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ABSTRACT

The purpose of this paper is to describe the main
concepts, ideas and operating principles of hierarchical
control systems. The mathematical treatment is rather
elementary; the emphasis of the paper is on motivation
for using hierarchical control structures as opposed to
centralized control. The paper starts with a discussion
of multilayer control hierarchies, i.e. hierarchies where
either the functions or the time horizons of the subsequent
layers of control are different. Some attention has been
paid, in this part, to the question of structural choices
such as designation of control variables and selection of
the time horizons. Next part of the paper treats decompo-
sition and coordination in steady-state control: direct
coordination, penalty function coordination and price
coordination are discussed. The focus is on model-reality
differences, that is on finding structures and operating
principles that would be relatively insensitive to distur-
bances. The last part of the paper gives a brief presenta-
tion of the broad and still developing area of dynamic multi-
level control. It was possible, within the restricted space,
to show the three main structural principles of this kind
of control and to provide for a comparison of their proper-
ties. A list of selected references is enclosed with the
paper.

This paper is, in a sense, a forerunner of the book
"Coordination and Control in Hierarchical Systems," by
W. Findeisen, and co-authors, to appear in 1979 at J. Wiley,
London, as a volume in the IIASA International Series. The
results contained in the paper, as well as those in the
above mentioned book, were obtained over a rather long re-
search period. A partial support of this work by NSF Grant
GF-37298 to the Institute of Automatic Control of the
Technical University of Warsaw and to the Center for Control
Sciences, University of Minnesota, is gratefully acknowledged.
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1. Introduction

The control of complex systems may be structured in the
hierarchical way for several reasons. Some of them are the
following?

-~ the limited decision making capability of an individual

is extended by the hierarchy in a firm or organization ;
. = subsystems (parts of the complex system) may be far
apart and have limited communication with one another; .

- there is a cost, delay or distortion in transmitting
information;

- there exists a local autonomy of decision in the sub-
systems and their privacy of information (e.g. in the
economical system).

In this paper we intend to present the basic principles
and features of hierarchical control structures, in a possibly
simple manner. Let us note that from the point of view of
general principles it is, to a certain degree irrelevant whether
we discuss a multilevel arrangement of computerized decisions,
or a hierarchy of human decision makers, under the assumption
that human decisions will be based on the same rational grounds.
In particular , to both would apply the structural principles
and several features of the coordination methods, e.g. the
danger of violating the constraints, consequences of setting
non-feasible demands, etc.

It shall be stressed that the paper is concerned with the
control of systems, which means that the following is essential:

- we assume the system under control to be in operation

and to be influenced by disturbances;



- current information about the system behavior or about
the disturbances is available and can be used to improve
the control decisions.

These two features make this study differ from studies

of the problems of planning, scheduling, etc., where the only
data we can use to determine a control or a policy come from

an a priori model.



2. Hierarchical control concepts

A "complex system" will be an arrangement of some elements
(subsystems) interconnected between their outputs and inputs,as
it happens for example in an industrial plant. If we describe
the interconnections by a matrix H we obtain a scheme as in
Figure 1. The matrix H reflects the structure of the system.
Each row in this matrix is associated with a single input of a
subsystem. The elements in the row are zeros except for one
place, where a "1" tells to what single output the given input
is connected.

We are now interested in control of systems like Figure 1
by use of some special structures, referred to as "hierarchical".
There are two fundamental and by now classical ideas in hier-
archical control:

(i) the multilayer concept (Lefkowitz 1965), where the
action of determining control for an object (plant)
is split into algorithms (called "layers") acting at
different time intervals;

(ii) the multilevel concept (Mesarovié et al., 1965-1970)
where the goal of control of an interconnected, com-
plex system is divided into local goals and accord-
ingly coordinated.

The multilayer concept is best depicted by Figure 2, where

we envisage the task of determining control m as being split
into:

Follow-up Control, causing controlled variables c to be

equal to their desired values cd,



Optimization, or an algorithm to determine optimal values

of c assuming some fixed parameters B of the plant and/or

dl
environment,

Adaptation, with the aim of setting optimal values of 8.

The vector of parameters B may be treated more generally

as determining also the structure of the algorithm performed at

the lower layer and may be divided into several parts which would

be adjusted at different time intervals: Thus, we might speak

about having several adaptation layers.

The most essential feature of the structure in Figure 2 is
that the layers intervene at different and increasing time inter-
vals and that each of them is using some feedback or environ-
ment information. The latter is shown in the figure by dotted
lines.

The application of structures like Figure 2 is usually
associated with control of industrial processes, e.g. chemical
reactors, furnaces, etc. It is not exclusive of other applica-
tions. For example the same philosophy underlies the case where
the higher level of authority prescribes certain goals to be
followed, but does not go into the detailed ‘decisions necessary
to actually follow the goals. Since it is the responsibility
of the higher level éo chose the optimal goals - the lower level
may not even know the criterion of optimality.

The philosophy of a system like Figure 2 is clear and almost
obvious: it is to implement control m, which cannot be strictly
optimal (due to discrete as opposed to continuous interventions
of the higher layers, which are thus unable to follow tﬂestrict-

ly optimal continuous time pattern), but may possibly be obtained



in a cheaper manner. The clue must, therefore, be the tradeoff
between loss of optimality and the computational and informa-

tional cost of control. A problem of that kind is most sound

technically and also most difficult to formalize in a way per-
mitting effective solutions.

The multilayer concept can also be related to a control
system where the dynamic optimization horizon has been divided,
as illustrated in Figure 3. The following two features are now
essential:

- each of the layers is considering a different time

horizon; highest layer has the longest horizon;

- the "model" used at each layer or the degree to which
details of the problem are considered is also different:
the least detailed consideration is done at the top
layer,

Control structures of the kind presented in Figure 3 have
been most widely applied in practice, for example in industrial
or other organizations, in production scheduling and control,
etc. These applications seem to be rather ahead of formal theo-
ry, which in this case - as it also was for Figure 2 - fails to
supply explicit methods to design such systems. For example,
we would like to determine how many layers to form, what horizon
to consider at each layer, how simple the models may be, etc.
Except for some rather academic examples, these questions can
be answered only on the case by case basis.

The multilevel concept in hierarchical control systems has
been derived from decomposition and coordination methods devel-

oped for mathematical programming. We should especially note



the difference between:

(a) decomposition applied to the solution of optimization

problems, where we operate with mathematical models only and
the goal of decomposition is to save computational effort,

(b) multilevel approach to on-line control, where the

following features are important:

~ the system is disturbed and the models are inadequate,

- reasonable measurements are available,

- no vital constraints can be violated,

- computing time is limited.

The "Mathematical Programming" decomposition can be applied
directly only as an open-loop control ( as a rule - with model
adaptation) as shown in Figure 4. But here in fact any method
of solving the optimization problem can be used and the results
achieved will be all the same - all depending on model accuracy.
Nevertheless, the study and development of decomposition methods
in programming is highly desirable even from the point of view
of control. The open-loop structures like Figure 4 should not
be dismissed, since they offer advantages of inherent stability
and fast operation. Structuring the optimization algorithm in
Figure 4 as a multi-level one may also be desirable for the
reasons of software (computational economy) as well as hafdware
(multi-computer arrangement) considerations. Nevertheless, in
the rest of the paper we shall be paying much more attention
to those multilevel structures of control where feedback infor-
mation from the real system is used to improve éontroldecisions.

Figure 5 illustrates what we mean.



It is essential to see in Figure 5 that we have local
decision units and a coordinator, whose aim it is to influence
the local decision units in such a way as to achieve the over-
all goal. All these units will use mathematical models of the
systems elements, but they may also use actual observations.

If we now look at the hierarchical systems in the whole
(compare Figures 2,3 and 5) we see that they have one feature
in common: the decision mqking has been divided. Moreover, it
has been divided in a way leading to hierarchical dependence.
This means, that there exist several decision units in the
structure, but only a part of them have access to the control
variables of the process. The others are at a higher level of
the hierarchy - they may define the tasks and coordinate the
lower level units, but they do not override their decisions.

We should say a few words about why the decision making
should be divided and why we should have a hierarchy, as op-
posed to parallel decision units.

Some of the more general reasons were mentioned at the
beginning. Let us add, that in industrial control applications
the trend towards hierarchical control can also be associated
with the technology of control computers.

Namely, the advent of microprocessors makes control com-
puters so cheap and handy that they may be introduced almost at
every place in the process, where previously the so-called
analog controllers had been used. The information processing
capabilities of the microprocessors are much more than needed

to replace the analog controllers and they may easily be



assigned an appropriate part of the higher layer control functions,
e.g. optimization.

All the above speaks for decentralization but it does not
say yet why should we have coordination of the decentralized
decision units. The general answer would be that in several
cases the performance of a controlled system with a purely de-
centralized control structure may be unsatisfactory, if its
internal interconnections are intensive.

Some of the other reasons for using hierarchical rather
than centralized structures of control are:

- the desire to increase the overall system reliability
("robustness": will the system survive if one of the
control units breaks down),

- the possibility that the system as a whole will be
less sensitive to disturbance inputs, if the local
units can be made to respond faster and more adequately
than a more remote central decision unit.

The tasks of the theory of hterarchical control systens
may be twofold: we may be interested in the design of such
systems for industrial or organizational applications, or we
may want to know how an existing hierarchical control system
behaves. The second case applies to economic systems, for
example. The focus of the two cases differs very much, as do
the permissible simplifications and assumptions that can be made
in the investigation.

For example, in relation to the multilevel system of Figure
5, if we want to design such a system, we would have to deal

with questions like:



- what kind of coordination instruments should the
coordinator be allowed to use and how will his decisions
enter into the local decision processes?

- how much feedback information should be made available
to the coordinator and to the local decision units?

- what procedures (algorithms) shall be used at each level,
respectively, in determining the coordinating decisions
and the control decisions (control actions) to be applied
to the real system?

- how will the whole of the structure perform when distur-
bances appear?

- what will be the impact of distortion of information

transmitted between the levels? etc. etc.

In an existing system some of the above questions were
answered, when the system was designed ‘and put into operation.
However, we are often interested in-modifying and improving an
existing system, and the same system design problems will come

up again.
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3. Multilayer systems

3.1 Temporal multilayer hierarchy

Let us discuss the two principal varieties of multilayer
systems in some more detail, starting with the temporal multi-
layer hierarchy.

One of the most essential features of a dynamic optimiza-
tion problem is that, for the control or decision to be taken
and appliéd at the current time t, we consider the future be-
havior of the system. We deal with the optimization horizon.

As mentioned (see Fig.3), the optimization horizon can be divi-
ded, which results in a specific hierarchical system.

Let us exemplify the operation of such a hierarchy by refer-
ence to control of a water supply system with retention reservoirs.
The top layer would determine, at time zero, the optimal state
trajectory of water resource up to a final time, e.g. equal one
year. This would be a long horizon planning and the model sim-
plification mentioned before could consist in dropping the
medium-size and small reservoirs, or lumping them into a single
equivalent capacity. The model would be low-order, having only
a few state variables (the larger water retentions). We can see
on this example why it is necessary to consider the future when
the present decision is being made and we deal with a dynamical
system: the amount of water which we have in the retention at
any time t may be used right away, or left for the next week,
or left for the next month, etc., etc. Note that the outflow
rate which we command today will have an influence on the reten-

tion state at any future t.
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It might be gogd to note the difference between control of
a dynamic system and control of a static time-varying system.

In the latter case nothing is being accumulated or stored and
the present control decision does not influence the future. An
example might be the situation when we consider.supplying water
to a user who has a time—varying”demand, but no storage facility
of any kind.

The long horizon solution does supply the state trajectory
for the whole year, therefore also for the first month, but this
solution is not detailed enough: the gtates.of medium size and
small reservoirs are not specified. The intermediate layer would
now be acting, computing - at time zero - the more detailed state
trajectory for the month.

From this trajectory we could derive the optimization prob-
lem for t@e'first day of system operation. Here, in the lowest
layer, an all-dgﬁailed moael must bexconsidered, since we have
to specify for eaéh iﬁdiﬁidﬁél reservoir whdfiis to be done, for
example what should be the actual outflow rate. We consider
each reservoi: in detaii;‘butuﬁé-havé here the advantage of con-
sidering a shoft hofizgn.

Let us now degcribé this hierarchy moférformally.

Assume the wéter system probléﬁ was
b, 1

0

(x' () ,m' (£),z (t))at

maximize J ,

o

and the system is described by state equation

) = £ (x (£),m (£),2 (£))
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In those expressions x1 stands for the vector of state
variables, m1 for vector of manipulated variables (control va-
riables),z1 for vector of disturbances (the exogenous inputs).
The state x1(t0) is given and x1(tf) is free or specified as
the required water reserve at t = tf.

Let us divide this problem between three layers.

(i) Top layer (long horizon)
. te 3,3 3 3
maximize [ £, (x7 (£),m” (t),27 (t))dt

s

with
§3(t) = f3(x3(t),m3(t),z3(t»,x3(t0) given, x3(tf) free or

specified like in the above.

Here, x3 is the simplified (aggregated) state vector, m3(
is simplified control vector, 23 is simplified or equivalent
disturbance.

Solution to long-horizon problem determines, among other
things, state §3(t£) i.e., the state to be obtained at time t%
(this could be one month in the water system example). This
state is a target condition for the problem considered at the
layer next down the hierarchy.

(ii) Intermediate layer {(medium horizon)
tf 2

maximize J fo(xz(t),mz(t),zz(t))dt

o
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with

X2 (e) = 22 (1) P (6), 22 (1)), x°(ty) given, x°(t}) given

by ¥>(t2) .

The final‘state requirement cannot be introduced directly
because vector x2 has a lower dimension than x3, according to
the principle of increasing the number of details in the model
as we step down the hierarchy. We must introduce a functiony2

and require

~3

2,2, _ '
Y xS = %7 (e .

Function y2 is related to ﬁodel simplifications (aggregation
of state as we go upwards) and should be determined together with
those simplifiéatiéns.

Solution:to the intermediate iéyer problém determines among
other things the value of §2(x%')"i.e., the state to be obtained

at t = t%' (this could be one day in the water system example).

(iii) The lowest layer (short horizon)

t"
maximize J ff1(x1(t),m1(t),z1(t))dt

0
o
with
.1 1,1 1 1 1 . 1, 00 .
x (t) = £ (x"(t),m (t),z (t)),x (t;) given, x (t:') given

by v' (x'(£L") = X2 (£L").

We drop explanation of the details of this problem since

they are similar to those of previous problems.
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Note only that the functions f;(-) used here are the
same as in the origipal problem (this means "full" model), but
the time horizon is considerably shorter. The lowest layer
solution determines the control actions ﬁ1 to be taken in the
real system.

Consult Fig. 6 for a sketch of the three layers and their
linkages.

Please note that if no model simplifications were used the
multilayer structure would ﬁake little sense. If we used the
full model at the top layer, we would have determined the trajec-
tory §1 and the control actions 51 right there, and moreover not
only for the interval (to,té') but for the yhple horizon (to,tf).
The lower layers would only repeat the same calculations.

Let us now introduce feedback, trying to use the aqtualsys—
tem operation to improve control. One of the possibilities would
be to use the really obtained x1(t%') as the initial condition
for the intermediate layer problem. This means that at timet%'
(one day in the example) we re-solve the intermediate layer prob-

lem (ii) using as initial condition:

x* (gL = v (e

After the second day, i.e., at t = Zt%' we would use
2 A .
X (th ) = v (x (2tf ))

and so on.
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This way of using feedback is often referred to as "repeti-
tive optimization", because the computational (open-loop) solu-
tion will be repeated many times in course of the control system
operation.

The same feedback principle could be used to link feedback
information up to the higher layers, with a decreased repetition
rate. We shall refer to this concept of feedback when dealing
with dynamic coordination ip multilevel systems.

Consider what would be obtained if we used no feedback in
form of really achieved states. The system would be a multilayer
structure but its performance might be unnecessarily deteriorated.
Note that without any updating the case would correspond to cal-
culation of the targets for all days of the year being done at
time zero, thus depending entirely on the accuracy of the model
and prediction of environment behavior. The prediction itself
calls for repetition of the optimization calculation at appro-
priate intervals. Dropping the feedback would be a waste of
available information.

Needless to say that feedback would be redundant in the
case where the model used at lowest layer would exactly describe
the reality, inclusive of all disturbances - but this is not
likely to happen.

An example of existing multilayer hierarchy is shown in
Fig. 7, based on a state-of-the-art report on integrated control
in steel industries (IIASA CP-76-13). We can see there how the
time horizon gets shorter when we step down from long-range
corporate planning to process control. It is also obvious that

the problems considered at the top do not encompass the details.
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On the contrary, at the bottom level each piece of steel must
receive individual consideration, because the final action (mani-
pulation) must be specified here.

It is a proper time now to ask the question if the top
level model can really be an aggregated one and how aggregated
it can be. A gualitative answer is as follows: the details
of the present state have little influence on the distant future,
and also: the prediction of details for distant future makes
no sense, because it cannot be reliable. Quantitative answers
are possible only for specific cases.

The multilayer hierarchy gf Fig.3,6 or 7 made use of dif-
ferent optimization horizons; it may be appropriate to say a -
few words about the choice of horizon in a control problem.

Roughly speaking, we may distinguish two kinds of .dynamic
optimization problems:

(i) problems where the time horizon is implied by -the problem
itself,

(ii) problems where the choice has to be made by the problem
solver.

Examples of the first variety are: a ship's cruise from
harbor A to B, spaceship flight to the moon, one batch in an
oxygen steel making converter.

Examples of the second kind could be: operation of an
electric power system, a continuous production process, oper-
ation of a shipping company, operation of steel making shop.

For the problems of the second kind it is necessary to
choose an optimization horizon. We are going to show, in a

rather qualitative way, how this choice depends upon two
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principal factors: dynamics of the system and characteristics
of the disturbance.

Assume we have first chosen a fairly long time horizon te
and formulated a problem

. te
maximize Q = J fo(x(t),m(t),Z(t))dt .
o
for a system described by

x(t) = £(x(£),m(t),z(t))
with x(to) known and,x(tf) free.

Because of the disturbance z this is a stochastic optimi-
zation problem and we should speak about maximizing expected
value of Q, for example. Let us drop this accurate but rarely
feasible approach and assume that we convert the problem into
a deterministic one by taking z, a predicted value of z, as if
it was a known input. Assume we have got the solution: state
trajectory % and control m for the interval (to,tf).

Fig. 8 shows what is expected to result in terms of a
predicted z and of the solution ;. There seem to be two cru-
cial points he;e. First, a predicted z will start from the
actually known value z(to) and always end up in a shape which
is either constant or periodic. This is because when the "cor-
relation time" elapses the initial wvalue z(to) has no influence
on the estimated value of the disturbance and what we get as z
must be the mean value or a function with periodic properties.
Secondly, if (to,tf) is large enough (say one year for an

industrial plant) we expect that in a period far from t = t0
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the initial state x(to) has no influence any more on the optimal
values x(t). If we are still long before t = tf, the final
conditions have no influence either.

Thus what we expect is that the calculated at t = t0 opti-
mal trajectory § will exhibit a quasi-steady state interval
(t1,t2) where X% depends only on z. But since z is going to be
either constant or periodic, % will also do so (a more thorough
discussion of it can be found elsewhere (Findeisen 1974).

The above has been a qualitative consideration, but it
allows us to explain why practically we would be allowed to con-
sider only (to,t1) as the optimization horizon for our problem.
Note that if we decide to use this short horizon we must formu-

late our problem as one with given final state:

t
maximize Q = } 1fO(x(t),m(t),E(t))dt

to

for a system described by

x(t) = £(x(t),m(t),Zz(t))
with x(to) known and x(t1) given as Q(ti) from Fig. 8.

The next clue is that the solution X got from this problem
and the control m are correct only for a short portion of (to,t1)
due to the fact that real z will not follow the prediction z.
Thus we have to repeat the solution after some interval § much
shorter than (t;-t;), using the new initial values z (t_+8) and

x(to+6). The horizon should now reach to t1 +§. We have a

floating horizon or shifted horizon control scheme.
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It is relatively easy to verify our reasoning by a linear-
quadratic problem study, by simulation or by just imagining how
some real systems operate.

If we want a conclusion to be stated very briefly we can
say: "the optimization horizon is long enough if it permits to
take a proper control decision at t = t0"'

3.2 Functional multilayer hierarchy. Stabilization and opti-
mization layers

The Introduction has explained very briefly (see Fig.2)
what we intend to achieve by a functional multilayer hierarchy:
a reduction in the frequency and hence in the effort of making
control decisions.

Let us discuss the division of control between the first
two 1ayers£ stabilization(direct control, follow-up control)
and optimization, see Fig.2.

Assume that for a dynamic system described by

x(t) = £(x(t),m(t),z(t))
we have made a choice as to what variables of the plant should
become the controlled variables, see Fig.9. We do it by setting
up some functions h(-), relating c(t) to the values of x(t),m(t)
at the same time instant

c(t) = h(x(t),m(t)) ,

We will assume that c are directly measured (observed).

Functions h(+) would be identities c = x if we chose the
state vector itself as controlled variables - but this choice
may be neither possible nor desired and a more general form

expressed by function h(-) is appropriate.
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The direct control layer (Fig. 9) will have the task of
providing a follow-up of the controlled variables c with respect
to their set-points (desired values) SPE

DIRECT CONTROL LAYER: provide for c = cg4

- The optimization layer has to impose €3 witich would maxi-
mize the performance index of the controlled system ("plant" in

the industrial context):

OPTIMIZATION LAYER: determine C3 such as to maximize Q .

Note that Q has to be performance assigned to the operation
of the controlled system itself, for example the chemical reac-
tor's yield, with no consideration yet of the controllers or
control structure. In other words Q is performance measure
which we should know from the "user” of the system.

The question is how to choose the controlled variables c,
that is how to structure the functions h(*). It is all too
easy to say that the choice should be such as to bring no de-
terioration of the control result achieved in the two-layer
system as compared to a direct optimization. It should be

max Q = max Q

Cq m
where the number on the left is plant performance achieved with
the two-layer system of Fig.9 apd the number on the right is
the maximum achievable performance of the plant itself, since it

involves directly the manipulated inputs that are available.



-21-~

In order to get some more constructive indications let us

require that a setting of c, should uniquely determine both

d
state x and control m which will result in the system of Fig.9
when a Cyq is imposed. Since we are interested in getting optimal

values x,m let us demand the following property:

~ ~
C =C, =>X =X, m=nmnm

A trivial solution and a wrong choice of controlled varia-
bles could be ¢ = m. Imposing m = m on the plant would certain-
ly do the job. It is a poor choice, however, because the state
X that results from an applied m depends also on the initial

condition x(to) - the optimizer which sets ¢, would have to

d
know x(to)-

A trivial example explains the pitfall. Assume we made a
two-layer system to control a liquid tank using two flow con-
trollers as in Fig. 10. We delegate'to the optimizer the task
of determining the optimal flows, F1d and F2d' The optimizer
would have no idea of what level x will be established in the
tank, unless it memorized x(to) and all the past actions. We
can see it better while thinking of a steady-state: if the opti-
mizer would impose correct steady-state optimal values
F1d = F2d = Ed’ it still would not determine the steady level x
which will result in the tank.

Let us therefore require that the choice of ¢ should free
the optimizer from the necessity to know thé initial condition:

c(t) = cg(t) => x(£) = X(t),m(t) = @(t),vt > t, > t

1 0
and the implications shall hold for any x(to).
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An example of what we aim at may be best given by consid-
ering that we want a steady-state x(t) = x = const to be ob-
tained in the system, while the system is subjected to a con-
stant, although unknown disturbance z(t) = z. In that case also

m and ¢ = ¢, will not be time-varying. The state equations of

d
the plant reduce to

fj(x,m,z) = 0, j=1,...,dim x | (i)
due to the fact that x(t) = 0, and if we add the equation which
is set up by our choice of the controlled variables
(ii)

’ i=1,...,dim c

hi(x,m) = C, '

i
we have a set of equations (i) and (ii) for which we desire that
x,m as the dependent variables be uniquely determined by c. But
we also want (i) and (ii) to be a non-contradictory set of
equations; their number should not exceed the number of depen-
dent variables x,m and thus we arrive at the requirement that
dim ¢ = dim m: the number of controlled variables should be
equal to the number of manipulated inputs, Then,from the impli-
cit function theorem, it is sufficient for the uniqueness of x,m

that fj’hi are continuously differentiable, and

afl af-
_J _3J
9X om
k
det #0
ah. 2h,
1 _1
axk amk__

We leave it to the reader to verify that the system of

Figure 10 does not comply with the above demand.
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We should warn the reader of a possible misinterpretation
of our argument. We have shown the conditions under which
steady-state x,m resulting in the control system will be single-
valued functions of ¢, but these functions may still contain z
as a parameter. In other words, we did not say that a certain
value of ¢ will enforce the value of x,m in the plant, irre-
spectively of the disturbance. If, for example, we are inter-
ested in enforcing the value of state, we could choose ¢ 2 x.
But note that this may be nbt entirely feasible if we have too
few manipulated inputs (remember that dim ¢ = dim m).

The structure of Figure 9 can of course also be thought of
as operating when the plant state x is time-varying. Then we

should write, instead of (i) and (ii)

Xj(t) = fj((t) m(t),z(t)), J = 1III'ldim X ’ (ia)

hi(x(t),m(t)) = ci(t), j=1,...,dim c - (iia)

The value of state at time t, that is x(t), will still de-
pend upon the enforced c(t) = cd(t), but the dependence involves
also x(t). This means that in order to obtain a certain state
x(t) we must take into account the initial state x(to), distur-
bance input over the interval [to,t], z[to,t]' and appropriate-
ly shape the control decision Cd[to,t]'

If we want to enforce the value of state x(t) in spite of
the disturbances and without dependence on the initial state, we
must investigate the follow-up controllability: is it possible,
using the input m, to cause state x to follow a desired trajec-

tory xd?
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Assume the follow-up has been achieved, that is x(t) = xd(t),
x(t) = id(t), Vt. Then the state equations give

fj(xd(t),m(t),z(t))—kd(t) =0, j=1,...,dim x , (iii)

We should note the meaning of (iii). Disturbance z is
varying in time and its value z(t) is random. If (iii) has to

hold we have to adjust m(t) so as to offset the influence of
z(t). This must of course require certain properties of the
functions fj(~) and we also expect to have enough manipulated
inputs. The requirements will be met if the set of equations
(iii) will define m(t) as single-valued functions of z(t). The
conditions for this. are that fj(-) are continuously differen-
tiable and moreover that,

of.
rank J

om

dim x .

v

This implies dim m Z dim x. We should note that the actual
value m(t), as required by the disturbance z(t), should never
lie on the boundary of the constraint set of manipulated inputs.
Physically it means that we must always have the possibility
to adjust m(t) up or down in order to offset the influence of
the random disturbance. The actual value of this required re-
serve or margin depends on the range of possible disturbances.
Any control practitioner knows this as an obvious.thing.

Remember that we have set a requirement related to con-

trollability, that is to the properties of the plant itself.
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Controllability does not say how to generate control m such that
X = Xgr it tells only that this control exists. If we decide
to build a feedback control system as shown in Fig. 9 we have
to choose the controlled variables ¢ in an appropriate way.
For the dynamic follow-up to be enforced by the conditionc = Cqr
the choice would have to be ¢ = X, that is the state variables
themselves (as opposed to ¢ = h(x,m) which was all right for
steady-state uniqueness of x).

The choice of controiled’variables has been till now dis-
cussed from the point of view of the "uniqueness" property: how

to choose ¢ in such a way that when ¢ = ¢, will be enforced,

d
some well-defined valﬁes Q,m willlresult.in the plant. We have
done this for the plant deséribed by brdinary differential eqﬁa—
tions. An extension of this consideration to distributed: para-
meter plants with lumped manipulated inputs is possible.

We turn now to the more spectacular aspect of choosing the
controlled variables: can we choose them in a way permitting to
reduce or to entirely avoid the on-line optimization effort, that
is to eliminate the optimization layer in Fig. 9, leaving only
the follow-up control?

To make the argument easier let us consider steady-state
optimization.

For a plant

fj(x,m,z)= 0, i =1,...,dim x

we are given the task

maximize Q = fo(x,m,z)
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subject to inequality constraints
gi(x,m)fbi, i=1,...

A A A
Assume the solution is (x,m). At point (x,M) some of the
inequality constraints become equalities (active constraints),
and other inequalities are irrelevant. Thus at (§,ﬁ) we have a

system of equations:
fj(;{,m,z) =0, i =1,...,dim x
g, (X,8) = b,, i=1,..., k <dimm .

If it happens that k = dim m then the rule is simple:

choose the controlled variables as follows:
hi(.) = gi(-), i=1,..., dimm ,

C.. =b
Cai - Pi -

This simply says that you put the controllers "on guard"
that the plant variables (x,m) are kept to the appropriate bor-
der lines of the constraint set.

Note two things:

(i) we have assumed gi(x,m) and not gi(x,m,z), i.e., the dis-
turbance did not affect boundaries of the constraint set;

(ii) we have assumed k = dim m ( the number of active constraints
equal to the number of controls), and we also failed to
consider that even in such a case the solution (%,m) may

lie in different "corners" of the constraint set for dif-

ferent z.
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Even under these assumptions, however, the case makes sense
in many practical applications, since solutions to constrained
optimization problems tend to lie on the boundaries.

For example, the yield of a continuous-flow stirred—tapk
chemical reactor would increase with the volume contained in the
tank. This volume is obviously constrained by tank capacity,
therefore, the control system design would result in implement-
ing a level controller and in setting the desired value of the
level at the full capacity. The level contrgller would perform
all the current control, by adjusting inflow or outflow to keep
the level. No on-line optimization is necessary.

We have mentioned already in the Introduction that the
approach we have taken by letting the "direct controller" make
current control decisions and providing for an upper level to
set a rule or goal to which the direct control has to keep, has
more than only industrial applications. It is also clear that
a rule or goal does not have to be changed as often as the cur-
rent decisions and hence a two-layer structure makes sense.

If the solution (X,m) fails to lie on the boundary of the
constraint set, or the number of active constraints k <dim m,
we may still look to structure the functions hi(-) in such a
way as to make the optimal value C3 independent of disturbances
Z.

The way to consider this may be as follows. We have solu-
tions m = M(z) and % = Q(z), Put them into the functions hj(-)

k+ 1,..., dim m:

for j

hj&,ﬁ) =hj(§(z),?n(z)), j=k+1,..., dimm .
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By an appropriate choice of hj(-) we may succeed in getting
sh.
—laz =0, j=vk+1,-.-

in the en&isaged range of disturbances z.

We turn now to a more elaborate example of building-up a
two-layer system.
3.3 Example éf two-layer control

Consider a stirred-tank continuous-flow reactor presented
in Fig. 11. Some material B inflows at rate FB and has temper-
ature TB’ material A inflows with FA and T,, mixing and reaction

A

A -+ B takes place in the vessel, resulting in a concentration

C Heat input H is needed for temperature T to be obtained in

Ac

the reactor. Outflow FD carries the mixturé of A and B out of

the vessel. We want to provide a control structure that would
optimize the operation of this reactor, having FA and H as
manipulated inputs. Let us do it in some orderly steps.

(i) Describe the plant

There will be three state variables and state equations:

W = f1(-) = Fy + Fp - Fj

Cp= £,(0)

T = f5()

We drop the detailed structure of the functions fz(t),

f3(-) because it is not important for the example.
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(ii) Formulate optimization problem
Assume we want to maximize production less the cost of

heating:

. 1 2 _ _ |
maximize Q = £t Jt [(1-C ) F, p(T)at -,

where ¢ (T) expresses the cost of reaching temperaturé T.

There will be inequality constraints

’

W<W, C, <C

Am’ m

and we also have to consider the state equations and initial
and final conditions.

If there are reasons to assume that the optimal operation
of the reactor is steady-state, x = const; thén the plant equa-

tions reduce to

I
]
+
|

l
=

0
o

£,0)

h
N
S
S
n
o

th
w
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i
o

and the optimization goal would be

maximize Q = (1 - CA)FD -y (T) .

(iii)Solve optimization problem
Assume the optimization problem has been solved and the
results are (the problem has‘really been solved for a full

example) :
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A
W= W,

6A = CAm if st1, EA = ¢1(z) < CAm otherwise
% = ¢2(z) < Tm if zeZ1, @ = Tm otherwise

EA = ¢3(z)

ﬁ = ¢u(z)

where z stands for disturbance vector (FB,FD,TA,TB) and Z1 is a
certain set in z-space, that is a certain range of disturbance
values.
(iv) Examine the solution and choose control’structure

Let us make a wrong step and choose as controlled variables

the flows F H. We would then: fail to get a uniquely deter-

A’
mined steady-state volume W in the tank (a check on determinant
condition would show it) and also the optimizer which sets the
Ad’ Hd would have to know disturbance vector z and
functions ¢3(-),¢u(-). Note that this would involve an accurate

desired F

knowledge of the state equations of the plant.

Inspection of optimization solution reveals volume W as a
first-choice candidate to become controlled variable. The opti-
mal W is Wm under all circumstances, no on-line optimizationwill
be required, and no knowledge of plant state equations.

The second choice (we shall have two controlled variables
since we have two manipulated inputs) could be either concen-
tration CA or temperatufe T.

Let us consuithig.12 for a discussion. We have displayed
there the feasible set in (W,CA) plane and shown where the opti-

mal solution lies in the two cases, that is when zeZ1 (point 1)



_31.-

and in the other case (point 2). Note that solution is in a
corner of the constraint set, but unfortunately not in the same
corner for all z. Consider that you may:

- take CA as a controlled variable and ask the optimizer

to watch disturbances z and perform the following

CAd = CAm for ZL‘Z1
CAd = ¢1(z) otherwise
whereby a knowledge of the function ¢1(') is required,

- or take C, as a controlled variable when zeZ

a and then

1
set CAd = CAm’ whereby for z;z1 you would switch to T as
controlled variable with a setting Tq = T, In this case
the second-layer éontrol would consiét in performing the
switching, that ié}in deﬁecting if zéz1. This may bé
easier to do than to know the function ¢1(-) Whiéh was
required in the first alternative.

3.4 The relevance of steady-state optimization

Steady-state optimization, fbllbwing thé structure of Fig.9
is a quite common practice. It might‘be wofthwhile to consider
when it is really appropriate. If we exclude the cases where
the ezact solution for the optimal state is X = const, we may
think of the remaining cases in the following way.

Let (a) in Fig. 13 be the optimal trajectory of a plant
over optimization horizon (to,t1).

Assume we control the plant by a two-layer system, have x

as controlled variables, and choose to change desired value x

d
at intervals T, being a small fraction of (to,t1). Then (b) is
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the plot of xd(t); Note we have thus decided to be non-optimal
because X4 should be shaped like (a), and not be a step-wise
changing function. Note also that the step values of X3 would

have to be calculated from a dynamic (although discrete) opti-
mization problem.

Now let us look at the way in which the real x will follow
the step-wise changing X3 in the direct control system, compare
Figure 9. 1In case (c), Fig.13, x almost immediately follows Xq-
In case (d) the dynamics_are apparently slow and the following

of x, cannot be assumed.

d
It is only in case (c) of Fig. 13 that we may be allowed to
assume that state xvis practically constant over periods T, thus
permitting to set X = 0 into the state equations and calculate
the step value of~xd from a steady—stafe opfimization problem.

The question is when will case (c) occur. By no means are
we free to choose the interval T at will. We must relate it to
the optimization horizon (tO’t1)' 4Interva1 T would be a suitable
fraction of this (1/10 or 1/50 for example). And here is the
gualitative answér to the main qugstion: if (to,t1) has resulted
from slow disturbances acting on a fast system, case (c) may
take place, that is we may be allowed to calculate a step ofxd
under steady-state -assumption.

The importance of the possibility to replace the original
dynamic optimization problém by an almost equivalent static op-
timization done in the two-layer system cannot be overemphasized.
The reason is of computétional nature: dynamic problems need

much more effort to solve and for many life-size control tasks,
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for example for a chemical plant, may be practically unsolvable,
in the time being available. On the other hand, the operation
of many plants is close to steady-state and the optimization of
set-points done by static optimization is quite close to the
desired result.

We devote in this paper a considerable space to steady-state
on-line optimization structures. It is the more justified that
the procedures for static optimization are principally different
from those suitable for dynamic confrol, if feedbéék from the
process is being used.

3.5 Remarks on ﬁdaptation layer

Let us come back to TFig.2. We have presented there éﬁ“adap-
Lation layer" and assigned to it the task of readjusting some para-
meters B which influence the setting of the value of Cq- Assume

this setting is done by means of a fixed function k(-):

Cq.-= k(8,z)
where z stands for the disturbance acting on the plant. We assume
at this point, that it is measured and thus it can enter the
function k(-).

We may of course assume existence of the strictly optimal
value of Car referred to as,ed(z). With Ed(z) we would get a
top value of performance denoted by Q(ed(z)). It represents
the full plant possibilities.

Optimal values of B in the optimizer's algorithm could be

found by solving the problem

minimize E||cd(z) - k(B,z) ||
B " Z , )
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We drop discussion of this formulation because we should
rather assume that the optimizer has only a restricted informa-
tion about z, denoted z* (it could for example be samples of z
taken at some intervals). This leads to Cq = k(B,z*) and the

parameter adjustment problem should now be

’“ _ *

mlnﬁylze 2 Ex [Q(cy(z))-Q(k(B,2%))]
which means that the choice of B8 should aim at minimizing the
loss of performance with respect to full plant possibilities.
An indirect and not equivalent way, but which may be easier to
perform would be

e , _ *

mlnﬁylze z'Ez*||cd(z) k(B,z*) || .

Note that we would not be able to get B = B such that
E||-]| would be zero, since the basis for k(8,-) is z* and not
z. It means that, with the best possible parameters, the con-
trol is inferior to a fully optimal one, the reason being the
restricted information.

Our formulations till now apply to adjusting parameters B

once, and keeping them constant thereafter for some period of

time (it is over this period that the expectations E||-|| should
be taken).

In some practical adaptive systems we try to obtain the
values of parameters of the plant, and thus also the values of g,
by some kind of on-line identification procedure. We may refer
to it as "on-line parameter estimation". A limit case may be of

interest where we would assume that B are estimated continuously.

Let us consider what this limit case could supply.
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Note that for each z, an optimal value B8(z) maximizing the
performance exists and means a perfect control. We must assume,
however, that we do not have B8(z) but an estimated value of it,

é(z). With é(z) our optimizing control would be

Cq = k(é(z) ,2%)

where we assumed, realistically, that not all z is directly
measured and only z*¥ is available as current information.
The application of this control gives a loss of optimality

which amounts to

E [Q(éd(zn—Q(k(é(z),z*))] .

z,2%¥

This value could be discussed with respect to the quality
of estimating B, insufficiency of disturbance information z*,
etc. In other words, it measures the overall efficiency of

adaptation.
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4. Decomposition and coordination in steady-state control

In this section we shall consider the multilevel control
structures shown by Fig.5 in some more detail. One of the points
of this and of the next section will be to indicate the practical
difference between steady-state and dynamic control structures.
4.1 Steady-state multilevel control and direct coordination

Let us first describe the complex system of Fig. 1 more
carefully.

Denote for the subsystem 7 : X the state vector, nﬁ_mani-
pulated input, z4 disturbance, uy input from other subsystems,

Yj output connected to other subsystems. The subsystem state

equation will then be

= ] . . . 1
%00 = 65 pe 01 X 80) Migeg el e el B e 0 ()

For the use of this section we assume (1) to be in the

particular form of ordinary differential equation
Xi(t) = fi(xi(t)’ mi(t), ui(t)' Zi(t)) . (1)

The output Yy will be related to (Xi’mi’ui’zi) by output

equation
y; (8) = gi(xi(t),mi(t),ui(t).zi(t)) . (2)

Now assume that the first-layer or direct controls are
added to the subsystem such that the following is enforced (see

the previous Section for this idea)

Ci(t) = hi(xi(t)'mi(t)’ui(t» = Cdi(t) . (3)
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Assume we are in steady-state, xi(t)=O,Vt, and the functions
hi(-) have been chosen properly so as to ensure uniqueness of the
state Xoi and manipulated output mi(t) in response to the imposed

Ci(t) and ui(t), with zi(t) as a parameter. Then (1') becomes
= 4
£ (xgemy (E),u;(8),z, () =0 (4)

and (4) along with (3) provides for xsi,mi(t) to be functions
of ci(t). Therefore (2) becomes the following input-output

dependence:

'/.l(L) I-'i(«:i(l,.),ui(l),'/.i(l_)) . (5)

Egqn. (5) is a relation between the instantaneous values.

We have obtained it by assuming the system to be in steady-state,
x(t) = X = const. In the steady-state the system ceasgs.to be
a dynamical onc, becausc there is no change in accumulations.

We can consider the state to pe time-varying; then (5) can
be true only under the assumption that the actual state x 1is
always enforced, that is, it follows the desired state trajec-
tory x4;- As mentioned in Section 2.2 this is possible if the
subsystem complies with the follow-up controllability condition
and if hi(') is chosen for example such that Civg X, -

In the general case of time-varying state we would have to
put into (2) the formula (1) for xi(t), which makes y(t) depen-
dent upon initial state xi(to) and upon the inputs over interval

[to,t], that is upon m The Existence

. ’u- ,Z.
1[t0,t] 1[t0,t] 1[t0,t].

of an appropriate equation (3) allows to eliminate mi[t t] in
OI

favor of c. and thus we become, instead of: (5)
1[t0,t]
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y.(t)=

i Fi[to,t](xi(to)'ci (5%)

[tg,t] " ilty, ] %ile,, 1)

The input-output relation in the form (5") is not very
convenient for notational reasons. We may tacitly assume the
initial state to be known, or we can treat xi(to) as part of the
disturbance Z,- If we, additionally, use notation yi,ci,ui,zi

to express time functions (as opposed to their values yi(t),etc.),

then (5') becomes

yl = Fi(ciruirzi) . (5 )

The important difference Qith respect to (5) is that (5")
denotes a mapping between time functions (describes a dynamical
system) .

When the sUbsystem‘is in steady state, (5) will hold. Its
practical meaning is that "the dynamics of the subsYétem are
suppressed" and that is why we have a statié input-output rela-
tion. We usually write (5) in abbreviated form, dropping the

argument t and sometimes also the disturbance input:

Y; = Fi(ci,ui), ie 1,N (6)

Note that the form of (6) is similar to (5") and the nota-
tion does not indicate whether we describe a static or a dynamic
system. This is rather convenient for considerations of general
nature, but may also be misléading as the difference tends to
be overlooked. |

Right below we are going to speak.about steady-state and we

consider y;rC;ru; to stand for Yi(t)’ci(t)’ui(t)'
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The interconnections in the system are described by
i

u; = H.y, so that u = Hy (7)

where Hi is part of matrix H.
We assume a "resource constraint" is imposed on the system

as a whole

N
Zri(ci,ui) < (8)
:

and also that some local constraints restricting (ci,ui) may

exist

(ci,ui) £ CUi' ie1,N . (9)

We further assume that a local performance index (local

aobjective function) is associated with the subsystem
Qi(ci'ui)' ie 1,N (10)

whereby a global system performance is also defined and it is
Q= w(Q1,Q2r~--,QN) . (11)

The function y is assumed to be strictly order-preserving.

Note that (10) and (11) may result from two practical cases.
It might be that there were some local decision makers already
in existence and we decided to set up an overall Q to provide
for some harmony in their actions. But it also might be that we
had overall Q first and we then decided to distribute the decision

making among the lower level units.
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We are now ready to define the goal of the coordination
level: it has to ensure that the overall constraints would be
preserved and the overall performance would be extremized.

Coordination will be done by influencing decision making
in the local units (and not by overriding control decisions
already made) .

We start with presenting coordination by direct method.

The simplest way to present direct coordination (also called
primal or parametric coordination) is to assume that theucoordi-
nator would prescribe the outputs Yir demanding an equality
Y; = ¥qy- If a resource constraint (8) is present, coordinator
would also allocate a value Tqi to each local problem.

A local decision problem would become

maximize Qi(ci,uil

subject to

r.{(c.,u.) < r,.
1( i’ 1) — di

When this problem is solved, results depend upon (yd,rdi). Note
they depend on the whole Ygqr not on Y4i only, since we had
A
u; = H,y . We denote the results as ci(yd,rdi) and
& 2 B yqira;)
Q; (€5 (¥qrrqy) Hi¥g)= Q3 Wgrfay) -
The coordination instruments (yd,rd) have to be adjusted

to an optimum by solving the problem
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maximize Q = w(61(yd,rd1)....,6N(yd,rdN))
(yd,rd)

subject to

+ r + ... +r <r .

r az an = Ty

di

The main difficulty of the method lies in the fact that a
local problem may have no solution for some (yd,rd) because of
its inequality gonstraints (an output value may be not achiev-
able and the allocated resources inadequate). Therefore the
values (yd,rd) set by the coordinator must be such as to keep
the local problems fcasible, (yd,rd) + YR, where YR is the
fecasible set.

The set YR cannot be easily determined, because it implic-
itly depends on local constraints.

Moreover, the boundaries of set YR may be affected by the
disturbances, since these boundaries are related to local con-
straints and to the element equations. This has the implica-
tion that the "coordinétor" would have to keep his decisions

(yd,rd) in a "safe" region of YR, where "safe" would relate to
the worst case of system uncertainties. Apart from the diffi-
culty to define the safe region we of course realize that the
worst case approach may give the result that the "safe region”
is very small or even empty.

Before trying to find a remedy to this situation we shall
make some additional remark on the direct method of coordina-

tion; namely, this method may entirely fail to be applicable if

the number and role of local controls are inadequate.
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We note that by prescribing the outputs we also preset the
inputs and hence in the local subsystem equation we have only

ci as a free variable:

FileyrHivgrzg) = Yg5

Strictly speaking we should consider the interconnected
system in the whole, where we have

F(c,u,z) =y
and with y = Yqr U = Hy this gives

F(c,Hyd,z) =Yg
The above equality is to be enforced. This means that c must be
available such that a certain system of equations, which we de-
note as

K(c,z) = Ygq
could be satisfied by adjusting c¢ (the control decision) for
any ygr 2 in their range envisaged.

The question would bé: do we have an adequate number of

control variables cj, j=1,..., dim ¢ and are they appropriate-

ly placed in the system equations?

Let us clarify the implications by an example. Remember
the chemical reactor of Fig. 11. The output vector y would in

this case be (FD'CA'T) since the outflow from the reactor is
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characterized by flow rate (FD), composition (uniquely expressed
by CA) and temperature (T). We have only two manipulated vari-

ables F H and hence two controlled variables, say W and CA'

AI
Therefore, dim ¢ = 2 while dim y = 3. We should be unable to
prescribe an arbitrary value for the output vector. Indeed, the

steady-state equation y = K(c,z) of the reactor inclusive of

direct controls would be in scalar notation
F. = z1

Ca = Caa

T = K3(Wd,CAd’z)

where z. stands for the flow rate demanded (imposed) by the

1
receiving end of the pipe, and z for the whole vector of dis-

turbances. By choosing W we would be able to steer the

p’ Caq
output CA and T, but not FD' Note that our control influence
on the output T is rather complicated and the actual T depends
also on disturbances. Nevertheless we can influence it by ad-
justing wd,‘which means that we have "adequate c" for the purpose.
The question of local controls is vital for the direct me-
thod. We should, however, consider that in practical cases where
this hierarchical structure would be applied, the number of lo-
cal controls will always exceed the number of outputs which are
being prescribed. Otherwise we might doubt if it makes sense to

apply the structure: the coordinator could make all the c; deci-

sions directly.
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Let us now come back to the problem posed by the ignorance
of the feasible set at the coordination level. A solution is
subject of the next subsection.

4.2 Penalty functions in direct coordination

We can propose an iterative procedure to be used at the co-
ordination level such that the feasible set YR would not have to
be known. The main idea is to use penalty funciZons in the local
problems while imposing there the coordinator's demands. If we
use penalty function for the matching of the output, the local

problem will get the form:
maximize Qi = Qi(ci’ui) - Ki(yi—ydi)

with the substitutions

i i'q

y; = F;(c.,u;)

and subject to constraints
(cilui) € CUi

r.(c.,u.) < r.. .
i 71’ 1) — ~di

As can be seen we used penalty function to enforce the condi-

tion Y= The resource constraint could also be dealt with by

Yai-
a penalty term, if necessary. Also the substitution u, = Hiyd

may be, if needed, replaced by.penalty term. Interaction input
u; would then become a free decision variable in the local prob-

lem.
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The result of using penalty formulation is that solution to
the local problem would exist even for a non-feasible Yqi- The
demand on the output wou;d simply not be met.

We must now establish a mechanism to let the coordinator
know that he is demanding something impossible. We let his

optimization become:

maximize [0, (Yqr¥qq)=Kq (1Y gq))re--r @y (¥qrTan) Ky Yy-Yan))]
Ydlrd

where the clue is that we introduce local performances less the

penalty terms. Hence, the coordination iterations will try to

adjust Yq SO as to reduce the values of penalty terms, whereby
the local problems do the same on their part, by influencing 9i'

It can be shown, under relatively unrestrictive conditions
that when the iterations reach their limit where penélty terms
vanish, the values Yg obtained there are both feasible and
strictly optimal.

Moreover, gradient procedures can be used at the coordina-
tion level, while in the pure form of direct method the subsystem
results ai(yd'rdi) are, in general, non-differentiable.

4.3 A mechanistic system or a human decision making hierarchy’
The reader of the previous text may get confused as to what

do our considerations really apply. Let us clarify it as

follows:

(i) 1In the first place, we can obviously think of coordination
used in off-line, model-based solving of a set of local
problems. This would be "decomposition and coordination
in mathematical programming" and it is quite apprépriate
there to discuss, for example, whether gradient procedures

can be used or not.
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Should we apply the solution of optimization problem, that
is the finally obtained control values gi to a real system,
feasibility of the result with respect to the real system
(differing from the models) must be considered. The problem
of "generating feasible controls" will arise. From the con-
trol point of view we would have an open-loop structure.

In the second place, we can consider the coordination level
as acting on local decision makers who control the real sys-
tem elements and try to comply with the coordinator's demands.
Here we may not even know what is the local decision making
process. Let us look at this situation by assuming that the
coordinator works by iteration; at each step of the itera-
tive procedure the local decision makers "do their best"
with respect to the real system inputs. Would we know the
algorithm which the local decision maker is using, a dis-
cussion of time-behavior of the system from one coordina-
tion step to another could be done. Let us only state

that this behavior may be unstable due to many separate
decision makers acting on the same system. If the system

is stable and a steady-state is achieved, the coordinator
may make his next step, trying to improve the value of his
performance function (whether in the penalty form or with-
out it). Note that in the case where no penalty terms are
used the direct coordination can in principle be achieved

in one step: the coordinator sets values (yd,rd) which
should optimize the system according to his best knowledge

(i.e. according to the model of the system) and then the
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local decision makers do their job by achieving Yi= Yai
and complying with the resources constraint. .It is in
this case, however, that Yai shonld be feasible for the
real system, otherwise the expectations of the cocrdinator
may not become reality.
If the coordinator's demands are feasible for the real sys-
tem (for instance because he knows exactly the constraints,
or he has decided to move in the "safe region" only), then
the iterations of the direct method have the property that
the demands are feasible in every step of the iterative
procedure. Hence, the direct method is sometimes referred
to as "feasible method". As opposed to it, the direct-
penalty coordination is using non-feasible demands in
course of the iteraéions. When the local decision maker is
trying to comply with a non-feasible demand, his output may
violate the constraints related to the input of another sub-
system.

(iii)We can also consider a mechanistic decision making hierarchy
of control, where we implement ceftain formal algorithms
of decision making at the local level, as well as at the
coordination level. It could be an open-~loop control struc-
ture but this may not be a satisfactory and ultimate solu-
tion. The performance of control can be improved by using
feedback information; the human decision makers postulated
above in (ii) were using such information implicitly. Now
we would have to say very explicitly what kind of current

information is available and how it is being used in the
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formal algorithms. For example we can assume that the real sub-
system outputs Yy; are measured. Then we can consider them to
be used in essentially two ways: in the local algorithm and in
the coordination algorithm. The second possibility has been
quite satisfactorily explored and is discussed to some extent
below. Using this kind of feedback, we are able to obtain coor-
dination algorithms which

- end in a point non-violating the real system constraints

(provided they are of the form (ci,ui) € CUi and y ¢ Y),
- provide for a value of overall performance which is
superior to the result of open-loop control.

4.4 A more comprehensive example

A typical area of application of steady-state optimal con-
trol are the continuous chemical processes.

Let us present how the multilevel approach could be applied
to céntrol of an ammonia plant.
(i) Description of the process

Fig. 14 displays the principal parts of the plant. The
first is methane conversion,where H2 is gained from the methane
and N2 from atmospheric air, water steam being added to care
for stochiometric balance. The second is conversion of carbon

oxide, where CO is turned to CO, (CO could not be removed

2
directly). Then we have decarbonization, where CO2 is removed
from the gas stream. At this point there should be no CO or
CO2 present in the gas stream - the rests of them are neutra-

lized by turning them back into methane in the mcthavinagiTon

part of the plant. The reason for doing it is that co
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and co, are toxic to the catalyst used in the synthesis reactor.
The synthesis reactor is the last essential part of the plant -
here the mixture 3H2 + N2 reacts to 2NH3 at high pressure and
high temperature.. A cooled liquid (essentially pure ammonia)
Fa leaves the plant. The characteristic feature of the ammonia
synthesis process is that the synthesis reactor works with a
recycle, whereby its input £low consists of both the fresh gas
and of the recycled gas - the .latter with NH3 removed (trans-
ferred to the liquid Fa). The fresh gas, however, contains not
only Hy, N, but also some "inerts", i.e. components not reacting
in the process. They would mainly be. argon from the atmospheric
air and CHH due to.the methanization process used for removing
the rest CO and C02. Inerts are no harm but they would cycle in
the synthesis reactor .loop endlessly; as new inerts continuously
flow in with the fresh gas we would end in a considerable in-
crease of inerts in the loop gas, leaving no spacé for the uée—
ful H2, sz .Inerts have to be removed. There ;s, hqwever, no
practical waylto remove them selectively and the iﬁeft level is
kept down by é very simple measure: part of the loop'gas is
being blown outfiﬁto thevatmosphere as ?he so-called éurge, Fp.
(ii) The optimization préblem . |

Assume we aim at.max£mizing the sfeady—state productio;

rate Q of ammonia ( in kg/hr). We have

where rj is solubility of j-th component of the circulating gas

in liquid ammonia.
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In order to get variables of other parts of the plant in-

volved in the expression for Q let us write two mass balance

equations.

Overall mass balance of the synthesis loop will be:

where FS is the fresh gas inflow.

Mass balance of the inerts in the synthesis loop will be:

() Farin * prpi - Fsysi

where r.n is solubility of inerts in liquid ammonia, ypi is
concentration of inerts in purge gas, Yeoi the same for fresh

gas.

The use of (B) and (C) allows to arrive at
Yy .-T.
SI_IMy(1 - 1 r,)

Y .=X. . J g

(D) 0O = FS(1'-
pi "in j

At this state we assume from physical and chemical know-

ledge: rj, r.. do not depend on any plant variables, and

Ypi © ¥gi 7 Tin- Under these circumstances we can see that Q

is maximized when F is maximized, Ygi is minimized and ypi is

maximized (please look at the physical meaning). We thus would
have
Yy _.—a
Q0 = $(0,,0,,0,) = bF_(1 - 51
17%27%3 s -a

ypi
where a, b are constants. Note ¢ is in this case a strictly

order-preserving function.
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There could be three local problems: maximize FS, minimize

Y

., Mmaximize y_..
si pi

Since the local problems are of course interconnected, a
coordination will be needed to provide for max Q and preserving
all constraints at the same time. 1In an actual study performed
it was assumed that Fs will be given. It was, however, found
reasonable to replace Yei by two local performance indices, both

to be minimized:

A 1 : 1 a 2
Q1 = Yoy, * Yeor 9 T Yoy

4 4

and to form three subsystems as shown in Fig. 15. They have the

performance indices Q1, Q2 and Q3 = y_ ., respectively.

pi
We denoted by yéHu the concentration of CH,, at the output
of the first subsystem. This CH, directly contributes to the
inert content in the gas FS, therefore it makes sense to mini=-
mize it right away. The same applies to CO content here, be-
cause CO will not be removed in decarbonization. The perfor-
mance index Q2 for the second subsystem is CH, concentration in
the fresh gas streamlFS. This CHu involves result of methaniza-
tion, which had to be done on C02. Local control can decrease
this CHu by improving decarbonization, i.e. by decreasing the
rest CO2 content. Operation of the second subsystem is subject

to the constraint that methanization is always complete, i.e. no

CO2 or CO can be left in the stream.

pi’ the
concentration of inerts in the purge gas. This means of course

In the third subsystem we have to maximize'Q3 =y

that possibly little H., N2 is lost, because in the balance all

incoming inerts must be let out:
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F . = const
pYpi

Note that we could replace the goal "maximize ypi" by the
equivalent "minimize Fp".
(iii)Coordination variables and coordination method

For the non-additive function ¢ in

Q= ‘P(Q1r-~-rQN)

we have to use coordination by direct method (the price coor-
dination, described further on, could not be used here). Let
us look at the possible coordination variables. 1In principle
they should be all the subsystem outputs (or inputs). The co-
ordinator would prescribe their values and thus separate the
subproblems one from another.

Here a serious failure of the approach was encountered.
Examination of the real plant has shown that there are many
feed-forward and recycle linkages between parts of the system,
not only in the main stream. This was due to the plant design
where the linkages serve to utilize the heat energy generated
in the plant and thus make the plant self-supporting in this
respect.

The main links are shown in Fig.16. The failure of approach
consisted in the fact that to describe a crosscut through all
links would take about 40 variables; these would have to be
decision variables in the coordination problem. But all parts
of plant together had only 22 control variables to be adjusted
(the set points of 22 different controllers). Hence we would

replace a 22-variable problem by a 40-variable problem at the
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coordination level plus a need to solve the local‘problems'also.
The two-level problem was more complex and expensive than the
direct one.

An insight into quantitati?e properties of the problem and
into the actual operating experienqe has permitted to propose
an approximate solution. Only 5 out of 40 variables were found

to be "essential" and were consequently chosen as coordination

variables:
V4 - gas (CHu) inflow to the process,
Vo - steam inflow ,
Vs - gas pressure inh the gas preparation section,
VyrVg T two principal heat steam flows |,

The other vériables were found to be either directly re-
lated to the five, or were assumed to be constant and needing
no adjustment by the coordinator, or their values were almost
irrelevant for the plant optimizat%on.

Note, for example, that the coordinator would not have to
prescribe the air inflow to the process. If he sets gas and
steam, the amount of air is automatically dictated by the
required N, to H, ratio. .

The ammonia process has indicated an important topic for
hierarchical control studies: ‘subcoordination that is the use
of less coordination variables than would be required for a
strict solution.

4.5 BSubcoordination
Let us very briefly present the problem of subcoordination

for the case of the direct coordination method. The main point

TOT The cabe of The Treth TomrTiamon ToMTRY. e TeRR PR
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is that the coordinator would prescribe the output y by using a
vector v instead of Ygr where dim v < dim y. There may be two
principal ways of using v in coordination.

One way of using v could be to set up a fixed matrix R and

specify for the local problems:

Yq = Rv, that is Yai = Riv for cach subsystem ,

| Note that if we knew our system accurately, we could set
an adequate matrix R = ﬁ and a value v = ;, obtaining Yq = §d
(the strictly optimal value), whatever the dimension of v.
This makes little sense, however; model vs. reality difference
must be assumed to make the investigation meaningful.

Another way of using v could be to set a fixed function

vy(+) and require from the local problems to comply with
t{y) = v, that is yi(yi) =V, for each subsystem.

This makes more sense intuitively, since we are granting
the subproblems their freedom except for the fulfilment of the
demands specified in v. For example, we demand a total produc-
tion but do not specify the individual items. However, in this
case the subproblems are not entirely separated and analysis of
such a system is much more difficult.

Subcoordination approach is also possible in the price
methad. We will see it in the next paragraphs.

b.6 Coordination by Lhe use of prices; interaction bPalanc.
method

Let us recall the description of the system and of the con-

trol problem, as was given by (6) ... (10) in section 4.1, that
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is, recall the subsystem equations, system interconnection
equation, resource constraint, local constraints, and local per-
formance indices.

Note that even before we define the global performance
index of the system we can define the task of coordination,
which can be to influence the local decision makers in such a
way that system constraints will be preserved.

Price coordination consists in authorizing the coordinator
to prescribe prices on inputs, outputs and resources and then
permitting the local decision makers to define their own choices
of the values of these variables. The system is coordinated
when the local choices cause the interconnection equation (7)
to be satisfied and the global constraint (8) to be non-violated.
The prices which effect this state of the system can be termed
equilibrium prices, since éatisfaction of (7) means an equili-
brium of the inputs and outputs.

The equilibrium prices bring about overall system optimum

if the global performance index is a sum of local.ones

Q. (12)

It is worth remembering, that direct and penalty function
coordination methods presented before allowed a more geheral
form of global performance, see (11).

The discussion of price coordination which will now follow
omits the resource constraint (8), focusing on interconnections

(7).
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We will discuss the so-called Interaction balance method
(IBM). In this case the local problems i.e. problems associated
with the individual subsystems can be formulated as follows

(assuming Qi(ci'ui) has to be minimized):

. . » = . . . < . R - < . . . e
minimize Qi nod Ql(cl,ul)i- Xl.ul> ul,Fl(cl,ul)> (13)

subject to

(ci,ui) € CUi

. A ~ ~ ~ ~
with the results ci(x), ui(x), yi(x) = Fi(ci(x),ui(x)).

If (13) is related to a finite-dimensional problem ( as is

the case in steady-state optimization), then the scalar product

dim ui
<Ai,ui> means ji1 Aijuij' and <“if(Fi(ci'ui)> means
dim Y5
ji1 ”ijFij(ci’ui) .

In the problem (13) we assumed coordination to be effected
by a price veetor A, composed of prices on inputs in the whole
system. Hence Ai are prices on interaction input u, i the prices

u; on output y, are defined as well by virtue of (7), namely

It is therefore right to say that the results of (13) are

dependent exclusively on vector A.
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A
The interaction balance or equilibriumprices A will be

defined such as to provide for
N A N~

where y(3) = F(c(1),u(n)) .

Providing for the condition (14) to be satisfied is the
task of the coordinator. 1In the classical economics this could
be assigned to a "tatonnement" procedure at the stock exchange:
a person outside the negotiating parties would vary the price 2,
watch the responses §(x) and u(i), and stop the procedure at

A
A= A

Several questions can now be raised, for example:

- existence conditions .for i, that is for the equilibrium

price;

- system optimality with control é(i);

- procedures to obtain ;.

The answers are based upon discussion of the Lagrangian
function of the global problem. After the local minimizations

(13) have been performed, this Lagrangian is

p(2) = 0, (8, (0,8, () + <A, WO -HF (E(1),A0))>

~

and it is required that it has a maximum at A = i:

é(;) = max¢ (A) .

by
"
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If ; so defined exists, its further use to determine opti-
mal control is practically restricted to the case where (c,q),
the mathematical solutions are single-valued functions of ).
This requirement appears to be vital for applications. Unfor-
tunately we know sufficient conditions only: (¢,Q) are single-
valued if the functions Qi(-) are strictly convex and the map-
pings Fi(-) are affine (linear). With x = Q the unique solutions
c(2),0()) are optimal.

It may be appropriate to indicate that the requirement of
uniqueness of (é,&) in response to a change in ) has a simple
interpretation: since the prices ) aim at providing a match of
the outputs to the inputs of other subsystems, they should have
a well-defined influence.

In many real-life problems the unigueness of response can
be predicted by physical considerations for systems far from
being linear (remember that we fail to know necessary conditions,
while the sufficient ones are tob severe to be of much practical
use) .

It is quite easy to show an example where the uniqueness of
response will fail to appear. If ) would be price imposed by
the coordinator on some product and ;(A) the optimal amount
produced by a subsystem according to its own local optimization,
the output 9()) will not be well-defined in the particular case
where the unit production cost would be egual to A. Note that
there would be no local gain or local loss associated with the
size of production y.

Let us now turn back to the main stream of our considera-

tions. What procedures could be used at the coordination level



-59-

in the search for A? It can be shown [25] that if Qi(-) aroe
continuous and Fi(') are continuous, then gradient procedures
for A can be used, provided we find a way to deal with the points
where the (¢,0) are not unique and where the gradient is not
defined (subgradients can be considered there)., In those regions
of i-space where (8,3) are unique, the following formula holds

for the (weak) derivative of ¢ (1)
ve(2) = 4(x) - HE(C(A),000) . (15)

Note that this is exactly the input-output difference (the
discoordination in the system, and it has to be brought to zero.

The second derivative, v2¢(k), does not exist in the general
case. |

Let us mention that the interactidn galaﬁce method (IBM)
described so far can be épplied to bﬁth static and dynémic prob-
lens, beéause we are dealing with models only. 1In particular,
the search for ) is based on the differencé} QM) -HYy (A). It is,
therefore, a computational concept rather than a control struc-
ture. 1In a system which is already in operation the inter-
connection equation is satisfied all the time, for any control
c. We could never see if A is correct. We could, therefore,
use the described concept for open-loop control only. It means
that we would first compute and then apply the computed &(}) to
the real system; the result will of course strongly depend on
the accuracy of the models.

Let us now come back for a while to the resource constraint
(8):

r1(c1,u1) + ...+ rn(cN,uN)_<_rO .



This additive form of global constraint can be incorporated
in the price coordination scheme by using an additional price
vector n (the resource price) and adding to each local problem
a value <n,ri(ci,ui)>, so that the local objective function be-

comes:

By varying n the coordinator would change the resource
requirements of the local problems so as to satisfy the overall
constraint.

In the mathematical programming terminology,vn would be a
Kuhn-Tucker multiplier.

The next pafagraphs will show some other ideas of price
coordination, where feedback from the operating system will be

used to improve control.

4.7 Price coordination in steady-state with feedback to
coordinator (the IBMF method)

In this section we shall consider the optimization problem
to be in the finite-dimensional space, i.e. to be a problem of
non-linear programming. In terms of control it means control of
steady-state in a complex system., We remember from Section 2.4
that steady-state control is an appropriate technique if the
optimal state trajectory of a dynamic system is slow enough to
assume that the value of state vector x is at any time related
to control only, the state derivative x being so small as to be

neglected.
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The mappings Fi’ Qi are now functions in finite-dimensional
space. We have therefore the following model-based global prob-

lem:

N
minimize Q = I Q. (c.,u,)
. i 71
i=1 :
subject to
Y; = Fi(ci’ui)’ ie 1,N
u =Hy
(Ci,ui) £ CUi' ie1,N .

We have dropped the resource constraint for simplicity. A
solution to the model-based problem yields model-based control .
We intend now to pay considerable attention to the difference
between model and reality, let us therefore formuléte the fol-

lowing real problem :

N
minimize Q = : Q. (c.,u.)
. itTi
i=1
subject to
y; = F*i(c.,ui), ie 1,N
u = Hy
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We should notice that the only difference between model
and reality is herewith assumed to exist in the subsystem equa-
tions, that is the functions F*i(-) are different from the model
ones Fi(-). We shall indicate in the sequel some effective
way to fight the consequences of this difference.

It must be stressed, however, that differences may exist
also in the performance function and in the constraint set. For
example, if a performance function is explicitly Qi(ci'ui’yi)
then it will reduce to some Qi(ci'ui) by using the subsystem
equation, but this makes it model-based. The real Q*i(ci,ui)
would be different from Qi(ci,ui). A similar reason may lead
to the set CU*i being different from CUi'

Solution to the real problem will be termed real-optimal
contral 2*. It is not obtainable by definition since reality
is not known. We can only look for a structure which would
yield a control that would be better than the purely model-
based G, but in principle what we will achieve is bound to be
inferior to 6*.

One of the possible structures is price coordination with
feedback to the coordinator. It is shown schematically by Fig.
17.

The local problems are exactly the same as in the open-loop

interaction balance method, that is we have for each i ¢ 1,N:
minimize Qi(ci’ui) + <Ai,ui> - <pi,Fi(ci,ui)>
subject to

(C'Iu-) e CU. .
1 1 1



-63-~

The controls Si(x) determined by solving this problem
(computationally) for the current value of ) are applied to the
real system, resulting in some u, and y,. The coordination con-

cept consists in the following upper-level problem:
~e . . ol
find A = % such that a(X) - u,(c(X)) =0, (17)

Condition (17) is an equality of model-based optimal input
G4()) and of the input u,, measured in the real system and céused
by control g . Providing for this equality is the basic con-
cept of "interaction balance method with feedback" (IBMF).

‘The properties of control based on condition (17) have been
studied quite extensively, see [12]. The usual questions of
existence of 1, system optimality with control S (X) and proce-
dures to obtain X have been discussed and answers have been for-
mulated. The essence of these answers is in principle as follows.

Solution X exists, if solution ) of the open-loop interaction
balance method (IBM) exists for all s-shifted systems

u=HF(c,u) + s
where s ¢ S, and S is the set of all possible values of the
model-reality difference

H F,(c,u) - H F(c,u) = s
with (c,u) ¢ CU = CU, x ... X CUyg-

When the models do not differ from reality, 8(;) is strict-
ly optimal control and X equals equilibrium prices % which would
be obtained by solving the problem by the interaction balance
method of the previous paragraph. When models differ from
reality, the control based on (17) is in the first approximation

always non-inferior to the one based on open-loop value 3. In
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the particular case where

F*i(ci'ui) = Fi(ci,ui) + Bi ie1,N

that is the model-reality difference of the subsystems consist
in a shift, the control based on (17) is strictly real-optimal.
The open-loop would of course in this case be much inferior.

A most important feature of control based upon (17) is its
property to keep to the constraints in the real system. Note
that the real control c, equals model-based ¢ for ;ny A, be-
cause the result G(A) is applied to the system. For )= ;we also
have u, = ﬁ. Since the model-based solution will keep (éi,ﬁi)
€ CUi, i = T,N the same will be kept in the real system, but
only at A = X. Note that the open-loop control 8(?) may violate
the constraints in the real system, because at 2 =; it will in
general be u, # &.

The control based on )\ = ; does not violate the constraints
(ci,ui) € CUi if the real constraint sets equal the model ones

CuU = CUi, i ¢ 1,N. There exists also a modified method (MIBMF)

*i
where the case CU,,,i # CUi is covered by appropriate use of feed-
back information, see [12].

8 far as the procedures to find ; are concerned, iterations
have to be done at a rate acceptable by the real system, i.e. per-

mitting new values u, to establish themselves after a change of

A. Unfortunately, the expression
R,(A) = Q(X) - u, (€(1)) (18)

which has to be brought to zero is not a derivative of any func-

tion, as it was in the case of interaction balance method. The
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value 2 has.to be found by equation-solving methods, aiming at

R, (}) 0. It shpuld be stregsed that if there are inequality
constrainfs iﬂ the 1ocq; problems, R*(A) will in general be non-
differentiable.  Suitab1e numerical methods to find i.have been
proposedA[12][3iJ.

vWe a?e_nqw able to jgstify discqssionvof steady-state con-
trol hef; ag ééposed té more geperalxproblem fo;mulation in the
previous paragraph. = The reason is the practicgl field of appli-
cation of coordination principle (17): it must be iteratively
done on.the f;al sy;tem. This can be perﬁormed in stgady—state
optimization, but noF in a dynamical one. Ihe only'excgpt}on
would be iteratiye éptimization of bgtch or cycl;p processes,
the iteration iﬁ time—func£ion space being.berformed from one
batch to another. For that particular case all considerations
can be appropriately géneralized.

Let us add an example to explain what the on-line price
coordination really means. Consider the electric power system
and its customers. The amount of power that is being produced
is matched to the curreqt load. How cép we tell whether the
price on elegtrical eqefgy is gggrect since thére ig no demand-
suﬁply diffefence? Tﬁe'op-liqe price:adjugtment proposed in
this section app}ies to this problem: the price is qonsi@ered
to be correct ;ﬁen the production-load balance of the power
which has actuélly gsta#lished itself in the real system (u,)
is equal to the modelfbésed_optimal value\(G). The difference

would be used to generate price modification.
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4.8 Decentralized control with price ccordination (feediaex
to local decision units)

The structure of Fig.17, although proved to be effective
and superior to open-loop model-based'control, may be criticised;
the information about real system u, is made availablé to the
coordinator only. The local problems base on models and calcu-
late their imaginative U for each A, "knowing" that reality is
different. The scheme of Fig. 17 is therefore a Structure‘suit-
able for a mechanistic.gontrol system, but does not reflect the
situation which would be established if the local proBlems were
confined to decision makers with more freedom of cﬁbicé.

We caﬂ expect that the local decision maker would tend to
use the real value Uy g in his problem, that is thaf he would

perform

inimiz . (c.,u. + <A.,U,.> — <p..,F.(c.,u,.)> 19
m e Ql( 1l l) Al' A*l lel l( ll *l) ‘ ( ) ..

subject to

(ci'u*i) £ CUi .

~Schematically this is presented in Fig. 18 as feeding Uy
to the corresponding local problem. Even with fixed » the con-
trol exercised by local decision makers on the system as a whole
remains to some extent coordinated, since the value of 1 will

influence the control decisions. However, since u are used

¥i
locally, we may call the structure of Fig. 18 dccentrallzed.
A problem for itself is system stability or the convergence

of iterations made by local optimizers while'trying to achieve

their goals. It is obvious that all the iteration loops in the
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system are interdependent, since an Uy will depend on the deci-
sions c = (c1,...,cN) in the previous stage, that is on the de-
cisions of all decision units.

If the iterations converge, some steady-state values a(k),
G*(x) and §*(A) will be obtained for the given price vector A.

It may be predicted that if this X would happen to be x
from the previous paragraph, the result of decentralized control
would also be the same as in the previous structure. This does
not say that we should aim at it, since the results obtained
with % are not real-optimal and a better value of X may exist.

We should look for some way to iterate on prices ) in the

system of Fig. 18. A possibility might be

minimize Q =
i

| =

1 0; (&, (1) /Ty (1)) (20)
which simply means to find a price A such that the overall re-
sult of local controls be optimized.

Two properties of the problem seem predictable. If the
models are adequate, and all iterationg converge, they will
converge to the strict overall optimum for the system. If the
models differ from reality, then the constraints (ci,ui) € CUi
will be secured (like in the structure in Fig.17), but the
overall result will be suboptimal. This suboptimality is due

to the fact that in performing the local optimizations we con-

tinue to have an inadequate (model-based) value of the output y..
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5. Dynamic multilevel control

The structures of on-line dynamic control using decompo-
sition of the control problem differ from those applicable to
steady-state. The differences lie in the use of feedback from
the system in operation. In steady-state control we could use
feedback in the form of measured inputs or outputs of the sys-

tem elements and provide for an extremum of a current or "in-
stantaneous" performance index, as described above. The dynamic
optimization needs considering at time t the future behavior of
the system, that is to consider an "optimization horizon".
Since the future behavior depends on both the initial state
and the control input that follows it, we cannot determine the
optimal control unless we know the present state of the system.
It means that if we wish to have a control structure with feed-
back, this feedback must contain information on the state x(t).
There are three principal ways in which local dynamic con-
trol problems can be formed and, subsequently, coordinated by an
appropriate supremal problem. They are the following:

- dynamic price coordination,whefe time-varying prices
on the inputs and outputs are imposed by the coordina-
tor, along with the target states to be achieved by each
subsystem over the local optimization horizon;

- structure based on state-feedback concept, where the
local decision making is reduced to a static (instanta-
neous) feedback decision rule, and the coordinator sup-
plies signals which serve either to modify the local
decisions, or to modify the local decision rules, so as

to account for the performance of the system as a whole;
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- structures using conjugate variables, where the local
decision making is a kind of static (instantaneous) opti-
mization, and the optimal dynamic policy is secured by a
vector of prices on the trend of the subsystem state
(i.e. by the vector of conjugate variables) imposed on
the subsystems and readjusted by the coordinator.

In this section we shall briefly discuss these alternatives.

We will particularly expose the "dynamic" features.
5.1 Dynamic Price Coordination
Assume the global control problem of the interconnected

system to be as follows:

N t
_ £
minimize Q = .2 J qoi(xi(t),mi(t),ui(t))dt (21)
i=1
0
subject to
ii(t) = fi(xi(t),mi(t),ui(t)), i e 1,N (state equations)
yi(t) = gi(xi(t),mi(t),ui(t)), i ¢ 1,N (output equations)
u(t) = Hy(t) (interconnections)

with x(0) given, x(tf) free or specified.
Decomposition
Consider that in solving the problem we incorporate the

interconnection equation into the following Lagrangian:
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t

£
qoi(xi(t),mi(t),ui(t))dt + I <A (t),u(t)-Hy(t) dt

N th
0

0

di
where <A (t),u(t)-Hy(t)> means

u
Xj(t)(u(T)-HY(t))j .

[ =

j=1

Assume the solution to the global problem using this

Lagrangian has been found and it has provided for

A

X0 1= 1,..0,N - optimal state trajectories

N .

m,, i= 1,...,N — optimal controls

A . . 13

u;, 1= 1,...,N - optimal inputs

~ . .

yi, i=1,...,N - optimal outputs

by - solving value of Lagrangian multipliers.

Note that now the Lagrangian can be split into additive

parts, thus allowing to form a kind of local problems:

te

minimize Qi = I [qoi(xi(t),mi(t),ui(t)) +

0 (22)

+ <R ) u () = <P (e),y, (B)>]dt
where
y; (t) = g, (x;(t),m; (£),u, (t))
and optimization is subject to

x, (£) = £, (x;(t),m; (t),u,(t))

where xi(O) is given and xi(tf) is free or specified as in the

original problem.
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: : A .
In the local problem the price vector A; 1s an appropriate

A ~ L . ~ :
part of X and vy 1s also given by X as

Notice that we have put optimal value of price vector A
into the local problems, which means that we have solved the
global problem before. Thanks to it the solutions of local
problems will be strictly 6ptimél. There is little sense, how-
ever, in solving the local problems if the global was solved
before, because the global solution would provide not only 3
but also %,m for the whole system.

Short horizon and feedback at local level

To make the thing practical let us try to shorten the

local horizons and to use feedback in the local problems. If

we shorten the horizon from t_. to t!, the local problem (22)

f
becomes

tl
. f
minimize Q, = I [qoi(xi(t),mi(t),ui(t)) +
0 (23)

+ <R 0,0 (0> - <Ry 1),y (£)>]at

with xi(O) given as before, but the target state taken from the
global long-horizon-solution, xi(t%) = Qi(t%). Here we miéht
remind the reader on the discussion of multilayer hierarchies
with the divided time horizon, discussed in Secfion 2.1 (see

Fig.7).
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For the local problem (23) we must of course supply the

. o A A
price vectors Ai, u.. It may be reasonable to use also us from

i
the global solution, that is the "predicted" input value.

The short horizon formulation (23) will pay-off if we will
have to repeat the solving of (23) many times as opposed to
solving the global problem once only. Consult now Figure 19
where the principle of the proposed control structure is pre-
sented.

Feedback at the local level consists in solving the short-
horizon local problems at some intervals T1 < t% and using the
actual value of measured state x*i(kT1) as new initial value
for each repetition of the optimization problem.

This brings a new quality; we now have a truly on-line
control structure and can expect, in appropriate cases, to get
results better than those dependent on the models only.

The operation of the structure is more exactly as follows:
at t = 0 we solve the problem max Qi for the horizon [O,té] with
xi(O), then we apply control ﬁi to the real system for an inter-
val [0,T1], at t = T1 we again solve max Qi for horizon [T1,t£]
with initial state xi(T1) = x*i(T1) as measured, then we apply
control ﬁi to the real system for the interval [T1,2T1], etc.

We now have a practical gain from both decomposition and
shortening the horizon. The local problems, which have to be
repeated at intervals T1, are low-dimension and short-horizon.

We should mention disturbances which act on the real sys-
tem and were not yet shown explicitly in the formulations. Dis-

turbance prediction would be used while solving (21) and (23),
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that is the global and the local problems. And it is indeed
because of thg disturbances which in reality will differ from
their prediction that we are inclined to use feedback structure
of Figure 19.

Feedback at ;oordination level

The feedback introduced 80 far cannot compensate for_the,
errors done by the coordination level in setting the prices Q.
Another repetitive feedback can be introduced to overcome this
shortage, for example bringing to the coordinator actual value
Xy s at‘time t%] 2t%,... and asking the global problem to be
resolved for each new initial value. This principle of control
is also indicated in Figure 19.

We should very well note that feeding back the actual values
of state achieved makes sense if the models used in computation
differ from reality, for example because of disturbances. Other-
wise the actual state is.exactly equal to what the models have
predicted and the feedbaqk information is irrelevant.

A doubt may exi;t whether the feedback to the coordinator
makes sense, because the lower level problems héve to achieve
xi(t%),= Qi(t%) as their goal and already use feedback to secure
it. It should be remembered, however, that the model-based tar-
get value Qi(t%) is not optimal for the real system and asking
the local decision making to achieve‘exactly X*i(t%) = Qi(t%)
may be not advisable or eéven not feasible.

The coincidence of feedback to coordination level with
times t!, 2t% is not essential. It might be advisable to use
this feedbacktand:perform the re-computation of the global prob-

lem prior to time t}!, that is more often.
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Static elements

In a practical case it may happen that some of system ele-
ments can be approximately considered as statie, that is non-
dynamical. It can be explained as follows.

The length of the global problem horizon te has to be
matched to the slowest system element dynamics and the slowest
of the disturbances. The shortened horizon t% for the local
problems would in fact result from considering repetitive opti-
mization at the coordination level, for example as 1/10 of tf.
It may then happén that the dynamics of a particular system
element are fast enough to be neglected in its local optimiza-
tion problem within the horizon t%. This means, in other words,
that if we would take %i’si from the global optimization solu-
tion, the optimal state solution Qi follows these with negli-
gible effect of element dynamics.

To make this assumption more formal let us consider that
the system element has been supplied with first-layer follow-up
controls of some appropriately chosen controlled variables Cyv
see section 2.2. We are then allowed to assume that c, deter-
mines both X4 and ms of the original element and the optimiza-
tion problem becomes

|
te

minimize Qi = [ [qc')i (ci(t) rui(t)) + <‘;i(t)rui(t)>
0

- < (B),y; (£)>]at (24)

where qéi(-) is a reformulation of the function 953 due to

substituting <y in place of X;om. .
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Note well that although (24) will not be a dynamic problem
its results will be time functions. In particular Si will be

time-varying control. This is due to time-varying prices

>
>

Let us repeat the essential assumption under which the
dynamical local problem (23) reduces to the static problem (24):
the dynamic optimal solutions ai'ﬁi/§i were assumed to be slow.
The use of simplified models

In the described structure of on-line dynamic coordination
we have made no use till now of the possibility of having a sim-
plified model in the global problem, which is being solved at
the coordination level at times 0, t%, 2 t}, etc.

The global problem may be simplified for at least two
reasons: the solution of the full problem may be too expensive
to be done, and the data on the real system, in particular pre-
diction of disturbances, may be too inaccurate to justify a
computation based on the exact model.

Simplification may concern dimension of state vector (intro-
duce aggregated x® instead of x), dimension of control vector
(m® instead of m) and dimensions of inputs and outputs (uc==HcyC
instead of u = Hy).

The global problem Lagrangian will now be

N rt t
L= ) J t qgi (x‘i’(t) ;S (£),uS (t))dt + J £ oy,
i=1 1 1
0 0
- HSC(t)> at . (25)

The simplified solution will yield optimal state trajectory

N c c c)
X

= (x1 ¢ Xo reeer Xy and optimal price function AC. The
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linking of those values to the local problems cannot be done
directly, because the local problems consider full vectors
Xj00y and Y-

A
We have to change the previous requirement xi(t%) = Xi(t%)

to a new one
n ' — o Cypr

which incidentally is a more flexible constraint, and we also

have to generate a full price vector i:
A = RAC

where R is an appropriate "price proportion matrix". The prices
composing the aggregated A€ may be termed "group prices”.

We should note that functions Y3 and matrix R have to be
appropriately chosen. The choice may be made by model consider-
ations, but even with the best possible choice optimality of
overall solution will be affected, except for some special cases.
System tnterconnection through storage elements

The system interconnections considered till now were stiff,
that is an output was assumed to be connected to an input in a
permanent way. We may consider also another type of interconnec-

tion, a "soft" constraint of integral type:

(k1) by
(uj5 ()= vy (£))at = 0

ktb

which corresponds to taking input uij from a store, with some

output Y1y connected to the same store and causing its filling.
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Asking for integral over [ktb,(k+1)tb] to be zero means that
supply and drain have to be in balance over each balancing
period tb.

A store may be supplied by several outputs and drained by
more than one subsystem input. There may also be many stores,
for example for different products. If we assume the same
balancing period for all of them the integral constraint

becomes

J(t+1)tb

(H,u (t)- H,y (t)dt = 0
ktb 1w 27w

where u_,y, are parts of u, y connected to the stores (the
stiffly interconnected parts will be termed us,ys).

Matrices ﬁ1,ﬁ2 show the way by which u_, y_ are connected
to various stores. The number of stores is of course dim ﬁ1yw

= dim ﬁzuw. A state vector w of the inventories can also be

introduced

ktb+ t
w(ktb + t) = w(ktb) + J (ﬁ1uw(t)- szw(t)dt (26)

ktb

With both stiff and soft interconnections present in the

system, the global problem Lagrangian becomes
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t tf

N f
L= ) J qo'(x'(t)’mi(t)’ui(t))dt +J <)\(t),us(t)—Hys(t)>dt +
i=1 ot
0 0
szE‘_1 (k+1)tb
+ ftb < nk, [ (ﬁ1u (t)-H,y (t)dt > (27)
- W 27w
k=0
ktb

and we of course continue to consider

xi(t) fi(xi(t),mi(t),ui(t)), i=1,...,N

yi(t) = gi(xi(t),mi(t),ui(t)) i=1,...,N
x; (0) given, x, (t;) free or specified, i e 1,N .

In comparison with the previoﬁs Lagrangian'a new.term has
now appeared, reflecting the new constraint. Note that prices
”k associatéd with the integral constraint are constant over
periods tb. Note also, that if tb will tend to zero, the
integral constraint gets similar to the stiff one and the step-
wise changing % will change continuously, like 3 does.

With two kinds of interconnections the local problems also

change correspondingly and they become

t
minimize Q;= J f[q-oi(xi(t),mi(t),ui(t))+<’)\\i(t),usi(t)> - (28)

0

N k
-<u; (8),yg; (£)>]dt + E
0
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where ysift) = gsi(xi(t),mi(t),ui(t»,ywi(t) =g (xi(t),mi(t),

wi
ui(t)) and optimization is subject to

x, (t) = £, (x;(t),m, (t),u, (L))
xi(O) given, xi(tf) free or specified.

A new quality has appeared in problem (28) in comparison
with (23): the inputs us taken from the stores are now free
control variables and can be shaped by the local decision maker,
who previously had only m, in his hand. The local decisions
will be under the influence of prices X and ﬂ=(n0,n1,...), where
both % and % have to be set by the solution of the global prob-
lem.

The local problem (28) has no practical importance yet; it
will make sense when we introduce local feedback and shorten the
horizon, like it was in the previous stiff-interconnection case.

We .shall omit .the details and show it only as a cpn;rol
scheme (see Figure 20).

Thinking about how to improve action of the coordinator we
made previously a proposal to feed actual x*(t%) to his level.
We have now additional state variables, the inventories w. If
the price ﬂk is wrong, the stores will not balance over
[ktb,(k+1)tb]. It is almost obvious that we can catch-up by

influencing the price for the next period ﬂk+1

and that we should
condition the change on the differencevw[(k+1)tb]— w*[(k+1)tb],
where w,(-) is a value measured in the real system. This kind

of feedback is also shown in Figure 20.
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Conclusion on dynamic price coordination

It has been shown that time-varying prices are a possible
coordination instrument which can be used in a multilevel struc-
ture of on-line control. They must, however, be accompanied by
prescribing also the target states.

The local problems may be formulated as short-horizon and
each of them has low dimension. The coordination level must
solve the global problem for full horizon’in order to generate
the optimal prices and the target states for the local problems.
It is expected that a simplified global model may be used in
appropriate cases.

The price coordination structure applies to systems with
stiff interconnections and also to systems with interconnections
through storage elements.

The operation of the structure depends on the possibility
of numerical solution of optimization problems.

Analytical solutions of the dynamic problems involved are
not needed, therefore we are by no means restricted to linear-
guadratic systems.

5.2 Multilevel control based upon state-feedback concept

The literature on optimal control has paid considerable
attention to the structure where the control at time t, that is
m(t), would be determined as a given function of current state
x(t). Comprehensive solutions exist in this area for the linear
system and quadratic performance case, where the feedback func-

tion proved to be linear, that is, we have
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m(t) = R(t) x(t)
where R(t) is in general a time-varying matrix.

Trying to apply this approach to the complex system we
might implement for each local problem

A
m, (t) = R,.(t) x, (t) (29)

where Rii is one of the diagonal blocks of the matrix R.

The result of such local controls, although all state of
the system is measured and used, is not optimal. Note that for
%i(t) we would rather have to use

m; (£) = R, (£)x(t)
that is we should make ai(t) dependent on the whole state x(t).

We can compensate for the error committed in (29) by adding

a suitably computed correction signal

3>

A

i(t) = Rii(t)xi(t) + Vi(t) . (30)

The exact way to get Gi(t) would be to generate it contin-
uously basing upon the whole x(t). This would, however, be
equivalent to implementing state feedback for the whole system
directly, with no advantage in having separated the local prob-
lems.

A

From the local problem point of view, adding Vi(t) as in
(30) means, in fact, overriding the local decision. 1In particular,
dim v, = dim m,.

i i

Exactness has to be sacrificed. With this in mind we may

propose various solutions, for example ( see Figure 21).

N
(1) v will be generated at t = 0 for the whole optimization
horizon t_. (open-loop compensation);

£
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~

(i1) v will be generated at t = 0 as before but will be recom-

puted at t = t;

£ <t

£ using actual x(t%), etc. (repetitive com-
pensation) ;

(iii)\A/i will not be generated at all, but we implement instead
in the local problems

m; (t) = R, (€)%, (¢) (31)
where Rii is adjusted so as to approach optimality. This struc-
ture may be referred to as decentralized control. We could
think of re-adjusting ﬁii at- some time intervals, which could
e looked upon as adaptation. This adaptation would present a
way of on-lince coordination of the local decisions.

It may be worthwhile to mention that local decision making
based upon (29), (30) or (31) makes more sense for a mechanistic
implementation than for a hierarchy of human operators, where
the previous approach based on "maximization of local perfor-
mance supject to imposed prices" seems to be more adequate, to
what really happens in the system.

We should also remember that the feedback gain solutions
to cptimization problems are available for a restricted class
of these problems only.

5.3 JStructures using conjugate variables

It is conceivable to base on-line dynamic control upon
maximization of the current value of the Hamiltonian, thus
making a direct use of the Maximum Principle.

For the complex system optimization problem, described as

(21) at the beginning of this section, the Hamiltonian would be

qoi(xi(t),mi(t),ui(t)) +<yp (t) , £(x(t),m(t) ,u(t)>

(32)
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The interconnection equation

u(t) - Hy(t) = u(t)- Hg(x(t),m(t),u(t))= 0
provides for u(t) to be a function of (x(t),m(t)) in the inter-
connected system

u(t) = ¢(x(t),m(t))

Therefore

o~ - Ty ey () my (8) g e (t),mE)))+
+’(L'(t),f(X(t) Im(t)lq)(x(t) Im(t)))> (33)

Assumc the global problem has been solved (model-based)
using this Hamiltonian and hence the optimal trajectories of
conjugate variables ¥ are known.

We are going to use the values of $ in local problems.

I'irst let us note that having $ we could re-determine opti-
mal control by performing at the current time t

maximize # = - qoi(xi(t),mi(t),¢i(xi(x(t),m(t)))+

Il e~

i=1

+ P (), F(x(t)  m(t),d(x(t),m(t)))> (34)

where 'he problem is an "instantaneous maximization" and needs
no consideration of final state and future disturbances. This
information was of course used while solving the global problem
and determining $ for the whole time horizon.

For the (34) to be performed we need the actual value of

state x. We could obtain it by simulating system behavior
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starting from the time ty when initial condition x(t1) was

given, that is by using equation
X(t) = £(x(t),m(t), ¢ (x(t),m(t)))

with x(t1) given and m = @ known for [t1,t] from the previous
solutions of (34).

We could also know x(t) by measuring it in the real system
(note that a discussion of model-reality differences would be
necessary) .

Problem (34) is static optimization, not a dynamic one.

We would now like to divide it into subproblems. It can be
done if we come back to treating u{(t)-Hy(t) = 0 as a side con-

dition and solve (34) by using the Lagrangian

N
L=- ) qoi(xi(t),mi(t),ui(t)) + <P(t),E(x(t),m(t),ult)) +
i=1
+ <a(t),u(t) - Hy(t)»> (35)
where y(t) = g(x(t),m(t),u(t)) .

Before we get any further with this Lagrangian and its
decomposition let us note the difference with respect to dyna-

mic price coordination presented before. We have had there

t
N £
I g (x;(8),m, (£),u (t)dt +J <A (t),u(t)~-Hy (t)>dt

subject to

x, (t) = £, (x, (£),m (£),u, (), i T,N

It was a dynamic problemn.
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In the present case there are no integrals in L(-) and the
dynamics are taken care of by the values of conjugate variables
$. The differential equations of the system are needed only to
compute the current value of x in our new, "instantaneous"
Lagrangian. No future disturbances are to be known, no optimi-
zation horizon considered - all these are imbedded in Q.

Assume we have solved problem (35), using system model
i.e., by computation and we have the current optimal value of

A
price A, that is Q(t). We can then form the following static

local problems to be solved at time t

maximize L= ~dg; (%5 (£) m () ,ui(t)+<i$i(t) £ (x (1) m, (8) yu; (2))>

A A
+ <xi(t),ui(t)> - <ui(t),yi(t)> . (36)

These goals could be used in a structure of decentralized
control, see Figure 22. The local decision makers are asked
here to maximize Li(') in a model-based fashion and to apply
control ai(t) to the system elements. Current value xi(t) is
needed in performing the task. The coordination level would
supply $i(t) and the prices Qi(t),ai(t) for the local problem.
They would be different for each t.

Note that there is no hill-climbing search on the system
itself.

Figure 22 would first imply that the local model-based prob-
lems are solved immediately with no lag or delay. We can therefore
assume, conceptually, that the local decision making is nothing
else but implementation of a state feedback loop, relating con-

trol ﬁi(t) to the measured xi(t).



-86-

If analytical solution of (36) is not the case we have to
implement a numerical algorithm of optimization and some time
will be needed to perform it. An appropriate discrete version
of our control would have to be considered, but we drop this
formulation.

Now let us think about feedback to the coordinator. We
might decide to let him know the state of the system at some
time intervals t!, that is x(kt%). On this he could base his

solution @ for all t > kt! and also the prices 3 for the next

f
interval [kt%,(k+1)t%]. This policy would be very similar to
what was proposed in the "dynamic price coordination”.

It might be worthwhile to make again some comparisons be-

tween dynamic price coordination and the structure using both
prices and conjugate variables.

In the "maxXimum principle” structure the local problems
are static. The local goals are slightly less natural, as they
involve < @i,ii(t)> that is the "worth of the trend". This would
be difficult to explain economically and hence difficult to imple-
ment in a human decision making hierarchy. As the problem is
static, no target state is prescribed.

Note that both these cases avoid to prescribe a state tra-
jectory. It is felt that in the dynamic control this kind of
direct coordination would be difficult to perform if model-
reality differences are assumed.

5.4 A comparison of the dynamical structures

We have shown three main possibilities to structure a dy-

namic multilevel control system, using feedback from the real

system in the course of its operation. We do not think it
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possible at this stage to evaluate all advantages and drawbacks
of the alternatives. It may be easily predicted that if the
mathematical models used do not differ from reality, all struc-
tures would give the same result, the fully optimal control.

The clue is what will happen if models are inadequate. Quanti-
tative indications are essentially missing in this area, although

efforts are being made and some results are available [11],[13],

Another feature of the structures concerns their use in a

human decision making hierarchy. 1In that case it is quite

essential what will be the local decision problem, confined to

the individual decision maker. He may feel uncomfortable, for

example, if asked to implement only a fcedback decision rule
(as it happens in the "state feedback” structure), or to account

for the worth of the trend <$i(t),§i(t)> in his own calculations,

as it is required in the structure using conjugate variables, see

Table 1.
Table 1. Comparison of dynamic coordination structures.

SYSTEM LOCAL LOCAL

TYPE COORDINATOR PROBLEMS GOALS
DYNAMIC solves global problem, |dynamic maximize performance,
PRICE sets prices A and tar- |optimiza- achieve target state
COORDINATION gets %i tion

STATE-FEEDBACK | solves global problem, |state feed-

CONCEPT

supplies compensation
. A
signal v,

back decision
rule

no goal

USING solves global problem, |static maximize performance
CONJUGATE sets prices A andAcon— optimiza- inclusive of
VARIABLES jugate variables wi tion <$i(t),ii(t)>




-88-

6. Conclusions

Hierarchical control systems, as a concept, are relatively
simple and almost self-explanatory. They exist in many applica-
tions, ranging from industrial process control, through produc-
tion management to economic and other systems [10],[171,(23],
[30]1,[33]. Some of these systems may involve human decision
makers only, other may be hierarchies of control computers, or
mixed systems. The hierarchical control theory is developing
quite rapidly; its goals may be defined as :

- to explain behavior of the existing systems, for example

find out the reasons for some phenomena which occur;

- to help designing new system structures, for example deter-
mining what decisions are to be made at each level, what
coordination instruments are to be used, etc;

- to guide the implementation of computer-based decision
making in the system.

In the first two cases a qualitative theory may be sufficient,
whereby the models or the description of the actual system do not
have to be very precise. The available hierarchical control theory
seems to be quite relevant for this kind of applications, and can
Nelp in drawing conclusions as well as in making system design de-
Cisions.

The third case calls for having relatively exact models of
the system to be controlled (although suitable feedback structures
relax the requirements) and calls also for having appropriate de-
cision making algorithms, which would have to be programmed into
the control computers. The existing theory and above all the

existing experience are rather scarce in this area.
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