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Abstract

Cell fate in multicellular organism is regulated by the diffusible factor from surrounding cells in

concentration-dependent manner. TGF-β is a large protein family of the diffusible proteins secreted

from a localized source. The signal of TGF-β is transduced by Smad family transcription factor.

Though it is well known that the stoichiometry of Smads in the transcriptional complex regulates

the specificity of target genes of TGF-β signal, little is known what the stoichiometry of Smads in

the transcriptional complex is determined in TGF-β signal transduction in concentration dependent

manner. To investigate the dynamics of Smad complex formation, we construct a two-compartment

model for Smad complex formation in TGF-β signal transduction. A simplified one-way oligomer-

ization model, which ignores dissociation and well appropriate the full model under high expression

levels of R- and Co-Smad, is constructed to analytically investigate the effect of the oligomerization

of Smad. Our one-way model reveals that not only shuttling of the Smad from the cytoplasm to

the nucleus but also the preferential accumulation of the heteromeric complex in oligomerization

can contribute to the predominant production of the heteromeric complex of Smad including both

R- and Co-Smad. It is also shown that oligomerization of Smad can contribute to the specificity

of signal transduction. In endothelial cells, both Smad-1/5/8 and -2/3 pathways are activated by

TGF-β. The difference of the activity between the two pathways is amplified by trimerization but

not by dimerization, suggesting possible importance of trimerization in maintaining the specificity

of signal transduction.

Keywords: Smad,signal transduction,transcriptional complex formation, stoichiometry of oligomers
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1 Introduction

In multicellular organisms, the behavior of an individual cell is regulated by various signals from the

neighboring cells. The members of TGF-β super family are well known diffusible signal molecules

or morphogens that regulate cell proliferation and differentiation (Podos & Ferguson, 1999; Gurdon

& Bourillot, 2001; Green, 2002). In the developmental process, secreted from a localized source,

diffusible TGF-βs determine the fate of the cell receiving them in a concentration-dependent man-

ner. The signal of TGF-β is transduced by Smad family member transcription factors (Massague

et al., 2005; Feng & Derynck, 2005; ten Dijke & Hill, 2004; Shi & Massague, 2003; Hill, 2001; ten

Dijke et al., 2000; Miyazono, 2000; Kawabata et al., 1999). The TGF-β signal transduction by

Smads is the key mechanism interpreting the information of TGF-β ligand. Three critical process,

phosphorylation of R-Smad, Smad complex formation, and nuclear import of Smad complex, are

thought to control the TGF-β signal transduction.

When cells receive the TGF-β signal, the Smad protein is phosphorylated by the active

receptor complex of TGF-β, which initiates the intracellular signal transduction pathway. Phos-

phorylated Smads form the transcriptional complex with other components and move to the nucleus

(Yeo et al., 1999). The transcriptional complex then positively or negatively regulates the expres-

sion of specific target genes determining cell fates. In the cytoplasm, there are several kinds of

Smad proteins differing in their functions. The transcriptional activity of the target gene is spec-

ified by the combination of Smads and cofactors included in the transcriptional complex. In vitro

experiments revealed that the stoichiometry of Smad complex, the numbers of R- and Co-Smad

molecules consisting of a complex, differs widely in transcriptional complexes resulting in their dif-

ferential binding to specific cis-acting elements of gene. For example, two Smad2, one Smad4 and

a cofactor FAST-1 consist of a transcriptional complex in activin responsive element of Xenopus

Mix.2 gene promoter. Whereas, one Smad3, one Smad4 and unknown transcription factor consist

of a transcriptional complex in SBR of c-jun promoter (Inman & Hill, 2002). Because the transcrip-
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tional complex composed of Smads and cofactors plays a critical role in determining the expression

of the target genes and cell fates, it is important to understand what combination of Smads and

cofactors is formed in the transcriptional complex under given initial concentrations of Smad mem-

ber monomers and the concentration of signal molecules (e.g. ligand concentration). Though the

role of heteromeric complex of Smad (Smad2/2/4 and Smad3/4) in the transcriptional complex is

clarified, that of the homomeric complex (Smad2/2 or Smad2/2/2) is elusive. As many kinds of

Smad oligomers including homo-dimer, homo-trimer, hetero-dimer and hetero-trimer can be pro-

duced in a signal transduction pathway, it is important to understand the conversion efficiency of

the heteromeric Smad complex which have the role in target gene regulation.

The kinetic models of Smad signal transduction has been proposed by Schmierer et al. who

show the importance of the nucleo-cytoplasmic shuttling of Smad for the TGF-β signal transduc-

tion(Schmierer et al., 2008). We construct a mathematical model following their model, which is

extended to include not only the dimerization but also trimerization of Smad. This model repre-

sent the whole process of Smad complex formation in response to TGF-β signal, such as receptor

activation by TGF-β ligand, degradation of active receptor, phosphorylation and dephosphoryla-

tion of R-Smad, association and dissociation of Smads, and shuttling of Smad from cytoplasm to

nucleus. We investigate the dynamics of TGF-β signal transduction via Smad pathway by using

this two-compartment model.

We next consider a single-compartment model eliminating the cytoplasm-nucleus structure

of cell to clarify the effect of the compartmentalization of cell for Smad complex formation by com-

paring two-compartment model with single-compartment model. Lastly we consider a simplified

one-way oligomerization model that focuses only on oligomerization of Smad (i.e. ignores dissoci-

ation). We verified that one-way model well approximate the full two-compartment model under

high expression level of R- and Co-Smads monomers. We then analytically study the effect of the

oligomerization of Smad for TGF-β signal transduction compared the result with the numerical

results of two-compartment model.
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2 A model for Smad complex formation

We construct a mathematical model of TGF-β signal pathway following Schmierer’s model (Schmierer

et al., 2008). We then extend their model by including the trimerization in addition to the dimeriza-

tion. The chemical reaction equation is summarized in Table1 and a set of the dynamic equations

of the full kinetics model are shown in Appendix A. The process of the intracellular signal trans-

duction is schematically shown in Fig 1 and briefly explained below. Cell is partitioned into two

compartments, the cytoplasm and the nucleus. R-Smad denoted by R0 is expressed as an inactive

monomer in the absence of the signal. Smad monomers are transported between cytoplasm and

nucleus with the import rate constant Kin and the export rate constant Kout independently of the

signal. The localization of Smads are indicated by superscript in Appendix A. Signal transduction

starts on the membrane when a TGF-β ligand bind a specific receptor with the association rate

constant α to form an active receptor complex. Active receptor is degraded with the degradation

rate constant δr. Receptor mediated Smad, R-Smad, is phosphorylated by this activated TGF-β

receptor with the reaction rate constant γ. Phosphorylated R-Smad then begin to oligomerize.

Smad proteins have two conserved domains, MH-1 and -2, in their amino acid sequences,

and between them there is a linker region. An inactive Smad has a bending shape at the linker.

Once the C-terminal SxS motif of R-Smad is phosphorylated, R-Smad is stretched and can bind

another member of Smad family called common-mediator Smad (Co-Smad) (Moustakas & Heldin,

2002; Wu et al., 2001; Kawabata et al., 1998; ten Dijke & Hill, 2004). Co-Smad lacks the SxS

motif in its C-terminus and is not subject to phosphorylation. Phosphorylated R-Smad monomer

and Co-Smad monomer are designated by R1 and C1, respectively. Phosphorylated R-Smad can

associate both with itself and common Smad with the association rate constant µi. Because Smad

proteins interact with each other through the well conserved amino acid sequence, we assume

that association constants, µ1, µ2, µ3, µ4 and µ5 are the same. Four kinds of Smad complexes,

homomeric and heteromeric dimer or trimer dissociate with the dissociation rate constant λi per
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binding site. The reaction equation of the Smad oligomerization is briefly summarized as a chemical

reaction equation as follows:

R1 + R1

µ1−−−→←−−−
λ1

R2

R1 + R2

µ2−−−→←−−−−−
2×λ2

R3

R1 + C1

µ3−−−→←−−−
λ3

C2

R1 + C2

µ4−−−→←−−−
λ4

C3

R2 + C1

µ5−−−→←−−−
λ5

C3 (1)

The abbreviations are shown in Table1. The localization of these oligomers is indicated by super-

script in Appendix A. Oligomerization of Smad proceeds both in the cytoplasm and the nucleus.

Produced Smad oligomers irreversibly move into nucleus with the import rate constant K∗in. Phos-

phorylated R-Smad monomer are dephosphorylated in the nucleus by phosphatase with the reaction

rate constant δp. It is assumed that phosphorylated R-Smad is constantly dephosphorylated by

the phosphatase. The parameters and the initial concentrations of TGF-β, TGF-β receptor, R-

Smad, and Co-Smad used in this model are cited from Schemierer’s results. Those are summarized

in Table 3. The initial concentrations of TGF-β, inactive TGF-β receptor, and inactive R-Smad

monomer and Co-Smad monomer are positive value. Other components are absent in cell before

stimuli. The total concentration of R- and Co-Smad monomer are conserved during the signal

transduction.

Time course of the Smad phosphorylation and oligomerization both in cytoplasm and nu-

cleus obtained from two-compartment model is shown in Fig 2A to D. The initial concentration

of R-Smad in cytoplasm is higher than that of Co-Smad because the export rate of R-Smad to

nucleus is higher than that of Co-Smad. Inactive R-Smad is accumulated in cytoplasm before stim-

uli. The concentration R0 of inactive R-Smad is decreased by the phosphorylation when the signal

transduction starts at time 0. The concentration C1 of Co-Smad monomer is also decreased by its

binding to phosphorylated R-Smad. The concentrations of Smad dimers and trimers in the cyto-

plasm are then increased as the phosphorylation of R-Smad proceeds. The concentrations of Smad
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oligomers in cytoplasm are much lower than those in nucleus because of the irreversible import of

Smad oligomers to nucleus. In this case, hetero-dimer is predominantly accumulated in nucleus in

response to the signal. In the following we ask which Smad species is predominantly produced in

response to the TGF-β signal.

3 Effect of the initial ratio of R-Smad to Co-Smad

We here ask which Smad oligomer is predominantly accumulated in the nucleus in response to the

signal. To change the initial ratio of R-Smad to Co-Smad, we varied the initial concentration of

R-Smad while that of Co-Smad being kept constant. The peak concentration of the Smad oligomers

in the nucleus, the maximum value of Rnuc
2 , Rnuc

3 , Cnuc
2 and Cnuc

3 during the signal transduction,

are plotted as a function of the ratio of the R-Smad to the Co-Smad in Fig 3. The result indicates

that hetero-dimer is predominantly accumulated in the nucleus in response to the signal for small

to intermediate R-Smad/Co-Smad ratio of the initial monomer concentrations. The result that the

heteromeric complex Smad is predominantly produced agree with Schmierer’s result even though

the trimerization is added in our model. For a large R-Smad/Co-Smad ratio around from 4 to

5, hetero-trimer is predominantly produced. For even larger R-Smad/C-Smad ratio, homomeric

dimer and trimer of Smad are predominantly produced. According to Schmiere’s data, the ratio of

endogenous R-Smad to Co-Smad is smaller than 1. The hetero-dimer is predominantly produced

in this R/C ratio.

4 Effect of the compartmentalization of cell for oligomerization of
Smad

To clarify the effect of the compartmentalization of cell for Smad complex formation in response

to TGF-β signal, a model eliminating the compartment from full kinetics model is constructed.

In this single-compartment model, Smads in the nucleus and the cytoplasm are not distinguished.
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The oligomerization process is as same as that in the two-compartment model described in (1).

d[TGFβ]
dt

= −α1[TGFβ][TβR]

d[TβR]
dt

= −α1[TGFβ][TβR]

d[TβR∗]
dt

= α1[TGFβ][TβR]− δr[TβR∗]

dR0

dt
= −γR0[TβR∗] + δpR1

dR1

dt
= γR0[TβR∗]

−R1 (2µ1R1 + µ2R2 + µ3C1 + µ4C2) + 2λ1R2 + 2× λ2R3 + λ3C2 + λ4C4

−δpR1

dR2

dt
= µ1(R1)2 −R2 (µ2R1 + µ5C1) + 2× λ2R3 + λ5C3

dR3

dt
= µ2R1R2 − 2× λ2R3

dC1

dt
= −C1 (µ3R1 + µ5R2) + λ3C2 + λ5C3

dC2

dt
= µ3R1C1 − µ4R1C2 + λ4C3

dC3

dt
= µ4R1C2 + µ5R2C1 − (λ4 + λ5)C3 (2)

Initial conditions and parameters are the same in two-compartment model (7) except for

the import and export rate of Smads. The peak concentration of Smad oligomers, R2, R3, C2 and

C3 in the single-compartment model, are plotted in Fig 4 as a function of R/C ratio as well as

in the two-compartment model. The result obtained from the single-compartment model shows

quite similar result (Compare the result in Fig 3 with that in Fig 4). The heteromeric complex

of Smad is predominantly produced for small and intermediate R-Smad/Co-Smad ratio of the

initial monomer even in the absence of the compartmentalization of cell. This result indicate that

not only compartmentalization of cell but also oligomerization itself contributes to predominant

production of the heteromeric complex of Smad. The switching R/C ratio from hetero-trimer to

homo-trimer obtained from single-compartment model slightly shifts to left as compared with the

result obtained from the two-compartment model shown in Fig 3. R/C ratio maximizing the peak

concentration of hetero-trimer is around from 3 to 4 in single compartment model (from 5 to 6 in
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two-compartment model). This result indicate that the compartmentalization of cell enhances the

predominant production of heteromeric complex of Smad in response to the signal.

The import and the export between cytoplasm and nucleus of Smad affect the predominant

oligomer species of Smad for a given initial R/C ratio. As shown in Fig 5-A, the peak concentrations

of all Smad species monotonically deceases depending on the import rate of R-Smad to nucleus.

This is because the concentration of R-Smad is decreased by the accumulation of R-Smad in nucleus

because R-Smad is only phosphorylated in cytoplasm by the activated TGF-β receptor. This result

indicate that the accumulation of R-Smad in nucleus inhibit the Smad complex formation. On

the other hands, the peak concentrations of heteromeric complex of Smad but not homomeric

complex of Smad is increased depending on the import rate of Co-Smad as shown in Fig 5-B. The

accumulation of Co-Smad does not inhibit the complex formation. The accumulation of Co-Smad

specifically enhances the production of the heteromeric complex of Smad.

It is revealed both from the two-compartment and single-compartment model that which

Smad oligomer is predominantly produced is primarily determined by the ratio of the initial con-

centration of R-Smad monomer to that of Co-Smad monomer. Unless the R/C ratio becomes

sufficiently large, heteromeric complex of Smad is predominantly produced. This predominancy of

heteromeric complex of Smad is caused not only by the compartmentalization of cell but also by

preferential accumulation of a specific Smad polymer in oligomerization process.

We also numerically examined the relative peak concentration in two-compartment model

over a wide range of parameters, and found that the relative peak concentrations of Smad oligomers

are hardly affected by changing the degradation rate of TGF-β receptor, δr, or the dephosphoryla-

tion rate of R-Smad, δp (data not shown). The degradation of active receptor and dephosphorylation

of R-Smad contribute to the restoration of Smad to normal condition in a longer time span than

oligomerization process (Fig 2, but does not contribute preferential accumulation of heteromeric or

homomeric complex of Smad. To summarize the results mentioned above, compartmentalization
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of cell, degradation of active receptor and dephosphorylation of R-Smad does not critically affect

which Smad species is predominantly produced for given initial R/C ratio.

5 One-way Oligomerization Model

5.1 Effect of the expression level of Smad complex

Un like degradation of TGF-β receptor, dephosphorylation of R-Smad, and compartmentalization

of cell, we found, by numerically examining the two-compartment model, that the dissociation

of Smad complex and the expression level of Smads do affect the peak concentrations and peak

positions of Smad oligomers among the processes of the TGF-β signal transduction. We examine

the relative peak concentrations of Smad oligomers in two-compartment model when the expression

of Smads is increased. As shown in Fig 6-A, the relative peak concentrations of both homo- and

hetero-trimer increase, but the peak concentrations of both homo- and hetero-dimer decrease when

the expression of R- and Co-Smad are large as compared with Fig 3. This result indicates that

the conversion efficiency of Smad complex formation from monomer to trimer is improved by a

larger expression level of R- and Co-Smad. The effect of the dissociation of Smad complex becomes

relatively weak as compared with the association of R- and Co-Smad as the expression of Smad

increases. This is because the association process has the speed proportional to the product of

the concentrations of R- and Co-Smad, while the dissociation has the speed proportional to the

concentration of single Smad species. Thus increasing the concentration of Smad promotes the

association and demotes the dissociation. We confirm that the improvement of the conversion

efficiency of Smad complex formation is achieved in a quite similar way when the dissociation

Smad complex is eliminated from the single-compartment model. As shown in Fig 6-B, the peak

concentrations of both homo- and hetero-trimer increase when the dissociation rate constant λ

is 0 in single-compartment model as well as shown in Fig 6-A. Homomeric complex of Smad is

predominantly produced after R/C ratio becomes sufficiently large if dissociation is neglected or

the expression level is high. The thresholds R/C ratio at which the predominant Smad species
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switches from homo-dimer and hetero-trimer and from hetero-trimer to homo-trimer are similar,

but the transitions are much clearer when λ = 0 or when expression level is large. According to

these results, we construct a simplified one-way oligomerization model to investigate the switching

mechanism of the preferential production of Smad complex species as a function of R/C ratio. This

model well approximate the process of Smad complex formation when the expression level of R-

and Co-Smad is sufficiently large.

5.2 One-way oligomerization model

Phosphorylated R-Smad monomer denoted by R1 can bind either R-Smad monomer (R1) or Co-

Smad monomer (C1) to form homo-dimer (R2) or hetero-dimer (C2). R-Smad homo-dimer can

bind either R- or Co-Smad monomer, while RC hetero-dimer can bind only R-Smad monomer.

Produced trimers (R3 and C3). The concentrations of phosphorylated R-Smad monomer, homo-

dimer, homo-trimer, hetero-dimer and hetero-trimer are designated by x1, x2, x3, y1, y2 and y3,

respectively. The time change for the concentrations of Smads are

dx1

dt
= −µx1(2x1 + x2 + y1 + y2)

dx2

dt
= µx2

1 − µx2(x1 + y1)− µx2

dx3

dt
= µx1x2

dy1

dt
= −µy1(x1 + x2)

dy2

dt
= µx1y1 − µy2x1

dy3

dt
= µx1y2 + µx2y1 (3)

Here we analyze a generalized model of homo-oligomer and hetero-oligomer in which the final

product is composed of n molecules. The homo-oligomer of i R-Smad monomers can bind both

homo- and hetero-oligomer composed of j monomers, only when i+ j is less than n. Whereas, the

hetero-oligomer composed of a single Co-Smad monomer and j − 1 R-Smad monomers can bind a
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homo-oligomer with i R-Smad monomers (again i+ j ≤ n). The reaction equation is

Ri + Rj
µ−→ Ri+j

Ri + Cj
µ−→ Ci+j

We denote by xi the concentration of homo-oligomer composed of i molecules of R-Smad, and

by yi the concentration of hetero-oligomer composed of one Co-Smad molecule and i − 1 R-Smad

molecules. The final product of Smad complex is trimer (n = 3). The concentrations of the

homo-oligomer composed of i R-Smads and the hetero-oligomer composed of a Co-Smad and i− 1

R-Smads is designated by xi and yi, respectively. The time change of the concentrations of Smad

oligomers are

dx1

dt
= −µx1

n−1∑
i=2

((1 + δij)xi + yi)

dxi
dt

= µ

[i/2]∑
k=1

xkxi−k − µxi
n−i∑
j=1

((1 + δij)xj + yj), (i = 2, 3, · · · , n− 1),

dxn
dt

= µ

[n/2]∑
i=1

xixn−i

dy1

dt
= −µy1

n−1∑
i=1

xi

dyi
dt

= µ
i−1∑
k=1

xkyi−k − µyi
n−i∑
j=1

xj , (i = 2, 3, · · · , n− 1),

dyn
dt

= µ

n−1∑
i=1

xiyn−i (4)

Here, [n/2] denotes the largest integer which is less than or equal to n/2, and δij = 1 if i = j

and δij = 0 if i 6= j. The initial concentration of R- and Co-Smad monomer is designated by

x1(0) = x0, y1(0) = y0. Whereas, xi(0) = yi(0) = 0 for i = 2, 3, · · · , n. To simplify the analysis,

we non-dimensionalize the above equations by rescaling the concentration xi(t) and yi(t) relative

to the initial concentration of the total Smad monomers x0 + y0 as Xi(t) = xi(t)/(x0 + y0) and
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Yi(t) = yi(t)/(x0 + y0) and by rescaling time as τ = µ(x0 + y0)t. This yields

dX1

dτ
= −X1

n−1∑
i=1

((1 + δij)Xi + Yi)

dXi

dτ
=

[i/2]∑
k=1

XkXi−k −Xi

n−i∑
j=1

((1 + δij)Xj + Yj), (i = 2, 3, · · · , n− 1),

dXn

dτ
=

[n/2]∑
i=1

XiXn−i

dY1

dτ
= −Y1

n−1∑
i=1

Xi

dYi
dτ

=
i−1∑
k=1

XkYi−k − Yi
n−i∑
j=1

Xj , (i = 2, 3, · · · , n− 1),

Yn
dτ

=
n−1∑
i=1

XiYn−i (5)

The initial conditions are given by X1(0) = x0/(x0 + y0), Y1(0) = y0/(x0 + y0) = 1 − X1(0) and

Xi(0) = Yi(0) = 0 for i = 2, 3, · · · , n. This rescaled system (5) has only one parameter, the

initial ratio x(0)/y(0) of R-Smad to Co-Smad (R/C ratio), which determines the concentrations of

Smad homo-dimers, homo-trimers, hetero-dimer, hetero-trimers and so forth, produced in the cell

receiving TGF-β signal.

5.3 Equilibrium concentration of Smad complexes

When enough time has passed since the receipt of TGF-β signal in the cell, all reactions described

in (5) stop because all the phosphorylated R-Smad monomers are consumed to form either homo-

or hetero-oligomers of Smads. As shown in Fig 7, the equilibrium concentration is determined by

the initial ratio of phosphorylated R-Smad to that of Co-Smad. When the initial concentration of

phosphorylated R-Smad is smaller than that of Co-Smad, surplus Co-Smads remain as monomers

and the hetero-dimer is produced predominantly. This result is independent of number of molecules

included in the final product. Heteromeric dimer, trimer, and larger heteromeric complexes are

sequentially become predominant as the ratio of the initial concentration of phosphorylated R-

Smad to that of Co-Smad increases. When the ratio of initial concentration of R-Smad to that of
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Co-Smad, x0/y0, is around 2, the production of the hetero-trimer, RRC, is maximized. If the ratio

is further increased, homo-oligomer composed of n molecules of R-Smad becomes predominant in

the final product.

5.4 phosphorylation speed of R-Smad

We relax the condition that all R-Smad is phosphorylated when the signal transduction has started.

The phosphorylation of R-Smad is described

R-Smad
γ̂−→ phosphorylated R-Smad,

In active R-Smad is constantly phosphorylated. The concentration of active receptor complex is

constant. The concentration of inactive R-Smad is designated by x0. The time change of inactive

and phosphorylated R-Smad is then

dx0

dt
= −γ̂x0

dx1

dt
= γ̂x0 − µx1(2x1 + x2 + y1 + y2). (6)

The concentration x1 of phosphorylated R-Smads increases by γ̂x0 in a unit time interval (see

(3) derived later). By this modification, we can see how the process is changed when R-Smad

phosphorylation proceeds more slowly. The equilibrium concentration with gradual R-Smad phos-

phorylation is shown in Fig 7. The result obtained from one-way oligomerization model in Fig 7

is well correspond to that both from two-compartment model with large Smad expression and

from single-compartment model without dissociation in Fig 6-A and -B. The switching between the

production of hetero-dimer, hetero-trimer and homo-trimer as x0/y0 varies becomes much clearer

than in Fig 6-A and -B. The concentration of homo-dimer is almost 0 around the all region. The

switching mechanism of predominant products is show by (A6) to (A7c) when r < 2 and (A10b) to

(A12b) when r > 2 in Appendix. In addition, the equilibrium concentration of homo-dimer remain

small for all values of x0/y0. Slow phosphorylation of R-Smad makes the phosphorylated R-Smad

monomers supplied gradually, which converts homo-dimer to homo-trimer efficiently.
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6 Clear switching by using trimers rather than dimers

The result obtained from the basic oligomerization model analytically reveal that the oligomer-

ization itself plays important role in predominantly producing the heteromeric complex of Smad

that regulates the target gene expression in response to TGF-β signal. Next, we investigate what

difference between dimerization and trimerization. Especially, the function of oligomerization for

specificity of the signal transduction is focused. We apply our simplified model to explain the

switching mechanism for the expression of Smad1 and Smad2 in response to the relative concen-

trations of ALK-1 and ALK-5 signals reached to the endothelium cell. This result indicate that

trimerization affect distinguishing the signal under the mixed ligand.

ALK-1 and ALK-5 are known to be simultaneously expressed in endothelial cells as TGF-β

receptor(Goumans et al., 2003; Goumans et al., 2002). ALK-1 and -5 have conflicting effect for

each other. ALK-1 can phosphorylate Smad-1/5 as R-Smad and activate Smad-1/5 pathway that

introduce cell proliferation and migration. On the other hand, ALK-5 can phosphorylate Smad-

2/3 as R-Smad and activate Smad-2/3 pathway that repress cell proliferation and migration. The

balance between the activity of Smad-1/5 pathway and that of Smad-2/3 pathway determine the

cell fate of endothelium. It is reported that the amount of ALK-5 mRNA is higher than that of

ALK-1 in bovine aortic endothelium. Inversely ALK-1 is higher in bovine corneal endothelium.

The response of endothelium for TGF-β signal is different depending on the ratio of expression

level of ALK-5 to that of ALK-1.

We consider the effect of Smad complex formation on the degrees of activation of two alter-

native signal transduction pathways in endothelium. Our basic oligomerization model is extended

to include two R-Smads. Smad-1/5 (i.e., Smad-1 or Samd-5) and Smad-2/3 are designated by

R1 and R2, respectively. The rule of oligomerization is the same as the previous model. That is,

R-Smad can interact with both R-Smad and Co-Smad. Co-Smad can interact only with R-Smads.
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The reaction equation of dimerization is

Ri + Rj → RiRj , (i, j = 1, 2),

Ri + C → RiC, (i = 1, 2).

Three dimer composed of only R-Smads (R1R1, R1R2, R2R2) can interact with two R-Smads and

Co-Smads further to form trimer. While two hetero dimers (R1C, R2C) can interact with two

R-Smads. As a result, 7 kinds of trimers (R1R1R1, R1R1R2, R1R2R2, R2R2R2, R1R1C, R1R2C,

R2R2C) are produced by this complex formation. the chemical reaction equations for trimerization

are

RiRj + Rj → RiRjRk, (i, j, k = 1, 2),

RiRj + C → RiRjC, (i, j = 1, 2),

RiC + Rj → RiRjC, (i, j = 1, 2).

The trimer composed of two R1s and one C is final product of the signal transduction

introduced by ALK-1. While R2R2C is the final product of the signal transduction introduced by

ALK-5. To compare the equilibrium concentration of these two trimers, activity ratio of ALK-1 to

ALK-5 signal transduction are investigated.

The time change of each concentration are given by the law of mass action. The equilibrium

concentration is obtained as the concentrations after sufficiently long time has passed. It is assumed

that the initial concentration of R1 and R2 are proportional to the expression level of ALK-1 and

-5, respectively.

The ratio of the equilibrium concentration of R1R1C (the signal transducer of ALK-1) to

that of R2R2C (the signal transducer of ALK-5) is plotted against the ratio of the initial concen-

tration of R1 to that of R2 in Fig 8, in logarithmic scales in both axes. Dashed line show the same

results when the final products are hetero-dimers rather than hetero-trimers. Comparison of these

two curves shows that the switching between a hetero-trimer and another hetro-trimer by changing
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the initial R-Smads concentration is much sharper than than the switching between hetero-dimers.

7 Discussion

We construct a mathematical model of the TGF-β signal transduction following the Schmierer’s

model and extended it by including the trimerization of Smad. Even when trimerization is taken

into consideration, the Schmiere’s compartmentalized model explain the predominant production of

the heteromeric complex of Smad. We however found the qualitatively quite similar results by using

the single-compartment model for what Smad species is predominantly produced as a function of

the ratio of the initial concentration of R-Smad to that of Co-Smad. To understand what determines

the predominant Smad species, we compare the results of compartmentalized model with that of

single-compartment model (2) and the further simplified one-way oligomerization model (5). Tough

the conversion efficiency from Smad monomer to trimer increases in the one-way oligomerization

model (5), the relationship between predominant Smad species produced in response to the signal

and R/C ratio is qualitatively conserved. We investigate the equilibrium concentration of Smad

oligomers in one-way oligomerization model. The equilibrium concentrations of Smad oligomers are

determined by the ratio of R/C ratio. When R/C ratio is low, the hetero-dimer is predominantly

produced. The predominant produced heteromeric complex shifts from the hetro-dimer to hetero-

trimer as R/C ratio increases. It is reported that Smad homo-oligomer cannot be detected when

Smad4, which is Co-Smad, is expressed excessively (Kawabata et al., 1999), as is compatible with

our result. It is reported that the hetero-oligomer of Smad can contribute to regulate the target

gene expression in response to the TGF-β signal. On the other hand, the function of homomeric

complex of Smad is not clear yet. The predominant production of the heteromeric complex of Smad

that regulate the target gene expression is reasonable for the TGF-β signal transduction. Our

model reveals that not only the compartmentalization of cell but also preferential accumulation of

Smad in oligomerization process promotes the predominant production of the heteromeric complex

of Smad, especially when R/C ratio is small. Our one-way oligomerization model is very useful
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to analytically understand which oligomer is predominantly produced depending on R/C ratio.

Especially, the result obtained from two-compartment model well correspond to that from one-way

oligomerization model as the expression level of R- and Co-Smad increases.

Next we consider the phosphorylation speed of R-Smad. The speed of phosphorylation is

determined by the concentration of active TGF-β receptor complex, R, and association constant

between R-Smad and TGF-β receptor, β. The slow phosphorylation decrease the intermediate

homo- and hetero-dimer when the initial concentration of R-Smad is larger than that of Co-Smad.

Slow phosphorylation ensures a larger parsistence of active R-Smad monomer which can bind both

monomer and dimer. Though the hetero- and homo-trimer are increased by the slow phosphoryla-

tion, it takes more time to accumulate the final product. Within a finite time scale, an intermediate

phosphorylation speed of R-Smad is can maximize the concentration of homo- and hetero-trimer.

The conversion efficiency of the protein complex formation is discussed in (Nakabayashi & Sasaki,

2006) in the same context.

We investigate the effect of import rate of R- and Co-Smad, Krin and Kcin, for the Smad

oligomerization in response to the signal. Our two-compartment model reveals that the effect of

the import rate of R-Smad to nucleus is different from that of Co-Smad. The initial R/C ratio

maximizing the hetero-trimer in the nucleus increases as Krin increases as shown in Fig 5-A. Con-

versely, the R/C ratio maximizing the hetero-trimer in the nucleus decreases as Kcin increases

as shown in Fig 5-B. When R-Smad monomer is accumulated in the nucleus with a high import

rate of R-Smad, the accumulation of Smad oligomers including the R-Smad is enhanced, but the

total amount of phosphorylated R-Smad produced during the signal transduction decreases because

R-Smad is phosphorylated in the cytoplasm but not the nucleus. As a result, the production of

the Smad oligomers is suppressed as the import rate of R-Smad to nucleus increases. On the other

hand, the Co-Smad in the nucleus can associate with R-Smad as well as in the cytoplasm. The

accumulation of Co-Smad in the nucleus with high import rate does not influences the oligomer-

ization of Smad. The relatively higher import rate of Co-Smad than R-Smad is advantageous for
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the predominant production of heteromeric complex of Smad. Under this condition, it is necessary

to express more R-Smad to produce the homomeric complex of Smad.

Next, we also examine the advantage of trimerization over dimerization in switching gene

expression with two TGF-β receptor. We apply the one-way oligomerization model for the mixed

receptor complex in endothelial cells. ALK-1 and ALK-5 are simultaneously expressed in endothelial

cells as type I receptor (Goumans et al., 2002; Goumans et al., 2003). ALK-1 and -5 activate

Smad-1/5/8 and Smad-2/3, respectively. We expand the model to include two R-Smads. The

relative activity is evaluated by the ratio of equilibrium concentration of the trimer composed of

two Smad-1/5/8 molecules and one Smad-4 (R1R1C) to that of the trimer composed of two Smad-

2/3 molecules and one Smad-4 (R2R2C). When the final product is trimer, the ratio of the initial

concentration of Smad-1 to that of Smad-2 is significantly amplified in the final products. When

the final product is dimer the amplification of the ratio of initial concentration of Smad-1 to that of

Smad-2 becomes smaller than 1, indicating that the ratio in the final products is decelerated from

that of the initial monomer concentrations.

The specific interactions between TGF-β ligand and type II receptor, type II and type

I receptor, type I receptor and R-Smad are designed for the specificity of signal transduction.

ALK-1→Smad-1/5 signal transduction pathway has the conflicting effect against ALK-5 → Smad-

2/3 signal transduction pathway (Byfield & Roberts, 2004). Cells receive mixed signal, but must

determine their fate uniquely. Though either ALK-1 or ALK-5 is expressed in many cells, the

stoichiometry of ALKs in the ligand receptor complex determine the final activity of TGF-β signal

in endothelial cells. Our model reveals that the small difference between ALK-1 and -5 in the

active receptor complex is amplified by trimerization but not by dimerization of Smads. The

trimeric complex of Smad is useful for the clear switching of the mixed signal. This clear switching

is caused by the competition between Smad-1/3/8 and Smad-2/3 over the Co-Smad, but not explicit

inhibition each other.
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Appendix A

two-compartment model of TGF-β signal transduction is described as follows:

7.1 TGF-β receptor activation and degradation

d[TGFβ]
dt

= −α[TGFβ][TβR]

d[TβR]
dt

= −α[TGFβ][TβR]

d[TβR∗]
dt

= α[TGFβ][TβR]− δr[TβR∗]

7.2 Cytoplasmic compartment

dR
cyt
0

dt
= −γ[TβR∗]Rcyt

0 −KrinR
cyt
0 +KroutR

nuc
0

dR
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1

dt
= γ[TβR∗]Rcyt
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1 +KroutR
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3

dR
cyt
2
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= −Kr∗inR
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(
R
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1

)2
− λ1R
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2
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2

(
µ2R
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1 + µ5C
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1

)
+ 2λ2R

cyt
3 + λ5C

cyt
3

dR
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3

dt
= −Kr∗inR

cyt
3 + µ2R

cyt
1 R

cyt
2 − 2λ2R

cyt
3

dC
cyt
1

dt
= −KcinC

cyt
1 +KcoutC

nuc
1

−Ccyt
1

(
µ3R
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1 + µ5R
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2

)
+ λ3C
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2 + λ5C
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3

C
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2

dt
= −Kc∗inC

cyt
2 + µ3R

cyt
1 C

cyt
1 − λ3C

cyt
2

−µ4R
cyt
1 C

cyt
2 + λ4C

cyt
3

dC
cyt
3

dt
= −Kc∗inC

cyt
3 + µ4R

cyt
1 C

cyt
2 − λ4C

cyt
3 + µ5R

cyt
2 C

cyt
1 − λ5C

cyt
3
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7.3 Nuclear compartment

dRnuc
0

dt
= KrinR

cyt
0 −KroutR

nuc
0 + δpR

nuc
1

dRnuc
1

dt
= KrinR

cyt
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1 − δpRnuc

1
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1
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2µ1R

nuc
1 + µ2R
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nuc
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2

)
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2
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2
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1

)
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nuc
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nuc
3

dRnuc
3

dt
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nuc
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nuc
1 Rnuc

2 − 2λ2R
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3
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1

dt
= KcinC

cyt
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nuc
1

−Cnuc
1

(
µ3R
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nuc
2

)
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nuc
2 + λ5C

nuc
3

Cnuc
2

dt
= K∗inC
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nuc
1 Cnuc
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2

−µ4R
nuc
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3 (7)

Abbreviations, parameters and chemical reaction equations are summarized in Table1,2 and 3.
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Appendix B

Here we derive the analytical formula for the final concentration of homo-dimer, hetero-dimer,

homo-trimer and hetero-trimer as a function of the ratio of initial concentration of R-Smad to

Co-Smad monomers. Assuming µ = 0 in Eq(6) and Eq(3) in the text, rescaling time, and letting

λ = βR/α yields

dx0

dt
= −λx0 (A1a)

dx1

dt
= λx0 − x1(2x1 + x2 + y1 + y2) (A1b)

dx2

dt
= x2

1 − x2(x1 + y1) (A1c)

dx3

dt
= x1x2 (A1d)

dy1

dt
= −y1(x1 + x2) (A1e)

dy2

dt
= x1y1 − y2x1 (A1f)

dy3

dt
= x1y2 + x2y1 (A1g)

with the initial conditions: x0(0) = r/(1 + r), y1(0) = 1/(1 + r), xi(0) = 0 (i = 1, 2, 3), yi(0) = 0

(i = 2, 3).

Slow phosphorylation and r < 2

Assume that λ is small (slow phosphorylation), and that the initial Co-Smad monomers are more

abundant than R-Smad (inactive) monomers. The active R-Smad monomers are only gradually

supplied, which are then rapidly consumed by its binding to abundant Co-Smad monomers. We

therefore expect that R-Smad monomers and home-dimers remain small. Let us rescale the time
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in unit of the mean phosphorylation time as T = λt, and let x1 = λX1, x2 = λX2 to have

dx0

dT
= −x0 (A2a)

dX1

dT
=

1
λ

(x0 −X1(y1 + y2))−X1(2X1 +X2) (A2b)

dX2

dT
= X1(X1 −X2)− 1

λ
X2y1 (A2c)

dx3

dT
= λX1X2 (A2d)

dy1

dT
= −y1(X1 +X2) (A2e)

dy2

dT
= X1(y1 − y2) (A2f)

dy3

dT
= (X1y2 +X2y1) (A2g)

For λ→ 0 we see that x0 −X1(y1 + y2) ≈ 0 and X2 ≈ 0, x3 ≈ 0 to have the approximate system

dx0

dT
= −X1(y1 + y2) (A3a)

dy1

dT
= −y1X1 (A3b)

dy2

dT
= X1(y1 − y2) (A3c)

dy3

dT
= X1y2 (A3d)

Introducing

τ =
∫ T

0
X1(s)ds,

we have a linear system

dx0

dτ
= −(y1 + y2) (A4a)

dy1

dτ
= −y1 (A4b)

dy2

dτ
= y1 − y2 (A4c)

dy3

dτ
= y2 (A4d)

with x0(0) = r/(1 + r) and y1(0) = 1/(1 + r).
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Solving this linear equations

x0(τ) =
1

1 + r

{
(τ + 2)e−τ − (2− r)

}
(A5a)

y1(τ) =
1

1 + r
e−τ (A5b)

y2(τ) =
1

1 + r
τe−τ (A5c)

y3(τ) =
1

1 + r

{
1− (1 + τ)e−τ

}
(A5d)

At the equilibrium x0 must vanish and hence

(2− r) = (τ∞ + 2)e−τ∞ . (A6)

With τ∞ defined above (which is well defined if r < 2), the equilibrium concentrations are expressed

as

ŷ1 =
2− r
1 + r

· 1
2 + τ∞

, (A7a)

ŷ2 =
2− r
1 + r

· τ∞
2 + τ∞

, (r < 2), (A7b)

ŷ3 =
1

1 + r
· r + (r − 1)τ∞

2 + τ∞
. (A7c)

In this approximation, all R-Smads are converted either to RC or RRC. Indeed, using (A6) and

(A7) we can show that

ŷ2 + 2ŷ3 =
r

1 + r
= x0(0). (A8)

Slow phosphorylation and r > 2

Now we assume that initially R-Smads are more than twice as abundant as Co-Smads, keeping the

assumption of small λ.

Co-Smad monomers are gradually but consistently consumed because active R-Smad monomers

are consistently produced until all the Co-Smad monomers are used up. With the same reason all
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the heterodimers (RC) are converted to heterotrimers. Thus the conservation of Co-Smads

y1 + y2 + y3 =
1

1 + r
(A9)

applied at equilibrium then yields

ŷ1 = ŷ2 = 0, (A10a)

ŷ3 =
1

1 + r
. (r > 2) (A10b)

Slow supply of active R-Smad monomers also guarantees that nearly all the monomers are

converted to trimers (Nakabayashi and Sasaki 2006). Hence at equilibrium x̂0 = x̂1 = 0 and x̂2 ≈ 0.

The conservation of R-Smads

x0 + x1 + 2x2 + 3x3 + y2 + 2y3 =
r

1 + r
(A11)

applied at equilibrium then yields

x̂0 = x̂1 = x̂2 = 0, (A12a)

x̂3 =
r − 2

3(1 + r)
. (r > 2) (A12b)

To summarize, the approximate equilibrium concentration of Smad complexes in the limit
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of slow phosphorylation (λ→ 0) are given as a function of r = x0/y0 as x̂0 = x̂1 = 0 and

x̂2 = [RR] = 0, (A13)

x̂3 = [RRR] =


0, (r < 2),

r − 2
3(1 + r)

, (r > 2),
(A14)

ŷ1 = [C] =


2− r
1 + r

· 1
2 + τ∞

, (r < 2),

0, (r > 2),
(A15)

ŷ2 = [RC] =


2− r
1 + r

· τ∞
2 + τ∞

, (r < 2),

0, (r > 2),
(A16)

ŷ3 = [RRC] =


1

1 + r

r + (r − 1)τ∞
2 + τ∞

, (r < 2),

1
1 + r

, (r > 2).
(A17)

Here τ∞ is defined as the unique positive root of (A6) which exists for r < 2.
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actual name name in the model abbreviation stoichiometry one-way model

Smad-1 -2 -3 -5 -8 inactive R-Smad R0 x0

phosphorylated R-Smad R1 R x1

homo-dimer R2 RR x2

homo-trimer R3 RRR x3

Smad-4 Co-Smad C1 C y1

hetero-dimer C2 RC y2

hetero-trimer C3 RRC y3

Table 1: The stoichiometry of various Smad complexes
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1 TGFβ +R
α−→ R∗ receptor activation

2 R∗ +R
cyt
0

γ−→ R1 phosphorylation

3 R
cyt
0

Krin−−−−−→←−−−−−−−
Krout

Rnuc
0 shuttling

4 R
cyt
1

Krin−−−−−→←−−−−−−−
Krout

Rnuc
1 shuttling

5 C
cyt
1

Krin−−−−−→←−−−−−−−
Krout

Cnuc
1 shuttling

6 R
cyt
1 +R

cyt
1

µ1−−−→←−−−
λ1
R

cyt
2 complex formation in cytoplasm

7 R
cyt
1 +Rcyt2

µ2−−−→←−−−
λ2
R

cyt
3 complex formation in cytoplasm

8 R
cyt
1 + Ccyt1

µ3−−−→←−−−
λ3
C

cyt
2 complex formation in cytoplasm

9 R
cyt
1 + C

cyt
2

µ4−−−→←−−−
λ4
C

cyt
3 complex formation in cytoplasm

10 R
cyt
2 + C

cyt
1

µ5−−−→←−−−
λ5
C

cyt
3 complex formation in cytoplasm

11 Rnuc
1 +Rnuc

1

µ1−−−→←−−−
λ1
Rnuc

2 complex formation in nucleus

12 Rnuc
1 +Rnuc

2

µ2−−−→←−−−
λ2
Rnuc

3 complex formation in nucleus

13 Rnuc
1 + Cnuc

1

µ3−−−→←−−−
λ3
Cnuc

2 complex formation in nucleus

14 Rnuc
1 + Cnuc

2

µ4−−−→←−−−
λ4
Cnuc

3 complex formation in nucleus

15 Rnuc
2 + Cnuc

1

µ5−−−→←−−−
λ5
Cnuc

3 complex formation in nucleus

16 R
cyt
2

Kr∗in−−−→ Rnuc
2 shuttling

17 R
cyt
3

Kr∗in−−−→ Rnuc
3 shuttling

18 C
cyt
2

Kc∗in−−−→ Cnuc
2 shuttling

19 C
cyt
3

Kc∗in−−−→ Cnuc
3 shuttling

20 Rnuc
1

δp−→ Rnuc
0 dephosphorylation

Table 2: chemical reaction equation
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abbreviations value units reactions

Krin 0.0026 s−1 import rate of R-Smad monomer

Krout 0.0056 s−1 export rate of R-Smad monomer

Kcin 0.0026 s−1 import rate of Co-Smad monomer

Kcout 0.0026 s−1 export rate of Co-Smad monomer

Kr∗in 5.7 × Krin s−1 import rate of homomeric complex of Smad

Kc∗in 5.7 × Kcin s−1 import rate of heteromeric complex of Smad

α 0.074 nM−1s−1 TGFβ-receptor association

γ 0.0004 nM−1 s−1 phosphorylation

δr 0.00005 s−1 active receptor degradation

δp 0.00657 s−1 dephosphorylation

µ1 µ2 µ3 µ4 µ5 0.0018 nM−1s−1 complex formation

λ1 λ2 λ3 λ4 λ5 0.016 s−1 complex dissociation

[TGF-β](0) 1.0 nM initial concentration of TGF-β

[TβR](0) 1.0 nM initial concentration of TGF-β receptor

R
cyt
0 (0) +Rnuc

0 (0) 89.1 nM total concentration of R-Smad

C
cyt
1 (0) + Cnuc

1 (0) 101.6 nM total concentration of Co-Smad

Table 3: parameter
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Figure 1: Schematic illustration of TGF-β signal transduction pathway. Type II TGF-β receptor
binds TGF-β ligand forming heteromeric complex with type I receptor. Type I receptor recruit
and phosphorylates receptor mediated Smad (R-Smad). Phosphorylated R-Smad can bind each
other or common mediator Smad (Co-Smad). Smad monomers are reversibly imported and ex-
ported from cytoplasm and nucleus. On the other hands, Smad complexes irreversibly move into
nucleus and regulate the transcriptional activity of the target genes. Phosphorylated R-Smad is
dephosphorylated only in nucleus.
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B. Smad oligomers in cytoplasm
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C. Smad monomers in nucleus
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D. Smad oligomers in nucleus
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Figure 2: Time course of the Smad signal transduction obtained from two-compartment model(7).
A: The concentrations of Smad monomers in cytoplasm are plotted. Smad is phosphorylated
when the signal transduction started at time 0. After sufficiently long time for the degradation
of the active receptor complex has passed, Rcyt

0 and C
cyt
1 are restored to the normal condition.

B: The concentration of Smad oligomers in cytoplasm are plotted. The concentrations of Smad
oligomers in cytoplasm are small because Smad oligomers is irreversibly transported to nucleus.
C: The concentrations of Smad monomers in nucleus are plotted. Contrary to cytoplasm, the
initial concentration of Co-Smad in nucleus is higher than that of R-Smad monomer in nucleus
because export rate of Co-Smad is smaller than that of R-Smad. Rnuc

1 is rapidly consumed by the
oligomerization and is dephosphorylated in nucleus. D: The concentrations of Smad oligomers in
nucleus are plotted. Hetero-dimer (RCnuc) is predominantly accumulated in nucleus in response
to the signal in this condition. The concentration of hetero-trimer (RRCnuc becomes higher than
that of homo-dimer (RRnuc) in nucleus. Homo-trimer is hardly accumulated in nucleus as well
as in the cytoplasm. Parameters: α = 0.074[nM−1s−1], γ = 0.0004[nM−1s−1], δr = 0.00005[s−1],
δp = 0.00657[s−1], µ1 = µ2 = µ3 = µ4 = µ5 = 0.0018[nM−1s−1], λ1 = λ2 = λ3 = λ4 = λ5 =
0.016[s−1], Krin = 0.0026[s−1], Krout = 0.0056[s−1], Kcin = 0.0026[s−1], Kcout = 0.0026[s−1].
Initial conditions: [TGF-β] =1.0[nM], [TβR]=1.0[nM], total R0 = 89.1[nM], total C1 = 101.6[nM].
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Figure 3: The relative peak concentrations of Smad oligomers to the initial Smad concentrations are
plotted as a function of the initial R/C ratio. The initial concentration of Co-Smad is fixed as 101.6
[nM] and the concentration of R-Smad is varied from 10.16 [nM] to 5000.16 [nM]. Smad hetero-
dimer (RC) are dominantly produced when R/C ratio is small or intermediate. As the R/C ratio
increases, both hetero-trimer and homo-trimer are accumulated and homo-dimer are accumulated
when R/C ratio is sufficiently large. The hetero-dimer is maximized around when R/C ratio is 2.
On the other hand, hetero-trimer is maximized around R/C ratio is 5.
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Figure 4: The relative peak concentrations obtained from single-compartment model (2). As well
as shown in Fig 3, the relative peak concentration is plotted as a function of R/C ratio. The graph
is slightly shifted to left as compare with Fig 4. The concentration of hetero-dimer is maximized
when R/C ratio is 1 and hetero-trimer is maximized when R/C ratio is from 3 to 4.
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Figure 5: A: The effect of the import rate of R-Smad. The peak concentrations of all Smad
oligomers monotonically decrease depending on the ratio of the import to the export rate constant
of R-Smad. The accumulation of R-Smad in nucleus inhibits the phosphorylation of R-Smad. B:
The effect of the import rate of Co-Smad. The peak concentration of heteromeric complex of Smad
is specifically increased by increasing the import rate of Co-Smad. The predominant production
of heteromeric complex of Smad is enhanced by the accumulation of Co-Smad to nucleus but not
R-Smad.
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Figure 6: A: The relative peak concentration of Smad oligomers in two-compartment model when
the expression level of R- and Co-Smad is large (100 times Co-Smad expression in Fig 4). The
peak concentration of hetero-trimer increases as compared with Fig 3. Though the conversion
efficiency is changed depending on the expression level of Smads, the relationship between R/C
ratio and the predominant Smad species is qualitatively conserved. Hetero-dimer is predominantly
produced when R/C ratio is small and intermediate. And then, hetero-trimer is maximized when
R/C ratio becomes 2. The threshold R/C ratio switching both from homo-dimer to hetero-trimer
and from hetero-trimer to homo-trimer becomes clear. The result obtained from two-compartment
model becomes close to Fig 7 as Smad expression increases. B: The relative peak concentration of
Smad oligomers in single-compartment model when λ = 0. As well as Fig 6-A, the relative peak
concentration of hetero-trimer increases. The conversion efficiency of Smad complex formation from
monomer to oligomers is improved by omitting the dissociation of Smad complex.
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Figure 7: Analytical result which Smad species is predominantly produced. This graph show the
case when R-Smad is slowly phosphorylated with small βR (βR = 0.001). Green solid, blue dashed
and red small dashed line show the concentration of hetero-dimer, hetero-trimer and homo-trimer,
respectively. Lines and dots indicate the analytical results obtained in Appendix and the numerical
results, respectively. The concentration of Homo-dimer are almost 0 around the all region. This
result well coincides with the results obtained from both two-compartment model with the large
Smads expression in Fig 6-A and from single-compartment model without dissociation in Fig 6-B.
The conversion efficiency from dimer to trimer is improved by the slow phosphorylation of R-Smad
in the following sense (Nakabayashi & Sasaki, 2006). The slow phosphorylation decreases the
final concentrations of homo- and hetero-dimer when the initial concentration of R-Smad is large,
because it prolongs the period during which phosphorylated R-Smad monomer can contribute to
form the homo- and the hetero-trimer.
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Figure 8: The ratio of the final product induced by the ALK-1 signal (R1R1C) to that induced
by the ALK-2 signal (R2R2C) as a function of the initial ratio of the two signals (solid line). For
comparison the corresponding quantity when the final product was dimer (R1C to R2C) rather
than trimer is plotted as dashed line. The slope becomes larger than 1 (small dotted line) when the
final product is trimer. In the right end of this graph, the initial 10 times ratio Smad-1/Smad-2
is enhanced about 50 times if the final product is trimer, but will be reduced to 5 times if it were
dimer. This result indicates that more accurate switching in response to ligands is realized in
ALK-1/ALK-2 signal transduction by the use of trimer rather than monomer or dimer.
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