “Ean (9)

with ¢ > 0. The parameter ¢ describes how much e, influences e,,;. When ¢ =0, subsequent
environmental states are not correlated, and e, , is independent of e, and thus fully determined
by the error term &, . Since correlations between ages are thus captured by ¢, ¢, can be assumed
to be uncorrelated between ages. Since e, and e,,, are lognormally distributed, the noise term
&, must also follow alognormal distribution. The logarithm of &, is thus a normally distributed
white-noise process, with mean 4, and variance o?, . This white noise serves as the source of

randomness for the environmental fluctuations in our model. We assume this stochastic process

to be stationary, which means that the mean and variance of e, are independent of a, which in
turn implies u, , = 0. Taking the logarithm of equation (4) and subsequently taking variances,

thisresults in o2 = o - (1- ¢*), which implies ¢ <1. The variance o of the logarithm of e
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and the parameter ¢ thus determine the variance o, of the noise term. Since x,, =0 and

o’ areindependent of age a , the noise processis stationary, ¢, = ¢

The autocorrelation time ¢ of the stochastic environmental dynamics of e measures the duration
over which the correlation between successive energy availabilities decreases to 1/e ~ 36.8%

(with e ~ 2.718 denoting Euler’s number); r isgiven by

T=——"1-. (104)

We use ¢ asaconvenient measure of environmental predictability. To reduce the number of pa-

rameters needed for describing the environmental dynamics, and since we can choose the unit for

e freely, we set the geometric mean of e to 1, which is equivalent to u, =0; we thus measure
energy availability relative to its geometric mean. With this we obtain o = (e —-1)-e”* and

1 =e’'? for the mean and variance of the lognormal distribution of e . We use the coefficient of

variation,
A=Z =g o2\ e _1, (10b)
7

for quantifying environmental variability. Using the two parameters 4 and ¢ for characterizing
the fluctuating environment allows us to independently vary the variability and predictability of

fluctuating energy availability (Fig. 1).
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APPENDIX B

Determination of evolutionarily optimal reaction norms through dynamic programming

Evolutionarily optimal reaction norms in our model are computed by applying the technique of

dynamic programming. For this purpose, we need to discretize the energy scale to obtain a vector

of n discrete energy states e, i=12,...,n. For each of these, we find the optimal allocation

strategy at age a by choosing f so that the reproductive success from age a onwards, R(a,e;),

is maximized. The recursive dynamic-programming equation is

R(a,e) :argmax{ f(e)-&+S(a (1- f(ei))'ei)'z p(e; le)R(@+1Le) |, (11)
f(e) j=1

where the transition probability p(e; |e;) determines the likelihood of the transition from energy

state € at age a to state e; at age a+1. These transition probabilities follow directly from the

definition of the autoregressive process,

1 2 2
—zlog {;‘/O'EVN

9. ole) = _e?.ay %
p(e;le)=pe; =¢e"-cle)=ple=¢7""¢) ooy (12)

and can be assembled ina nxn matrix P with elements P, = p(e, |¢;), i,]=12,...,n. (Thelast
step above follows from the fact that ¢ =e”-e; is lognormaly distributed, and it is accurate
when n is large) Starting with R(T,e;) a age a=T , equation (11) is solved iteratively for
younger and younger ages until a=0 isreached. At each age and for each energy state e, f(e)
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is chosen so as to maximize the expression in square brackets (this is the meaning of the argmax
function). The set of numbers f(e), i=12,...,n, resulting at a=0 then describes the evolu-

tionarily optimal allocation reaction norm.

It is important to understand that this f(e) is potentially very different from the function f'(e)
we would obtain by optimizing energy allocation separately for each energy state e, when assum-
ing the absence of stochastic fluctuations in energy availability. While f(e) describes the

expected endpoint of evolution by natural selection in a single population exposed to a fluctuat-

ing environment, f’'(e) would describe the collection of evolutionary endpoints in many

completely separated populations, each exposed to a constant environment with a specific energy
availability e . The formal reason for this biologically crucial distinction is that for evolution in
stochastically fluctuating environments energy states are coupled by the considered stochastic

environmental process, with this coupling being reflected in equation (11) by the sum across all

possible energy states. More specifically, the evolutionarily optimal energy alocation f(g) at
age a and energy state e, not only depends on (i) how likely it is that the individual will survive
until a+1, S(a,(1-f(e))-&), but also on (ii) how likely energy state e; is encountered at age
a+1, p(e;|e), and on (iii) how valuable that encounter will be in terms of future reproductive

success, R(a+1e)).

We choose aterminal age T that is so large that virtually no survival from age a=0 until age

a=T ispossible. Hence the terminal reward R(T,e), denoting the vector of reproductive suc-

cess for all energy states e from age T onwards, has no effect on results at ages of interest (for
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which survival from age a=0 is non-negligible), and can thus be assumed to vanish,

R(T,e) =0. At the termina age, future reproductive success is obviously maximized by allocat-

ing all available energy to reproduction, f(e)=1forall e atageT.
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FIGURE LEGENDS

Figure 1. Stochastic fluctuations in energy availability in four environments with different vari-
ability and predictability. The average amplitude of the time series increases with environmental
variability 4, while its average frequency decreases with environmental predictability r . Dotted
lines show the resultant 95%-confidence intervals for energy availability. Environmental variabil-
ity A islarger in the bottom row than in the top row, while environmental predictability  is
larger in the right column than in the left column: (a) A=5, r=1; (b) A=5, r=10; (c) 41=50,

7=1;(d) 1=50, r =10. Note that horizontal axes are scaled logarithmically.

Figure 2. Evolutionarily optimal allocation reaction norms, describing the dependence of the op-

timal reproductive investment f on energy availability e, in four environments with different

variability and predictability (Fig. 1). Dotted lines show the resultant 95%-confidence intervals
for energy availability. Dashed curves show the survival probabilities resulting from the pre-
sented reaction norm at different energy availabilities. Environmental variability A is larger in
the bottom row than in the top row, while environmenta predictability  is larger in the right
column than in the left column: (a) 41 =10, r=20; (b) A=10, r=50; (c) A =50, 7=20; (d)

A =50, 7=50. Note that horizontal axes are scaled logarithmically. Other parameters: e,,, =5.

Figure 3. Classification of evolutionarily optimal allocation reaction norms. (a) Examples of re-

action norms f(e) with minima at f =0, 0.25, 0.5, or 0.75. (b) Surfaces of parameter
combinations (e,,,,7,4) resulting in optimal reaction norms with these minima. Plasticity thus

increases from bottom to top.
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Figure 4. Effects on evolutionarily optimal alocation reaction norms of environmental variabil-
ity. Optimal reaction norms f(e) are shown for different levels of environmenta variability A:
A =1, 4,=10, 4,=20, 4,=50, and A;=100. Increased environmental variability leads to
skipped reproduction across wider ranges of energy availability (grey bars). Other parameters.

e,,=5and r=50.

Figure 5. Effects on evolutionarily optimal allocation reaction norms of the scale ¢ of plasticity
costs. (a) Optimal reaction norms for different values of ¢, with z=50 and A =10. Increased
plasticity costs reduce the optimal degree of plasticity. (b) Lines of parameter combinations
(z,A) resulting in optimal reaction norms with a minimum f =0 for different values of c:

c=0, 10, 100, and 1000 are indicated by growing line widths. Other parameters: e, =5 and

b=1.

Figure 6. Effects on evolutionarily optimal allocation reaction norms of the proportion b at
which plasticity costs affect reproduction as opposed to maintenance. Surfaces of parameter
combinations (e,,,,7,4) resulting in optimal reaction normswith aminimumat f =0 for differ-
ent values of b: b =0 (white), b=0.5 (light grey), and b =1 (dark grey). Increased allocations
of plasticity costs to reproduction reduce the optimal degree of plasticity. Other parameters:

c=1.
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