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Abstract1

The analysis of large data sets concerning fires in various2

forested areas of the world has pointed out that burned areas3

can often be described by different power-law distributions for4

small, medium and large fires and that a scaling law for the time5

intervals separating successive fires is fulfilled. The attempts of6

deriving such statistical laws from purely theoretical arguments7

have not been fully successful so far, most likely because im-8

portant physical and/or biological factors controlling forest fires9

were not taken into account. By contrast, the two-layer spatially10

extended forest model we propose in this paper encapsulates the11

main characteristics of vegetational growth and fire ignition and12

propagation, and supports the empirically discovered statistical13

laws. Since the model is fully deterministic and spatially ho-14

mogeneous, the emergence of the power and scaling laws does15

not seem to necessarily require meteorological randomness and16

geophysical heterogeneity, although these factors certainly am-17

plify the chaoticity of the fires. Moreover, the analysis suggests18

that the existence of different power-laws for fires of various scale19

might be due to the two-layer structure of the forest which allows20

the formation of different kinds of fires, i.e. surface, crown, and21

mixed fires.22
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Empirical evidence of forest fires characteristics26

Forest fires have been observed for centuries all over the world, and huge27

data sets are now of public domain. They usually contain long series of28

fire events identified by location, time of occurrence, and burned area.29

Statistical analyses of these data sets have allowed various authors to30

identify, on a purely empirical basis, general characteristics of forest31

fires.32

Malamud et al. (1998) and Ricotta et al. (1999) were the first to33

perform statistics of the burned areas. They arrived to the same con-34

clusion, namely that burned areas are distributed as a power law, rep-35

resented by a straight line in log-log scale. This conclusion is actually36

surprising, because the only graph reported in Ricotta et al. (1999)37

clearly shows that the distributions of small, medium and large fires38

are well approximated by different power laws, and the same, though39

less pronounced, effect is detectable in the plots obtained by Malamud40

et al. (1998). Most likely, this slightly distorted interpretation of the41

results had two targets: find an agreement with the theoretical studies42

available at that time on self-organized critical forest-fire models (see43

next section), and support the idea that the knowledge of the occur-44

rence frequency of small and medium fires can be used to quantify the45

risk of large fires.46

[Figure 1 about here.]47

Subsequent studies (Ricotta et al. (2001); Song et al. (2001); Reed48

and McKelvey (2002) and, in particular, Ricotta (2003)) confirmed that49

the distributions of the burned areas are smooth but can sometimes be50

approximated by three or two different power laws, as shown in Fig. 1,51

where three examples taken from the literature are reported.52

A few years later, the first studies on the temporal distributions53

of the fire events are performed through various statistical techniques54

(Telesca et al. (2005); Lasaponara et al. (2005); Ricotta et al. (2006)).55
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The main result is the discovery of a high degree of time-clusterization56

even if the burned areas are not distributed as a power-law. This means57

that the occurrence of large events mimics the process of occurrence of58

smaller events, thus allowing one to model the scarce big fires on the59

basis of the abundant small fires. This is neatly pointed out in Corral60

et al. (2008) where the fire catalog for all Italy in the period 1998-61

2002 is used to estimate the probability density D(τ |s) of the time62

intervals τ separating two successive fires within the so-called class-63

s fires (i.e., fires with burned areas grater than or equal to s). The64

distributions estimated for each class (see the curves displayed in Fig.65

2(a) reproduced from Corral et al. (2008)) can somehow be fitted with66

a power-law, but the exponent of the power-law (i.e., the negative slope67

of the curve) decreases with the increase of the minimum burned area68

s characterizing the class. However, all these distributions practically69

collapse into a single function F , as shown in Fig. 2(b) (again extracted70

from Corral et al. (2008)), through the simple scale transformation71

τ → R(s)τ and D(τ |s) → D(τ |s)/R(s), where R(s) is the rate of fire72

occurrence in class s (defined as the mean number of fires per unit time73

with burned area greater than or equal to s). This interesting discovery,74

formally revealed by the relationship75

D(τ |s) = R(s)F (R(s)τ) (1)

allows one to conclude that forest fires fulfill a scaling law for the time in-76

tervals separating successive fires without necessarily displaying power-77

law distributions of the burned areas.78

[Figure 2 about here.]79

Theoretical investigations on forest fire characteristics80

The attempts of deriving fire characteristics from purely theoretical81

arguments have been performed through two different classes of models.82

The models of the first class, known as self-organized critical forest-fire83

(SOCFF) models, are probabilistic cellular automata defined over a84

square lattice with L2 sites. In the first version (Bak et al. (1990))85

each site is at each time step in one of three possible states: green86
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(i.e., not burning) tree; red (i.e., burning) tree; absence of vegetation.87

The transition rules are very simple: (i) green trees become red if they88

are close to red trees and remain green otherwise; (ii) red trees die89

thus leaving the site empty; (iii) each empty site has a probability p of90

becoming occupied by a green tree. Bak et al. (1990) state that their91

model is a self-organized critical model capable of showing how the solar92

energy absorbed continuously at low rate by vegetation can be randomly93

dissipated through rare and disruptive events (the fires). However, the94

agreement with real forests is, even qualitatively, rather poor because95

the model generated fires are always present (in the form of travelling96

fronts burning pieces of the boundaries of vegetational clusters).97

The model proposed by Bak et al. (1990) is immediately criticized98

by Drossel and Schwabl (1992) who point out some of its critical aspects99

and introduce a second parameter (f), called ”lightning parameter” by100

means of which they modify rule (i) saying that green trees not close to101

red ones have a probability f to become red. This variation introduces102

a random exogenous mechanism of fire ignition and is essential for cre-103

ating clusters of fires with areas distributed as power-laws. A number104

of variants of the SOCFF model are immediately proposed by various105

authors (see Clar et al. (1996) for a review). In particular, Drossel and106

Schwabl (1993) introduce a third parameter, called ”tree immunity” in107

order to modify, once more, rule (i) by saying that green trees have a108

certain probability of remaining such when they are close to red trees.109

Later (Song et al. (2001)) this variant is shown to give rise to distribu-110

tions of burned areas that can be approximated with two power-laws,111

one for small-medium fires and one for large fires. A similar result is112

obtained by Schenk et al. (2000) by stressing the finite-size effects in113

SOCFF models.114

In the second class of models, here called two-layer models, the115

forest is described by two sets of ordinary differential equations, one116

associated with the lower layer composed of bryophytes, herbs, shrubs117

or any mix of these plants and the other associated with the upper layer118

composed of plants and trees of various species. The growth of the two119

layers in the absence of fire is described in the standard continuous time120
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form121

L̇ = rLL

(

1 −
L

KL

)

− αLU

U̇ = rUU

(

1 −
U

KU

) (2)

where r and K indicate growth rate and carrying capacity and αLU122

is the surplus of mortality in the lower layer due to light interception123

caused by tree canopy. Thus, in the absence of fire, trees grow logisti-124

cally toward the carrying capacity KU , while plants of the lower layer125

tend toward (1 − αKU/rL)KL. The validity and limitations of eq. (2)126

are discussed in Casagrandi and Rinaldi (1999), where realistic values of127

the five vegetational parameters (rL, rU , KL, KU , α) are also suggested.128

As for the fire, there are two options. The first (Casagrandi and129

Rinaldi (1999)) is to add two extra-variables representing the burning130

(red) biomasses in the two layers and describe the propagation of the131

fire to the green biomasses L and U through suitable fire attack rates.132

This gives a model with four ordinary differential equations which is,133

however, a so-called slow-fast model because the green biomasses grow134

very slowly (typically over years), while the red ones become suddenly135

very high when the fire starts and then practically drop to zero after a136

very short time (typically a few days or weeks).137

The second option (Maggi and Rinaldi (2006)) is to push the slow-138

fast nature of the system to the extreme, by considering fires as devas-139

tating events capable of reducing instantaneously the green biomasses140

of finite amounts. This can be accomplished, without adding extra141

differential equations, by defining as shown in Fig. 3(a) the pre- and142

post-fire manifolds X− and X+ and the map from X− to X+ interpreting143

the impact of the fire.144

[Figure 3 about here.]145

The pre-fire manifold X− in Fig. 3(a) is piece-wise linear and non-146

increasing, and the set below the manifold is convex. The first property147

is obvious because less fuel originated from trees (i.e. less trees) is nec-148

essary for fire ignition if more fuel originated from bushes is available149

on the ground. The second property simply says that if x′ = (B′, T ′)150

and x′′ = (B′′, T ′′) are two states of the forest at which fire ignition is151
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not possible (i.e. two points below the manifold X−) no mix of these152

two states (i.e. no points of the segment connecting x′ with x′′) can153

give rise to fire ignition. A formal support of these two properties can154

be found in Maggi and Rinaldi (2006). The geometry of the pre-fire155

manifold allows one to sharply identify surface fires (vertical segment156

of X−), crown fires (horizontal segment of X−) and mixed fires (oblique157

segment of X−). By definition, surface fires do not involve the up-158

per layer, so that the post-fire conditions are on the vertical segment159

characterized by L+ = λLρLKL = λLL−. In other words, ρL is, by160

definition, the portion of the lower layer carrying capacity KL at which161

surface fires occur and λL is the portion of the lower layer biomass that162

survives to surface fire. Similarly, fires in the upper layer are char-163

acterized by a vertical instantaneous transition from U− = ρUKU to164

U+ = λUU−. The most extreme surface fire is represented by the tran-165

sition S− → S+, while the most extreme crown fire is represented by166

the transition C− → C+. The assumption that mixed fires initiate on167

the segment C−S− implies, by continuity, that post-fire conditions are168

on a curve connecting C+ and S+ which, for simplicity, is identified169

with the linear segment C+S+.170

Fire sequences can be easily obtained from the model, as shown in171

Fig. 3(b). Starting from a given initial condition, say point 0, one172

numerically integrates the differential eqs. (2) until the solution hits173

the pre-fire manifold X− at point 1−. Then, using the map X− → X+
174

one can determine the post-fire conditions, namely point 1+. Finally,175

the procedure is iterated and a series of fires (2− → 2+), (3− → 3+), . . .176

is obtained.177

A detailed analysis of this minimal model (Maggi and Rinaldi (2006))178

has shown that it is very flexible and can reproduce, by tuning its179

parameters, the fire regimes of savannas, boreal forests and Mediter-180

ranean forests. The dependence of the model behavior upon its nu-181

merous parameters has been thoroughly investigated in Dercole and182

Maggi (2005) and in Bizzarri et al. (2008). Moreover, long series of183

model generated fires have been statistically analyzed and the result184

is that the distributions of the total biomasses burned by fire events185

(i.e., L− + U− − L+ − U+) can often be approximated by three power186

6



laws (see Fig. 5 in Maggi and Rinaldi (2006)). This result is somehow187

similar to that shown in Fig. 1(b), where, however, the fire intensities188

are identified with burned areas.189

It is worth noticing that in none of the above mentioned studies190

the models have been validated against the data collected on a specific191

forest site. This is perfectly in line with the aim of the studies, which192

was to show that the models could produce fire regimes similar to those193

qualitatively observed in various biomes of the world.194

Analysis of a spatially extended two-layer forest fire model195

The models reviewed in the previous section are definitely poor and196

over-simplified from a biological point of view even if they support to a197

certain extent some of the characteristics of forest fires emerging from198

field data. SOCFF models reduce the growth of vegetation to a sort199

of unrealistic ballet of trees born in empty sites and then burned by200

lightning, without giving any role to important physical factors such201

as quantity of dead biomass on the ground or age of the plants which202

are known to control the ignition of a fire and its propagation (Vie-203

gas (1998)). By contrast, two-layer models are simply inappropriate204

for describing properties concerning burned areas because they do not205

explicitly contain space.206

We therefore focus on a promising mix of the above models by spa-207

tially extending on a square lattice with L2 sites, the two-layer forest-208

fire model. Thus, eq. (2) holds at each site, characterized however by209

a different standing state (L, U), and when the biomasses in one site210

reach the pre-fire manifold X−, a fire is ignited in that site of the for-211

est and the biomasses of that site are reduced in accordance with the212

map described in Fig. 3(a). Moreover, the fire propagates to neigh-213

boring sites provided the vegetation in those sites is almost ready to214

burn, i.e. provided the biomasses (L, U) are ε-close to the pre-fire man-215

ifold X−. In order to simplify the dynamics we assume, in accordance216

with Drossel and Schwabl (1992), that the propagation is a sort of in-217

stantaneous avalanche, since the time in which a forest cluster burns218

down is much shorter than the time in which a tree grows. This means219

that when the pre-fire manifold is reached at one site, the fire instan-220
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taneously propagates to an entire forest cluster delimited by sites in221

which the biomasses (L, U) are at least ε-far from the pre-fire manifold222

X−. Thus, the area burned by fire can be measured by the number of223

sites in the cluster.224

Long simulations of the model allow one to generate long time se-225

ries of fires with associated burned areas and times of occurrence. Since226

simulations involve time-discretization, it can happen (very rarely how-227

ever) that two fires occur at the same time. In these cases one of the228

two fires is simply delayed of one time step.229

In order to avoid finite-size effects we have been forced to work with230

large lattices and this is why, in order to keep computational effort un-231

der control, we have selected the model described in Maggi and Rinaldi232

(2006) which involves 2L2 differential equations, i.e. one half of those233

that would be required by the model proposed in Casagrandi and Ri-234

naldi (1999). Simulations must be very long because transients toward235

attractors of the extended forest model can be extremely long, in par-236

ticular when the local dynamics, i.e. the dynamics of a single isolated237

site, are chaotic (see Fig. 4 which shows that a reliable estimate of the238

mean and standard deviation of the burned areas is obtained only after239

three hundred thousand years!).240

[Figure 4 about here.]241

Despite these computational difficulties, we have been able to per-242

form reliable statistics of the burned areas and of the time of occurrence243

of the fires for different values of the parameters of the model. In par-244

ticular, we have varied the parameter ε that controls the tendency of245

the fire to penetrate into parts of the forest which are not yet ready to246

burn. Obviously, this parameter depends upon the dominant species247

present and can therefore vary remarkably in particular at continental248

scale. Higher values of ε indicate lower resistance to fire propagation,249

i.e. lower tree immunity, as defined in Drossel and Schwabl (1993), Al-250

bano (1995) and Song et al. (2001) in their studies on SOCFF models.251

Higher values of ε should therefore facilitate the occurrence of larger252

fires and this is, indeed, what we have systematically found with our253

simulations, as shown in Fig. 5 obtained for parameter values in the254

range suggested in Maggi and Rinaldi (2006) for Mediterranean forests.255
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[Figure 5 about here.]256

Figure 5 shows that the three basic types of distributions identified257

through empirical studies (see Fig. 1) can be produced by our model by258

varying the control parameter ε. Another interesting property of our259

model is that large fires, which are associated with the steepest slopes260

of the distributions of the burned areas, are mixed fires, while a relevant261

percentage of the small fires are surface fires. In other words, the results262

suggest that the existence of different slopes in the distributions of the263

burned areas might be due to the existence of differently structured264

fires. This has also been suggested in Schenk et al. (2000) but with265

totally different and less biologically based arguments.266

Finally, long series of model generated fires have allowed us to esti-267

mate the probability density D(τ |s) of the time intervals τ separating268

successive fires with burned areas greater than or equal to s. A typical269

result of this analysis is shown in Fig. 6(a) which compares favourably270

with Fig. 2(a).271

[Figure 6 about here.]272

This means that our model captures also the processes that control the273

times of occurrence of the fires and not only the mechanism regulating274

the severity of the fires, i.e. the burned areas. But the qualitative275

agreement of our model with the empirical evidence goes even further.276

In fact, the similarity of Fig. 2(b) with Fig. 6(b), obtained through277

simulation, proves that the model is endowed with the scaling law (1)278

discovered on purely empirical grounds (Corral et al. (2008)).279

Concluding remarks280

We have shown that all statistical properties of forest fires discovered281

in the last decade through the analysis of available data can be derived282

from a biological based model in which the three phases of vegetational283

growth, fire ignition and fire propagation are clearly identified. In such284

a model the forest extends over a square lattice of L2 sites and is com-285

posed of a lower and an upper layer. The two layers grow logistically,286

but the upper one reduces the light available to the lower one, thus287

damaging its growth. Fires are devastating instantaneous events that288
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occur only when the mix of biomasses of the two layers reach partic-289

ular values. The rationale for this assumption is as follows. We know290

(see, for example, Viegas (1998)) that fire ignition in a forest is possible291

only if dead biomass on the ground is above a certain threshold, but292

since the biochemical processes regulating the mineralization of dead293

biomass are relatively fast with respect to plant growth (Esser et al.294

(1982); Seastedt (1988)) it can be reasonably assumed that the rate295

of mineralization (proportional to the amount of dead biomass) equals296

the inflow rate of new necromass, which, in turn, is proportional to the297

standing biomass in the two layers. Thus, in conclusion, the biomasses298

of the two layers are appropriate indicators of fuel on the ground, so299

that fire ignition is possible only at sites where the standing biomasses300

reach specific conditions (called pre-fire conditions). When the fire is301

ignited at one site, it immediately propagates to the neighbouring sites302

if these are ε-close to their pre-fire conditions and this process is re-303

peated in an avalanche like manner and stops only when the burning304

cluster is delimited by sites which are ε-far to their pre-fire conditions.305

The combination of these slow and fast processes determines the306

behavior of the whole forest model which for parameter values in the307

ranges suggested in Maggi and Rinaldi (2006) for Mediterranean forests308

turns out to be chaotic. In other words, the slow and continuous growth309

of the two vegetational layers is punctuated by fires which occur in an310

apparently random way in space and time and has statistical properties311

consistent with those discovered empirically.312

It is important to remark that the model proposed in this paper is313

nothing but the extension to a network of sites of the minimal model314

proposed in Maggi and Rinaldi (2006) for a single site. In other words,315

the model is still a minimal model that, as such, can not be calibrated316

for performing real time fire predictions in any specific forest, but rather317

be used to characterize and classify the fire regimes of large classes of318

forests.319

It is also interesting to remark that the model is fully determin-320

istic and spatially homogeneous, so that the emergence of the above321

statistical properties does not seem to be necessarily related with the322

randomness of meteorological conditions (soil moisture, wind speed, ...)323
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or with geophysical heterogeneity. However, in accordance with Bessie324

and Johnson (1995) and Minnich and Chou (1997), we firmly believe325

that meteorological randomness and geophysical heterogeneity should326

amplify the chaoticity generated by the deterministic mechanisms of327

growth, ignition and propagation we have considered. Checking if this328

is true could be an interesting point for further investigation, in partic-329

ular for assessing the impact of environmental change on fire regimes.330

But certainly more interesting would be to try to explain with the model331

important regional characteristics of fire regimes that have been discov-332

ered from data. For example, the east to west gradient of the slopes of333

the power-law distribution across US (Malamud et al. (2005)), might334

be a consequence of a similar gradient in some of the parameters of the335

model, that control the slopes of the distributions.336
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Figure 1: Three examples of cumulative distributions of burned areas ob-
tained from data: (a) Clearwater National Forest (US) redrawn from Reed
and McKelvey (2002); (b) Gargano (Italy) redrawn from Telesca et al. (2005);
(c) Venaco (Corse, France) redrawn from Ricotta et al. (2001). The distribu-
tion in (a) cannot be approximated with a power law, while the distributions
in (b) and (c) are approximated with three and two power laws, respectively.
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Figure 2: Results of the analysis of the time intervals τ separating successive
fires in Italy (redrawn from Corral et al. (2008)). (a) Probability densities
D(τ |s) for different minimum burned areas s. (b) The previous densities
after rescaling by the mean fire rate R(s) (notice that the rescaling yields
dimensionless axes).
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Figure 3: Two-layer model behavior. (a) The pre- and post-fire manifolds
X

− and X
+; the dotted lines with double arrows are instantaneous transitions

from X
− to X

+ due to a fire; horizontal (vertical) lines correspond to surface
(crown) fires; oblique lines starting from the segment C−S− of X

− correspond
to mixed fires. (b) State portrait of the model; continuous lines with a single
arrow represent the growing phase of the forest and are described by eq. (2).
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Figure 4: Estimate µ̂ and σ̂ of the mean and standard deviation of the
burned areas as a function of the observation time for the model with ε =
0.08, rL = 3/8, rU = 1/16, KL = KU = 1, α = 129/800, ρL = 0.85, ρU =
14/15, σL = 0.6, σU = 0.35, λL = λU = 10−4.
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Figure 5: Three examples of cumulative distributions P (s) =
prob[burned area ≥ s] obtained from the model for different parameter val-
ues: (a): ε = 0.06; (b): ε = 0.07; (c): ε = 0.08. Other parameter values as
specified in the caption of Fig. 4.
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Figure 6: Results of the analysis of the time intervals τ separating successive
fires generated by the model with parameter values as specified in the caption
of Fig. 4. (a) Probability densities D(τ |s) for minimum burned areas s. (b)
The previous densities after rescaling by the mean fire rate R(s).
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