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ABSTRACT

In this paper an attempt was made to apply the
averaging method to investigation of time-varying systems
for which the characteristic equations have no dominant
roots. The preliminary representation of the transfer
function in the form of a continuous fraction, then
reduction of the system's order with a subsequent
application of averaging, provides good results for the
given class of systems.
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Investigation of Time-Varying Systems by Averaging
Method in Case of Dominant Roots Absence

In the work [1] it was shown that the approximate solution
second-order differential equation

" 2 2
X - 2ax + (a + w )x = 0 (1)

describing a linear time varying system can be found in the fol­
lowing form

X (t) = a 0 exp ( Jt a (t) d t sin (f t w ( t ) d t + cP) ( 2 )

o 0

Where ao'cP o are constants of integration and a(t) and wet)

monotonous time functions.

The solution of high order linear differential equations
with time-varying coefficients

(3 )

where

(k = 0, 1 , ••• , n)

may be also expressed in the form (2) presuming that the dominant
roots of the characteristic equation

F (s) = (4)
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correspond to the second order equation with monotonous coeffi­
cients:

(5 )

where

a = a(t), w = wet)

This method achieved good results as applied to high-order
system with the evident dominant roots [2]. However, in practice,
there exist a variety of systems where it is very difficult to
distinguish the dominant roots. For example, in the case when
several poles have equal or close real parts. In this case it
is reasonable to take advantage of the methodology which allows
us to represent the transfer function as a continuous fraction
and to reduce the system of differential equations to the approx­
imate second-order system [3]. When the behaviour of the control
system is described by space-state equations, the order of the
system can be reduced by dismembering the transfer matrix with
the consequent throwing away of some of its elements.

Further we shall consider a typical feedback control system
with a parallel corrective element (Figure 1). The transfer
function of such a system in closed state can be written

<I> (s) = (6)

Having divided the numerator and the denominator by (G 1 + F
1

) one

can express (6) in the form of a fraction:

<I> (s) = 1

H + 1
F 1 + G 1

(7 )

If G1 itself is a function at a higher order then the fraction

(7) can be transferred into the continuous fraction of the follow­
ing type:



4> (s) =
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1

1

1

s

1

1

(8)

This expression corresponds to the structural scheme shown in
Figure 2, which is a combination of feedforward and feedback
relationships. It is very important that the character of the
response function in the system will first be determined by the
element H1 and then H2 • The influence of the elements Hi

(i = 1,2, •.• ,2n) on the response function is decreasing with the
increase of the indexes i, e.g. the more the meaning of i, the
less the influence of this element on the response function.
This is the basic statement used in the reduction process of
the order of systems. Thus, in order to receive a simplified
model of the system of an order m one should neglect in (8) all
the values except H1 ,H

2
, ••• ,H2m .

Specifically, the simplified second-order model of expression
(8) can be written as follows:

4> (5) = 1

(9)

Thus, in order to receive a simplified model of the system one
has to determine only elements H

1
,H2 , ••• ,H

2
of the continuous

fraction (8). m

The transfer function of a linear time-invariable system
can be written in the form

4> (s) = p(s) =
Q(s) a

n + .•. + n-2 n-1 na 2 s + a 1s + s
( 10)

Here P(s), Q(s) are polynomials.
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The first step in forming (8) includes the division of poly­
nomial Q(s) on polynomial P(s) and the continuation of this
process until the first member of the quotient. So we have,

Q (s)
P(s)

Q1 (s)

= H1 + P(s)

where Q
1

(s) is the remainder from the division.

The next step is the similar division of the polynomial
P (s) on Q1 (s) •

P (s)
Q

1
(s)

P 1 (s)
Performing the similar procedure with the relationship Q

1
(s)

repeating it as many times as it is necessary we receive the
partial fraction (8).

and

Using the state-space approach one can write on the basis
of Figure 1 the following state equation:

H2H, HqH, H6H, H2nH, Z,
H2H, Hq (H,+H 3 ) H6 (H,+H 3) 000 H2n (H,+H3) z2

H2H, Hq (H,+H3 ) H6(H,+H3+Hs)OOOH2n(H,+H3+Hs) z3
+ x input (11)

Z
n 21

n

In order to receive the second order simplified matrix one has
to choose four elements in the upper left corner, neglecting
the rest.

In this case we have

( 12 )

As an example we consider the time-varying control system cor­
responding to the structured scheme shown in Figure 3.
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using the method of "fixed coefficients" we receive the
transfer function of the system in the closed state:

cI> (s) = 1

ms
3 + (13.5m - 1)s2 + (88m - 13.5)s + 30k - 88

Here m = m(t) = 5 ; t; K = K(t) = 21 - 3.7t; are functions changing

in time. We accept that X input = O. Having calculated elements
H

1
, H

2
, H3 , H4 as functions of parameters m(t) and k(t) we can

write the system's characteristic equation in the following form:

( 13)

Comparing (5) with (13) we see that

( 14 )

0 2 + ",2 = H H H H
UJ 123 4

using (14) one can determine the values of real and imaginary
parts of complex conjugated roots of the equation (13) on the
observed time period from t = 0 to t = 2 seconds.

The character of changing ott) and w(t) is shown in Figure 4.
The discrete table meanings can be approximated by the third order
polynomial and finally give the approximate expression for the
response function related to the output at the initial condition

.
X output (0) = 0

X output (0) = 0.105 1
sec;

in the following form:

X(t) = 0,129 exp (0,0466t
4

- 0,3254t 3 + 0,7108t2

- 5,1945t) sin (0,0112t 4 ..... 0,0515t 3

+ 0,1444t
2 + 2,8406t + 0.5)
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The estimation of the accuracy of the solution was made by
comparing the results received by this method with the computer
simulation results. In Figure 5 the curves show the response
functions of the system related to the output coordinate X
output. Curve 1 was obtained as a result of the digital
computer simulation of the third-order system, taking into
account the varying character of the parameters m(t) and k(t).
The solution of the same system, received by averaging is
related to curve 2. Curve 3 was obtained as a result of
preliminary reduction of the system up to the. second. o~der

From the comparison of these curves it is quite evident
that the method of preliminary reduction of the system with the
consequent application of averaging results in the considerable
increase in accuracy of the approximate solution.
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