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Abstract: Decreasing temporal trends in probabilistic maturation reaction norm (PMRN) 

midpoints, symptomatic of earlier maturation despite environmentally induced variation in 

growth, have been observed in many exploited fish stocks. Here we studied the growth and 

maturation trends of female and male Icelandic cod (Gadus morhua) by estimating PMRNs 

for cohorts 1964 to 1999, and found evidence that a shift towards maturation at smaller sizes 

and younger ages has occurred independently of changes in growth, condition and 

temperature. Weighting the data with regional survey abundance estimates to account for 

spatial heterogeneity in maturity status and sampling intensity did not qualitatively affect the 

temporal trends. Length-at-age also decreased through the study period which, through 

simulations, could be attributed to the energetic costs of earlier maturity at maturing age 

groups, but not at younger ages. These findings support the hypothesis that such changes in 

maturation schedules are not caused by environmental factors alone, but could also reflect a 

genetic change, potentially in response to intensive fishing. 

 

Keywords: Atlantic cod; Iceland; Probabilistic maturation reaction norm; Phenotypic 

plasticity; Life history.
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Introduction  

Trends towards maturation at younger ages and smaller sizes have been observed in many  

exploited fish stocks (e.g. Trippel 1995; Hutchings and Baum 2005; Jørgensen et al. 2007).  

Such changes are relevant for fisheries management since earlier maturation may have  

negative implications for population growth rates (reviewed by Hutchings and Fraser 2008) 

and yield (Law and Grey 1989; Stokes and Law 2000; Conover and Munch 2002) through  

decreased growth rates and size of fish in the catch (Heino 1998), and the reduced 

reproductive ability of a spawning stock comprised of smaller individuals and a higher  

proportion of first-time spawners (Marteinsdóttir and Begg 2002; Hutchings 2005).  Shifts 

towards earlier maturity may also increase variability in population abundance (Stergiou  

2002; Anderson et al. 2008; Stenseth and Rouyer 2008) and adversely affect the ability of a 

population to recover from overharvesting (Hutchings 2005; Walsh et al. 2006; Enberg et al.  

in press). Consequently, monitoring life-history traits and the potential causes of significant 

trends is essential for the effective long-term conservation and management of the resource 

(Trippel 1995; Jørgensen et al. 2007).  

Phenotypic variability in the maturation pattern of a stock typically arises through  

plastic responses to environmental changes that may also be density-dependent. For example,  

relaxed competition for food in a fished-down stock may lead to accelerated growth and in  

turn earlier maturation (Trippel 1995; Law 2000). However, given that the maturation process  

is a complex physiological cascade, it is likely to be affected by ontogenetic processes related  

to not only growth, but environmental conditions and individual experience preceding, and at  

the point at which, the ‘decision’ to mature is made (see e.g. Wright 2007). Consequently,  

factors such as temperature (Dhillon and Fox 2004; Kraak 2007) and the status of energy  

reserves, reflected by condition (Yoneda and Wright 2005; Thorpe 2007), are potential 

proximate triggers of the maturation process (Wright 2007). However, these factors are often  
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not taken into consideration when temporal trends in maturation patterns are studied (see  

however Grift et al. 2007; Mollet et al. 2007).  

In addition to plastic responses, fishing has been identified as a potentially strong  

selective force in shaping the life-history traits of exploited fish populations (Law and Grey  

1989; Conover and Munch 2002; Dunlop et al. in press). Harvest mortality may favour 

adaptations in traits such as size and age at maturation, growth rate, reproductive effort and  

behaviours related to feeding and mating, with changes being more pronounced when  

exploitation is size-selective (e.g. Heino and Godø 2002; Conover et al. 2005; Reznick and  

Ghalambor 2005). Aquaculture studies reporting moderate to high heritabilities for traits such  

as age at maturation and weight-at-age in cod (h2 = 0.12 – 0.56, 0.20 – 0.51 respectively,  

Kolstad et al. 2006) and salmonids (Henryon et al. 2002; Kause et al. 2003) support the  

hypothesis that these traits are susceptible to genetic change, including that mediated through  

fishing.   

 The Icelandic stock of Atlantic cod (Gadus morhua) has supported an important  

fishery for decades (Fig.1a), although both the stock (Fig.1b) and catches have been below 

historic levels for many years (Anonymous 2007). Although no formal quantification is  

currently available, the fishery is considered to be highly size-selective, targeting large  

individuals (Anonymous 2007). Bottom trawling (conforming to codend mesh size  

regulations of 155 mm from 1977 and 135 mm for the past decade) provides the majority of  

the catch (Anonymous 2007). Icelandic cod become fully recruited to the fishery at age 5 or 6, 

at which between approximately 25% and 55% are mature according to recent data  

(Anonymous 2007). Intensive exploitation during the last decades has led to truncation in the  

age structure of the stock (Marteinsdóttir and Thórarinsson 1998). Concurrently, declines in  

age and size at 50% maturity have been observed (Marteinsdóttir and Begg 2002; Anonymous  

2007).     
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In this study, we assess trends in the maturation schedules of female and male  

Icelandic cod, between cohorts 1964 and 1999, utilising probabilistic maturation reaction 

norms (PMRNs) as our primary tool. We investigate whether there have been simultaneous  

trends in potential explanatory variables, namely water temperature or cod condition, or  

potential sampling biases related to the demographic effects of spatially segregated fishing or  

geographically differing cod characteristics, which would influence our interpretation of the  

PMRNs. We hypothesize that residual changes not explainable by environmental variables  

may be due to the effects of fishing, but note that a causal relationship cannot be demonstrated  

through such a descriptive study. We also introduce a novel method to examine whether  

changes in maturation could, through energetic trade-offs, explain those observed in length-at- 

age, or whether independent changes could have occurred in growth.   

Materials and methods  

Data 

Data were obtained from the Marine Research Institute (MRI), Iceland. All data were  

collected by bottom trawling, but originated from three sources: the annual spring (March)  

groundfish survey (GSD) which began in 1985, long-term ad-hoc research surveys (SD) and  

commercial catches (CD). The CD consisted of samples collected by observers from the  

Icelandic Directorate of Fisheries onboard commercial trawlers using 135 or 155 mm mesh  

size in the codend. GSD were collected using a bottom trawl with a 40 mm mesh size in the  

codend (Pálsson et al. 1989), and therefore only those SD collected with the same mesh size  

were selected. During MRI research surveys (SD, GSD) samples were taken randomly across  

the area of the continental shelf of Iceland occupied by cod, whereas the spatial coverage of  

CD was more limited (Fig. 2). For the purposes of our analysis, GSD and SD were considered  

comparable (see Discussion). PMRNs were estimated from CD so that they could be  
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compared with PMRNs from SD/GSD, but were excluded from all trend analyses since CD  

are less representative.         

For all data types, location and date were recorded, total length was measured to the  

nearest 1 cm, otoliths were collected for age determination, sex was recorded and maturity  

stage (1: immature, 2: ripening, 3: spawning, 4: spent) was determined macroscopically  

according to the stages defined in Powles (1958). All fish were then reclassified as either  

juvenile (class 1) or mature (classes 2 – 4). From 1993, body, gutted and liver weights were  

also measured to the nearest 1 g during the annual spring groundfish survey (GSD). Cod in  

Icelandic waters spawn from late March to May/June (Marteinsdóttir et al. 2000) and  

therefore only those data collected between February and April were selected to maximise the  

likelihood of accurate maturity stage estimation and also to provide consistency between the  

different sources. The final dataset was divided into three temporally overlapping groups: 1)  

SD, years 1967 – 1984, 2) CD, years 1977 – 1995 and 3) GSD (with some SD), years 1989 –  

2007 (Table 1, Fig. 2). To verify that combining data in the most recent time period was  

appropriate, temporal trends in PMRNs estimated from GSD alone and GSD combined with  

SD (GSD/SD) were compared using analysis of covariance (ANCOVA). For each age and sex  

combination, an ANCOVA explaining the Lp50 estimates (length at which the probability to  

mature is 50%) as a function of data source (categorical variable, GSD or GSD/SD) and  

cohort (continuous variable), weighted by the inverse of the bootstrap variance (see below),  

was used to test for differences between the intercepts and slopes of the two Lp50 time series.   

Probabilistic maturation reaction norm (PMRN) estimation  

PMRNs describe age- and size-specific population level probabilities for an average  

individual to mature (Heino et al. 2002a). These maturation probabilities are thus conditional 

on an individual having attained a certain combination of age and size. Based on the 

assumption that a significant component of maturation plasticity results from  
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environmentally-induced variation in growth and survival, and that these processes are the  

principle determinants of that age–size combination being reached, maturation reaction norms 

are considered to be largely unaffected by changes in average growth and mortality (Heino et 

al. 2002a; Dieckmann and Heino 2007; Heino and Dieckmann 2008). As it is not possible to  

separate first-time and repeat spawning Icelandic cod, retrospective PMRNs were estimated 

using the demographic method of Barot et al. (2004a) which relies on individual records of 

age (a), size (s, in this case length) and maturity status. PMRNs were estimated separately for  

males and females in each data group, and were determined for each age and cohort (c) in  

three stages: estimation of 1) the maturity ogive o(a,s,c), 2) growth rate as the annual  

increment in average length ∆s and 3) the cohort-specific probability to mature at a certain  

age and size:  

  

 (1) 
),- 1,-(1

),- 1,-(-),,(),,(
cssa

cssacsa
csap

∆−
∆=

ο
οο                        

  

Temporal trends were visualised using PMRN midpoints (Lp50s), calculated by linear  

interpolation between the lengths associated with maturation probabilities immediately above  

and below 50% (Barot et al. 2004b). Further details of these procedures, performed in R  

(version 2.6.0, R Foundation for Statistical Computing), are provided below. We focused our 

analyses on ages 4 – 8, thus also requiring cod of age 3 for estimation of growth increments  

and maturity. In the majority of cases, the final age- and cohort-specific sample sizes (Table 

1) fulfilled the minimum recommended sample size (100) for PMRN analysis (Barot et al. 

2004a). However, for some ages and cohorts with very low sample sizes it was not possible to 

compute the Lp50.  

The most important data requirement of the PMRN method is that proportions of  

mature fish within each age and length class are unbiased (Barot et al. 2004b). Differing 
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sampling intensity between the northern and southern regions of Iceland could lead to a  

violation of this requirement because a significant proportion of the immature and mature cod 

are spatially segregated during the spawning season (Astthorsson et al. 1994; Marteinsdóttir et 

al. 2000; Begg and Marteinsdóttir 2003). Consequently, we considered weighting the 

proportions of mature and immature fish in our data with regional abundance estimates. This 

procedure makes the resulting estimates of population parameters less biased. Survey indices,  

estimates of the relative abundances of fish in the north and south (from the annual spring  

groundfish survey, Anonymous 2007), were available for data group 3 (cohorts 1985 – 1999)  

only. Those data (GSD/SD) were thus weighted by the age-, region- and year-specific survey  

index, divided by the corresponding age-, region- and year-specific sample size. ANCOVAs  

(see ‘Data’) were used to test for differences between temporal trends in Lp50s estimated  

from un-weighted and weighted (data source in ANCOVA models) data.        

Maturity ogives  

The proportions of mature fish as a function of age and size, i.e., maturity ogives, were 

estimated using logistic regression. Candidate models (including the cohort effect) were first  

examined using stepwise forward and backward selection procedures in SPSS (version 15.0.0, 

SPSS Inc. USA), allowing for all possible first-order interactions, with log-likelihood tests  

used to compare competing models. The final model was chosen based on the proportion of  

correctly classified observations and Nagelkerke’s R2 (coefficient of determination for the  

logistic regression):  

  

(2) logit[o] ~ age + size + factor(cohort) + age × factor(cohort) + size × factor(cohort)   

  

where size refers to length in cm. Age was entered as a continuous variable since the age-

specific sample sizes were sometimes too low to allow full factorial estimation of the effects.  
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The predictive power of the chosen model was similar to that in which age was factorial, but  

AIC (Akaike information criterion) was lower. The age × length interaction was omitted since  

its inclusion caused ‘swapping’ in the reaction norm, i.e., in some samples the probability to 

mature was higher at smaller sizes, likely an artefact of low sample sizes (Barot et al. 2004a).  

Growth 

Age- and cohort-specific growth increments were estimated by 1) predicting average length at  

age a in year y using the model:   

  

(3) size ~ age + factor(year) + age × factor(year)   

  

and then 2) calculating the difference between estimated lengths at age a in year y and at age  

a-1 in y-1. A linear effect of age was chosen because of insufficient data in some samples for  

full factorial estimation of the effects, and for consistency with the ogive estimation.  

Confidence intervals  

Since obtaining direct estimates of the error associated with the reaction norm midpoints is 

beyond realistic options (Barot et al. 2004a), the PMRN estimation procedure was repeated 

1000 times by year stratified bootstrapping of the original data. Confidence intervals (CI)  

were estimated as the 2.5 and 97.5 percentiles of the 1000 bootstrapped Lp50 estimates for 

each age and cohort. Low sample sizes in the re-sampled data, particularly for those ages  

where few individuals mature, can result in wide CI for the Lp50s or even make it impossible  

to compute the PMRN for those bootstrap samples (Barot et al. 2004a). If Lp50s were not  

successfully calculated in ≥ 90% of the 1000 bootstrap samples, that age/cohort was removed  

from further analyses.  

   

Analysis of trend and sex differences  
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To test for an age-specific trend in Lp50s between cohorts 1964 and 1999, the reaction norm 

midpoints were regressed against cohort (as a continuous variable) and weighted by the 

inverse of the bootstrap variance (Grift et al. 2003).   

To determine whether males and females have different PMRNs we used a  

randomization test (Barot et al. 2004b). Observed sex values were redistributed randomly 

across the data set and age- and cohort-specific Lp50s were estimated from these new data,  

for each sex separately, using the method described above. These Lp50s were modelled as a 

function of age, cohort and sex (all considered as factors) and the parameter corresponding to  

the effect of sex was recorded. The randomization procedure was repeated 1000 times,  

separately for each data group. The same parameter was collected for the original, non- 

randomized, data sets. The effect of sex was then considered to be significant if this parameter 

estimate fell within or beyond the upper 5% (one-tailed test: H1 being females have higher  

PMRNs than males) tail of the distribution of the 1000 coefficients obtained from the  

randomization procedure.   

Potential explanatory variables of Lp50 trends  

In principle, fishing in northern Icelandic waters where immature cod are located in greatest  

abundance (Astthorsson et al. 1994) could result in their selective removal, particularly during 

the spawning season (Thórarinsson and Jóhannesson 1997; Begg and Marteinsdóttir 2003),  

and thus lead to a sampling bias towards mature cod (at each size and age class) in research 

data. Fishing might then cause false trends in the estimated Lp50s, simply as an artefact of  

sampling, particularly if this bias increased through time. To address this, we investigated  

potential correlations between fishing mortality (F, year-1) and age- and sex-specific PMRN  

midpoints using linear regressions weighted by the inverse of the bootstrap variance. F was  

available as both 1) average annual mortality of ages 5 – 10 (F(5-10), Fig. 1a) and 2) age- and  

cohort-specific estimates (Anonymous 2007).   
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Factors such as condition and temperature could also directly affect maturation  

decisions and thereby explain changes in PMRNs (Kraak 2007; Marshall and McAdam 2007; 

Thorpe 2007). Average condition, represented by the hepatosomatic (HSI, %) and relative  

body condition (Kr) indices, was calculated from GSD separately for immature and mature  

Icelandic cod aged 4 – 8 years in the spring of 1993 – 2007, using the method described in  

Pardoe et al. (2008). Because of the potential error associated with assignment of maturity 

status in the autumn, immature and mature cod were combined before estimating these indices 

from MRI autumn (October) groundfish survey data for the period 1995 – 2007.   

Temperature (ºC) time series’ collected by MRI on the main spawning grounds in the  

southwest (Selvogsbanki) and off the central north coast (Siglunes) were used to 1) 

qualitatively assess if Lp50 trends reflected those observed in temperature and 2)  

quantitatively examine correlations between Lp50s and average temperature. For the former, 

annual temperature measurements made at 50 – 150 m in February/March were deemed most  

representative of the long-term conditions in Icelandic waters (H. Valdimarsson, MRI,  

Skúlagata 4, 121 Reykjavik, Iceland, personal communication, 2008). For the latter,  

measurements from the 3rd quarter, when temperature might be expected to directly influence  

the maturation decision of cod which will spawn in the following spring, were available for  

the majority of years between 1968 – 2007 (north, 50 – 150 m) and 1971 – 2007 (southwest, 0  

– 200 m). Correlations were investigated according to Kraak (2007) with the exception that  

the positive trends in temperature (north: P = 0.0039, southwest: P = 0.001) were removed  

prior to the analyses. This was necessary since temporal covariation between trends in Lp50s  

and temperature would otherwise confound these analyses. Linear regression (weighted by the  

inverse of the bootstrap variance) was used to test for an effect of detrended temperature  

measured one (tyear-1), two (tyear-2) and three (tyear-3) years prior to the assessment of maturity  

status (tyear) on the Lp50 trends.   
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Growth trends  

Trends in average length were investigated using a GLM which included 1) the main effect of  

age, 2) first-order interactions between age and cohort; cohort and sex; cohort and maturity; 

cohort and region (south or north); cohort and data group (SD or GSD/SD); age and region;  

age and maturity; age and data group; age and sex; maturity and region; maturity and data 

group, and 3) second order interactions between cohort, age and maturity; cohort, age and  

data group. All variables were factorial with the exception of cohort. The model was based  

primarily on those effects and interactions considered to be biologically meaningful, although  

the final model also had the lowest AIC out of all those examined.    

Effect of earlier maturation on growth  

Due to the allocation of limited energy to reproduction, maturation usually leads to slower 

growth (Roff 1983; Lester et al. 2004; Heino et al. 2008). In order to investigate the  

relationship between the observed lengths-at-age and maturation schedules, we simulated  

cohorts of 100 000 individuals which matured according to the results of our PMRN analyses  

and grew according to the Lester et al. (2004) fixed investment model. The model was  

parameterised for Icelandic cod by first estimating the average gonadosomatic index (GSI, 

11.0% and 7.5% for males and females respectively) from GSD combined for all ages (4 – 8  

years), for the period 1994 – 2007, and then converting this to an energetic GSI (average GSI  

× 1.73, yielding 19.0% and 13.0% for males and females respectively; Lester et al. 2004).  

Juvenile growth rates matching the GSIs and observed lengths-at-age were then found using  

the least squares method (11.5 cm·year-1 and 11.6 cm·year-1 for males and females  

respectively). The lengths-at-age used in the fitting were averages of the whole time period  

(cohorts 1964 – 1999), estimated from SD/GSD. In addition, a value of 30%, representing a 

‘high’ energetic GSI and corresponding to juvenile growth increments of 11.7 cm·year-1 and  

11.9 cm·year-1 for males and females respectively, was used to estimate the upper limits of the  
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predicted change in growth. Sex-specific maturation probabilities at age (4 – 8 years) and at a  

fixed length (average lengths-at-age described above) were derived from the PMRN analysis 250 

of GSD/SD. On completion of the simulation, the average lengths-at-age of all individuals  

(regardless of maturity status) were calculated, and linear regressions were used to estimate  

the average age-specific change between cohorts 1964 and 1999. These predicted changes  

were compared to those resulting from linear regression, weighted by the cohort and age- 

specific sample sizes, of the average lengths-at-age estimated for the PMRN analyses (eqn. 3).  

There was no mortality in the simulation.  

Results  

Length-at-age  

Short-term fluctuations in average length (estimated using eqn. 3) were generally similar  

across all ages and sexes (Fig. 3). For those cohorts where both GSD/SD and CD were 

available, average length-at-age from CD, in comparison to GSD/SD, tended to be higher for 261 

the youngest ages but smaller for the oldest ages (Fig. 3). A number of trends in average 

length were revealed (see Methods ‘Growth trends’ section, Fig. 4): all of the modelled 

interactions were significant (along with the main effect of age) (P < 0.001). Notably though,  

average length of Icelandic cod had decreased during the study period (Fig. 4).   

Probabilistic maturation reaction norms  

We first evaluated the influence of data source (GSD or GSD/SD, un-weighted or weighted 

GSD/SD) on the PMRN estimates in the most recent time period (cohorts 1985 – 1999).  For  

the majority of age/sex combinations, temporal trends in Lp50s estimated from GSD only and  

GSD/SD did not differ (ANCOVA, P = 0.11 – 0.91). The only exceptions were age 4 and 5  

males, for which there were significant differences in the intercepts (P = 0.031 and P = 0.027  

respectively) and slopes (P = 0.033 and P = 0.027 respectively) of the regression lines.  
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However after Bonferroni correction these too would have been non-significant (P > 0.05). It  

was therefore deemed appropriate to combine GSD and SD in this time period.   

Comparison of PMRNs based on un-weighted and weighted (see Methods) GSD/SD  

showed that weighting produced visually higher PMRN midpoints for most age and cohort  

combinations (Fig. 5). However, ANCOVAs did not reveal any differences between the  

intercepts or slopes of the weighted and un-weighted Lp50 time series (P = 0.10 – 0.84). It 

was therefore concluded that using un-weighted data in all subsequent analyses was  

acceptable.   

The negative slopes of the maturation reaction norms (Fig. 6) signify that the length at 

which Icelandic cod attains a certain probability to mature decreases with age. A significant 

downward trend in the reaction norm slopes (i.e. they had become more negative) was found 

for female (P = 0.032), but not male (P = 0.7) cod, indicating that the effect of age on female  

maturation probabilities had increased over time. PMRNs based on research survey data (SD,  

GSD/SD) showed that recent cohorts of Icelandic cod attained maturity at a smaller size than  

those of the early 1970s (Fig. 6).  

These downward trends are evident in the time series’ of cohort-specific Lp50s,  

despite short-term variation in the midpoints at all ages, and wide CI for many age and cohort  

combinations (Fig. 7). Short-term fluctuations in the Lp50s could not be attributed to any  

biological anomalies in the data, but most likely reflect ‘noise’ in the data (see Discussion).  

Significant estimates for the decrease in Lp50 between cohorts 1964 and 1999 varied between  

6.2 cm and 14.3 cm for females and 6.4 cm and 12.9 cm for males (Table 2). For age 7 female  

and male Icelandic cod, this corresponds to a decrease of 0.23 and 0.27 cm·year-1, or 0.33 and 

0.44 %·year-1, respectively (Table 2).  There was no significant trend in the Lp50s of age 4 

and 5 females (Table 2). Lp50 estimates from CD tended to be higher than those from SD and  
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GSD/SD, and the majority were either associated with large CI (Figs. 6&7) or excluded (and  

therefore not shown) due to data limitations.   

Randomization tests revealed differences in the Lp50s of male and female cod: non-

randomized parameter estimates for the effect of sex fell within and beyond (SD, cohorts 

1964 – 1976 and GSD/SD, cohorts 1985 – 1999 respectively) the upper 5% tail of the  

distribution of the 1000 coefficients obtained from the randomization procedure, indicating  

that females attain 50% maturation probability at a significantly larger size than males.           

Potential variables explaining trends in PMRNs 

Spatial heterogeneity in fishing could lead to a sampling bias towards mature Icelandic cod in  

research data, and therefore underestimation of PMRN midpoints. Furthermore, a positive  

trend in this bias through time could explain the decrease in Lp50s. However, no relationships 

between Lp50s and fishing mortality F of cod aged 4 – 6 years were observed, and for cod  

aged 7 and 8 years relationships were in fact weakly positive. For age 8 females, the 

correlation between Lp50 and F(5-10) was significant (P = 0.045, R2 = 0.178), as was that  

with age- and cohort-specific F (P = 0.019, R2 = 0.24).   

As changes in PMRNs could also result from the direct influence of environmental  

factors on the maturation process, we examined trends in average condition of Icelandic cod  

and temperature of Icelandic waters. An overall decline in condition, measured as HSI and Kr,  

of immature and mature cod was present between 1993 and 2007 (Fig. 8). This trend is the  

opposite of that which would explain the facilitated maturation illustrated by the PMRNs.  

Temperature southwest and north of Iceland varied notably between years. However, prior to  

1995 there was an overall decrease in average temperature, a trend that has since reversed  

markedly (Fig. 8). No significant relationships between de-trended temperature (southwest 

and north of Iceland, in the 3rd quarter of tyear-1, tyear-2 or tyear-3) and PMRN mid-points (tyear)  

were found (P > 0.05).  
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Effect of earlier maturation on growth  

Simulations to investigate the influence of earlier maturation, as predicted by the PMRN  

analyses, on average length-at-age revealed that this would have greatest effect in the oldest  

age groups. For those ages, the observed shift in maturation probability was predicted to result 

in a decrease in average length of as much as 3.8 cm when the average GSI was converted to  

an energetic GSI; at ages 7 and 8 the predicted changes in average length were comparable to  

those observed (Table 3). When a ‘high’ energetic GSI value of 30% was assumed, average  

length declined even more (Table 3). However, even for the high GSI, earlier maturation 

could not fully account for the observed declines at the youngest ages.  

Discussion 

In this study, we found that the size at 50% maturation probability of female and male  

Icelandic cod had decreased between the 1964 and 1999 cohorts. The corresponding  

maturation probabilities at a fixed length (the average length of cod at a certain age) had  

increased: for example for cod of age 6 years, the probability to mature had risen from 16% to  

44% and from 29% to 53% for females of 71 cm and males of 70 cm respectively. The 

observed PMRN trends could not be explained by those in water temperature or fish 

condition, which have been proposed as alternative explanations for previously published 

PMRN trends (e.g. Kraak 2007; Marshall and McAdam 2007; Wright 2007). We also found  

no support for the hypothesised effects of potential sampling biases related to spatial variation 

in fishing and maturity. Furthermore, we demonstrated that the observed declines in average 

length of mature age groups could result from the long-term shifts towards earlier maturation.   

Although we have made significant progress in our quest to establish how and why  

maturation in the Icelandic cod stock has changed, the relative contributions of residual  

phenotypic plasticity and alterations to the genetic composition of the stock cannot be 

determined from this correlative study alone (Marshall and Browman 2007; Dieckmann and  
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Heino 2007; Browman et al. 2008). Because age and size are only proxies of the physiological  

factors that trigger maturation (Marshall and Browman 2007), PMRNs cannot provide a  

description of maturation tendency that is immune to environmental influences. Indeed, there  

is ample evidence that age- and size-based PMRNs are influenced by the environment (e.g.  

Heino et al. 2002b; Law 2007), including residual growth-related effects (Morita and 

Fukuwaka 2006). While we have failed to identify environmental influences that could  

explain the PMRN trends in our study, absence of evidence is no proof of absence.  

Nevertheless, it seems unlikely that the large changes identified in this study, and in several  

other studies, could be fully ascribed to some important but yet unidentified change in the 

environment. At the same time, life-history theory predicts that increased mortality, 

particularly the size-selective mortality associated with commercial fishing, will bring about  

evolutionary change in maturation schedules (Stearns 1992; Law 2000). Accordingly, this has  

been proposed as the most parsimonious explanation for comparable PMRN trends in a  

number of exploited stocks (Jørgensen et al. 2007; Heino and Dieckmann 2008). Clearly no 

definitive conclusions can be made in the absence of genetic evidence, and until those genes 

that code for maturation are identified, and genotypic and phenotypic correlations are 

understood, that task remains elusive (Kuparinen and Merilä 2008; Naish and Hard 2008). In  

order to assess whether fishing could have caused our observed trends, the predicted rates of  

change should be quantitatively compared to estimates of selection differentials generated by  

fishing (Law 2007; Swain et al. 2007). This is beyond the scope of the current study, although  

eco-genetic models developed for cod-like populations suggest that fishing is capable of  

driving fast evolution in PMRNs (Dunlop et al. in press; Enberg et al. in press).   

 Alongside maturation schedules, there are potential implications of intensive size-

selective harvesting for individual growth rates in exploited fish stocks (Ricker 1981; Sinclair  

et al. 2002; Swain et al. 2007). Because variation in growth is partially environmentally  
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driven and partially genetic (Imsland and Jonassen 2001; Conover and Munch 2002; Kolstad 

et al. 2006), fishing could invoke both phenotypically plastic and evolutionary responses in  

this trait. PMRN trends paralleled by a trend in growth might therefore implicate a genetic 

shift in one or both of these traits if they are linked by sufficiently strong genetic covariance  

(Dieckmann and Heino 2007). In a recent study of southern Gulf of St. Lawrence cod, Swain 

et al. (2007) found evidence of a genetic response, in the form of slower growth, to selection 

on body size. However, reduced growth rates could also reflect confounded changes in the  

maturation schedule or reproductive investment because of energetic trade-offs (Heino et al. 

2008). In an attempt to address this issue, we ran a simple simulation to investigate what  

effect the observed changes in maturation might have on average length of Icelandic cod, 

according to the Lester et al. (2004) growth model. This exercise suggested that the declines  

in growth detected in the present study could be explained by the energetic costs of earlier 

maturation in the older, mostly mature, age groups only. For the younger juvenile ages, 

without reproductive costs, earlier maturation could not account for the observed decreases.  

Whether the observed declines in growth of Icelandic cod, particularly in the younger age 

groups, are purely phenotypic or also have a genetic component, therefore remains  

unresolved. However, our method provides a tool which could be combined with that of  

Swain et al. (2007) in order to investigate the propensity for direct selection on growth rates in  

this, and other, fish stocks.  

 To facilitate comparison to other cod studies utilising PMRNs, we quantified the  

magnitude and rate of the reduction in the PMRN midpoints of Icelandic cod over 36 cohorts, 

following the methodology of Jørgensen et al. (2007, see their Table S2). We estimated the  

total change to be 8 – 20% (average: 13%) and the rate as 2.2 – 6.3 x 103 darwins (average 3.8  

x 103 darwins). This suggests that the magnitude and rate of change in the maturation 

schedule of Icelandic cod is comparable to that observed in other stocks of Atlantic cod (e.g.  
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Heino et al. 2002b; Barot et al. 2004b; Olsen et al. 2005). However, it is interesting to note  

that for the latest maturing stocks, Icelandic cod and Northeast Arctic cod (Trippel 1995;  

Anonymous 2007), this change has been relatively small; the magnitude of change over 67  

cohorts was calculated to be 12%, at a rate of 2.1 x 103 darwins for Northeast Arctic cod  

(Jørgensen et al. 2007).   

 Female Icelandic cod were found to reach 50% maturation probability at a larger size 

than males, indicating that sex differences in age- and length-based maturity ogives 

(Marteinsdóttir and Begg 2002) are not the result of variation in growth or survival alone.  

Similar sex differences have been found in other cod stocks such as those off Labrador and  

Newfoundland (Olsen et al. 2005). In contrast, variation between the sexes of Georges Bank 

and Gulf of Maine cod only existed at ages 2 and 3 respectively, and in these cases females 

had a marginally higher tendency to mature at a given age and size than males (Barot et al. 

2004b).   

The estimation of PMRNs through the demographic method (Barot et al. 2004a), as it 

is usually applied, relies on two simplifying assumptions: that both growth and survival are, 

within an age group, independent of maturity status and size. The method has been shown to  

be robust to moderate violations of these assumptions however (Barot et al. 2004a). 

Unfortunately, we are unaware of any available empirical evidence which would either attest  

or refute similar growth rates of immature and mature Icelandic cod, or size-independent 

growth, within an age class. However, it is possible that differences exist between the survival  

of immature and mature Icelandic cod within an age class. Fishing in northern Icelandic 

waters, particularly during the spawning season, could result in the selective removal of  

immature cod (Thórarinsson and Jóhannesson 1997), and therefore lead to a sampling bias  

towards mature cod in research data. In the present study, Lp50s estimated from commercial  

data (CD) would suggest that the fishery is immature biased. However, the CD originate from 
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bottom trawling during a select few months and so are unlikely to be representative of the  

Icelandic cod fishery as a whole. This is even more apparent when the contribution of gears 

such as gillnets and longlines, which target the mature component of the stock, to mean  

fishing mortality and the total catch is considered (Begg and Marteinsdóttir 2003; Anonymous 

2007). The positive correlations observed between fishing mortality and Lp50s of the older 

ages is in agreement with this last statement, and thereby supports the hypothesis that the 

observed decreasing trends were not simply artefacts of sampling.  

Our analyses were based on three data groups, corresponding to three overlapping  

time periods. Potential sources of error or bias existed in the CD as reliability of the maturity  

classifications is somewhat debatable (S. Schopka, MRI, Skúlagata 4, 121 Reykjavik, Iceland, 

personal communication, 2008), and these data were collected in a limited area of the 

Icelandic shelf, with larger meshes. However, by selecting data from one gear type and a 

restricted period of the year, we were able to minimise variation between the data groups.  

Despite this, we excluded CD Lp50 estimates from our trend analyses. Consequently, we  

were able to compare PMRN and growth analyses of research and commercial data, while 

avoiding any misleading influence of CD on our results. In doing so, we found quite notable 

differences in our estimates from the two data types (compare the grey and black lines/points 

in Figures 3, 6 and 7). Inconsistency between groundfish survey data (GSD) and other  

research survey data (SD), particularly those SD collected early in the time series, was also a  

possibility because of discrepancies in sampling design and intensity. Despite this,  

preliminary exploration of the data did not reveal anything obviously problematic for the 

analyses, and we were careful that our data selection only minimised this variation, and not 

that which might be biologically meaningful. We therefore do not consider this to have 

significantly influenced our findings. Furthermore, the observed short-term variability in the 

Lp50s does not alter our conclusion of an overall downward trend in the PMRNs of Icelandic 
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cod. Instead such fluctuations, which are often observed (see e.g. Olsen et al. 2005; Mollet et  

al. 2007; Vainikka et al. 2009), are to be expected given that there will be plastic effects that 

have not been accounted for, for example originating from the short-term variation in  

temperature and condition. Some residual noise is also unavoidable, due to small sample 

sizes, measurement errors and variable sampling (Heino and Dieckmann 2008).   

Temperature in Icelandic waters has increased since 1995, however no corresponding 

changes in reaction norm midpoints were observed. Furthermore, no correlative relationships  

between Lp50s and temperature were detected. It is therefore unlikely that temperature has  

made a consistent contribution to the changes in maturation. As a cautionary note, although  

these temperature time series’ are thought to represent average conditions in Icelandic waters,  

individual cod may still experience different ambient temperatures at the time relevant for the  

maturation decision.  

There was a general decline in condition of Icelandic cod in the period since 1993. 

Since good condition is assumed to promote earlier maturation (Marshall and McAdam 2007),  

the opposite trend would have led us to suspect some influence of condition on the observed  

shift towards earlier maturation. As weight data are lacking prior to 1993, no conclusive  

statements can be made regarding the role of condition in the observed maturation trends. 

However, it is unlikely that changes in condition are responsible for the overall downward  

trend in maturation, although it is feasible that short-term variation in condition (Pardoe et al.  

2008) may have contributed to the observed variability in Lp50s. In four previous PMRN 

studies, of plaice (Pleuronectes platessa, Grift et al. 2007), sole (Solea solea, Mollet et al. 

2007), and Atlantic cod in the Baltic (Vainikka et al. 2009) and off Newfoundland (Baulier et  

al. 2006), inclusion of condition as a third explanatory variable of maturation probability did  

not alter the conclusion of a decreasing temporal trend in the PMRN midpoints. For cod, the 

major storage location of lipids is the liver (Eliassen and Vahl 1982a; Holdway and Beamish 
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1984) and so HSI is an obvious candidate for three-dimensional PMRN studies of this species. 

However, mature cod have been found to have higher liver condition than immature cod 

(Eliassen and Vahl 1982b; Vitale et al. 2006; Pardoe et al. 2008), suggesting that better  

condition may be the consequence, rather than cause, of maturation (Rijnsdorp 1990). If this 

is the case, it could mean the false interpretation of a positive effect of condition on 

maturation probability (Grift et al. 2007), and should therefore be considered in future  

experimental investigations.  

The influence of social factors on maturation cannot be determined from this study as  

accounting for such effects is practically impossible with the available data. If maturation of 

subordinate juvenile cod is suppressed by the presence of dominant adults, as has been found 

in other, admittedly more sedentary, fish species (e.g. Fricke and Fricke 1977; Borowsky 

1978; Jones and Thompson 1980), truncation in the age structure of Icelandic cod 

(Marteinsdóttir and Thórarinsson 1998) could account for some of the observed PMRN  

changes. Furthermore, changes in the density and size structure of the stock are directly 

related to fishing mortality, i.e., selection, and it therefore becomes impossible to disentangle 

the direct within-cohort effects of fishing (viability selection) from potentially evolutionary  

factors (truly inherited changes).   

Phenotypic (Marteinsdóttir and Begg 2002; Jónsdóttir et al. 2006; Pardoe et al. 2008), 

and more recently genetic (Pampoulie et al. 2006) and behavioural (Pálsson and  

Thorsteinsson 2003; Pampoulie et al. 2008; V. Thorsteinsson, MRI, Skúlagata 4, 121  

Reykjavik, Iceland, unpublished data), structure within the Icelandic cod stock has been  

detected. Most prominent is the variation in life-history traits between the northern and 

southern regions, with cod in the former maturing at older ages and larger sizes than their  

conspecifics in the south (Jónsson 1954; Marteinsdóttir and Begg 2002). In addition, the stock  

structure is temporally variable. A significant proportion of the mature stock migrates  
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between the main feeding and spawning grounds in the northwest and southwest, respectively, 

and is contrasted by seemingly resident behaviour of other stock components (Jónsson 1954; 

Pampoulie et al. 2006). Consequently, variation in sampling intensity between the regions, or 

even on a finer spatial scale, could introduce biases to analyses such as those performed in the 

present study. In order to address this, we weighted data from the most recent time period 

with available regional estimates of stock abundance, in such a way that observations from the  

more poorly sampled (and immature-dominated) northern region had greater weight. As long 

as it is reasonable to assume that this bias has remained approximately constant, this  

weighting would not appear essential for the evaluation of a temporal trend in the trait of  

interest, illustrated by comparison of the weighted and un-weighted Lp50 time series. Instead,  

this method’s value is apparent for the estimation of the position and form of the actual  

PMRN.    

 Icelandic cod is not an exception: spatial population structure has been detected in a 

large number of commercial fish stocks (e.g. Hutchinson et al. 2001; Knutsen et al. 2003; 

Ruzzante et al. 2006). The accurate detection of persistent changes in life-history traits within  

such stocks would therefore appear dependent on our capacity to disaggregate such trends 

between relevant stock components, or even behavioural types (Biro and Post 2008). But why  

do we consider this important? Firstly, there is the possibility that divergent life-history  

responses to environmental change or selective pressures will emerge within these 

components, and these may go undetected, or lead to erroneous conclusions, when studies are  

performed at an inappropriate spatial resolution. Secondly, replacement of one depleted 

population by another (Hutchinson et al. 2003) could feasibly be interpreted as a phenotypic 

or evolutionary shift in the life-history tactic of the stock, or dominant sub-component. It is 

therefore important to bear in mind that if any of the aforementioned cases apply to the 

Icelandic cod stock, or indeed if there are population components that are genetically distinct  
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in their maturation properties, our stock-level PMRN analyses, along with the weighting  

method, would be inappropriate and perhaps misleading. Unfortunately, phenotypic and in  

particular behavioural and genetic complexity in the Icelandic cod stock is still poorly  

understood. Consequently, in light of what is known and the data that are available, we have  

to assume that our analyses are appropriate. We therefore encourage future investigation of 

the potential implications of stock complexity, both genetic and phenotypic, for the detection  

of directional responses to natural or anthropogenic environmental change.   

  We have detected declining trends in age and size at maturation of Icelandic cod 

which could not be explained by demographic effects, variation in phenotypic growth, 

characteristics of the environment represented by ambient temperature and average condition, 

or sampling biases. Regardless of its origin, earlier maturation may have negative  

implications for the biological and commercial productivity of the stock (e.g. Heino 1998; 

Stokes and Law 2000; Stenseth and Rouyer 2008). Furthermore, reversal of any genetic 

change is predicted to be slow, or even unachievable, because of relatively weak natural  

selection pressures (Law 2000; Enberg et al. in press). On a more positive note, the ability to 

adapt to a changing environment, in this case through the age and size at which Atlantic cod 

mature, could be regarded in a positive light if we consider it as a buffer against stock 

collapse. Nevertheless, our findings call for a comprehensive monitoring scheme of spatial 

and temporal variation in maturation and other life-history traits, along with a retrospective  

and prospective investigation of the propensity for fisheries-induced evolution within the 

stock, based on past and future exploitation patterns and management strategies.  
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Table 1. Data summary. For each time period and data type (survey data SD, commercial data 

CD and groundfish survey data GSD): age-specific total sample size and mean per cohort, 

mean proportion mature for females (F) and males (M). Percentage of data for females (% F) 

is also shown.  

Data type, Years Age     

 3 4 5 6 7 8 Total % F 

SD, 1967−1984 (Fig. 2a)       

Total  2743 5032 4667 4229 3515 2178 22364 48 

Mean per cohort1 115 298 271 267 220 112   

Mean % mature (F)1 0 2 12 35 61 82 29  

Mean % mature (M)1 1 4 20 54 78 90 40  

CD, 1977−1995 (Fig. 2b)       

Total  183 2446 4698 3971 2615 924 14837 50 

Mean per cohort2 8 116 270 241 165 48   

Mean % mature (F)2 5 10 15 30 53 66 27  

Mean % mature (M)2 5 9 23 41 64 73 35  

GSD/SD, 1989−2007 (Fig. 2c)       

Total  11373 14650 13899 11413 7375 3375 62085 50 

Mean per cohort3 574 762 694 579 374 180   

Mean % mature (F)3 0 5 22 52 75 86 37  

Mean % mature (M)3 1 13 42 66 81 90 50   

For cohorts: 11964−1976  21974−1987 31985−1999 
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Table 2. Estimated change (weighted linear regression of estimates from research survey 

data) in PMRN midpoints (Lp50s) between 1964 and 1999 cohorts.    

    Estimated change in Lp50 

Age Sex cm %·year-1 P 

4 F     6.1a   0.20 0.2091 

4 M -12.9 -0.36 0.0101 

5 F  -2.3 -0.07 0.0535 

5 M -10.5 -0.33 0.0052 

6 F  -6.2 -0.22 0.0192 

6 M  -6.4 -0.23 0.0233 

7 F  -8.4 -0.33 0.0027 

7 M  -9.6 -0.44 0.0157 

8 F -14.3 -0.63 0.0002 

8 M -10.7 -0.52 0.0222 

          ano estimate for 1964 cohort 
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Table 3. Changes in average length between 1964 and 1999 cohorts observed in PMRN 

analyses (see Fig. 3), compared to those predicted by a simulation exercise examining the 

effects of earlier maturation on growth. Predictions made using 1) an average energetic GSI  

and 2) a ‘high’ energetic GSI (see Methods ‘Effect of earlier maturation on growth’ section). 

  Predicted change (cm) 

Age Sex 

Observed 

change (cm) average GSI high GSI 

4 F -5.2 -0.1 -0.2 

4 M -5.3 -0.4 -0.6 

5 F -4.3 -0.6 -1.4 

5 M -5.1 -1.7 -2.6 

6 F -3.7 -1.8 -3.8 

6 M -4.4 -3.3 -4.9 

7 F -2.1 -2.4 -5.1 

7 M -2.8 -3.8 -5.5 

8 F -3.5 -2.3 -4.6 

8 M -4.0 -3.5 -5.0 
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Fig. 1. Average fishing mortality (ages 5 – 10) and biomass (solid line: total for ages 4+, 

dashed line: spawning stock) of the Icelandic cod stock since 1955 (Anonymous 2007).  

Fig. 2.  Sampling locations for three time periods and data types (see Table 1). Bar plots show  

percentage (%) of samples from southern (open hatched) and northern (filled black) region. 

The 500 m depth contour is marked (thin line). 

Fig. 3. Average length (cm) of (a) female and (b) male Icelandic cod aged 4 – 8 years (bottom  

to top line), estimated for PMRN analyses of survey (black lines) and commercial (grey lines)  

data. Predictions made from a GLM model (equation 3).   

Fig. 4. Estimated trends in growth from GLM (see Methods ‘Growth trends’ section) of  

survey data, shown for immature cod (top panels) of ages (a) 4 and (b) 5 and mature cod 

(bottom panels) of ages (c) 6 and (d) 7. For each group, average length is predicted for males 

(solid lines) and females (dashed lined) in the northern (lower thin lines) and southern (upper 

thick lines) region. 

Fig. 5. Probabilistic maturation reaction norm midpoints (Lp50s) for female and male 

Icelandic cod (ages 4 – 8) of cohorts 1985 – 1999 (plotted by year). Lp50s were estimated  

using un-weighted (▲) and weighted (●) research survey data (see Materials and Methods).  

Bootstrapped 95% confidence intervals are shown for weighted data (grey vertical bars) only; 

see Figure 7for confidence intervals of un-weighted data. Note different scales on y-axes (set 

to minimum possible scale).   

Fig. 6. Probabilistic maturation reaction norms of (a) female and (b) male Icelandic cod,  

estimated as the average Lp50 for: cohorts 1970 – 1973 (crosses on black dotted line), cohorts  

1980 – 1983 (triangles on grey solid line), and cohorts 1996 – 1999 (squares on black dashed 

line). Grey lines show estimates from commercial data; considered less representative than 

survey data (black lines). Lines without points show the average length-at-age for the  

corresponding cohorts. 
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Fig. 7. Probabilistic maturation reaction norm midpoints (Lp50s) of (a) – (e) female and (f) –  

(j) male Icelandic cod, aged 4 – 8 years, with bootstrapped 95% confidence intervals (vertical  

bars) for survey (▲) and commercial (●) data. Significant linear regressions of Lp50s  

estimated from research survey data (GSD, SD), weighted by the inverse bootstrap variances,  

are shown (---).  

Fig. 8. Average condition: (a) Hepatosomatic index (HSI, %) and (b) Relative body condition  

index (Kr), for immature (filled circles) and mature cod (filled squares) in the spring (March),  

and all cod in the autumn (open triangles, October). Temperature (ºC) in (c) northern  

(Siglunes section) and (d) south-western (Selvogsbanki) Icelandic waters, measurements  

from: 50 – 150 m in May/June (thin lines, north/southwest), 50 – 150 m in July – September 

(bold line, north), 0 – 200 m in July-September (bold line, southwest).  
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Fig. 2. 
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Fig. 3. 
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Fig. 4.  
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Fig. 5.  
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Fig. 6. 
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Fig. 7.  
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Fig. 8.  
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