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ABSTRACT

The purpose of this paper is to describe the main
concepts, ideas and operating principles of hierarchical
control systems. The mathematical treatment is rather
elementary; the emphasis of the paper is on motivation
for using hierarchical control structures as opposed to
centralized control. The paper starts with a discussion
of multilayer control hierarchies, i.e. hierarchies where
either the functions or the time horizons of the subsequent
layers of control are different. Some attention has been
paid, in this part, to the question of structural choices
such as designation of control variables and selection of
the time horizons. Next part of the paper treats decompo
sition and coordination insteady-state control: direct
coordination, penalty function coordination and price
coordination are discussed. The focus is on model-reality
differences, that is on finding structures and operating
principles that would be relatively insensitive to distur
bances. The last part of the paper gives a brief presenta
tion of the broad and still developing area of dynamic multi
level control. rt was possible, within the restricted space,
to show the three main structural principles of this kind
of control and to provide for a comparison of their proper
ties. A list of selected references is enclosed with the
paper.

This paper is, in a sense, a forerunner of the book
"Coordination and Control in Hierarchical Systems," by
W. Findeisen, and co-authors, to appear in 1979 qt J. Wiley,
London, as a volume in the IIASA International Series. The
results contained in the paper, as well as those in the
above mentioned book, were obtained over a rather long re
search period. A partial support of this work by NSF Grant
GF-37298 to the Institute of Automatic Control of the
Technical University of Warsaw and to the Center for Control
Sciences, University of Minnesota, is gratefully acknowledged.
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1. Introduction

The control of complex systems may be structured in the

hierarchical way for several reasons. Some of them are the

following:

the limited decision making capability of an individual

is extended by the hierarchy in a firm or organization

subsystems (parts of the complex system) may be far

apart and have limited communication with one another;

there is a cost, delay or distortion in transmitting

information;

there exists a local autonomy of decision in the sub

systems and their privacy of information (e.g. in the

economical system).

In this paper we intend to present the basic principles

and features of hierarchical control structures, in a possibly

simple manner. Let us note that from the point of view of

general principles it is, to a certain degree irrelevant whether

we discuss a multilevel arrangement of computerized decisions,

or a hierarchy of human decision makers, under the assumption

that human decisions will be based on the same rational grounds.

In particular , to both would apply the structural principles

and several features of the coordination methods, e.g. the

danger of violating the constraints, consequences of setting

non-feasible demands, etc.

It shall be stressed that the paper is concerned with the

contpol of systems, which means that the following is essential:

we assume the system under control to be in operation

and to be influenced by disturbances;
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curr~nt information about the system behavior or about

the disturbances is available and can be used to improve

the control decisions.

These two features make this study differ from studies

of the problems of planning, scheduling, etc., where the only

data we can use to determine a control or a policy come from

an a priori model.
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2. Hierarchical control concepts

A "complex system" will be an arrangement of some elements

(subsystems) interconnected between their outputs and inputs,as

it happens for example in an industrial plant. If we describe

the interconnections by a matrix H we obtain a scheme as in

Figure 1. The matrix H reflects the structure of the system.

Each row in this matrix is associated with a single input of a

subsystem. The elements in the row are zeros except for one

place, where a "1" tells to what single output the given input

is connected.

We are now interested in control of systems like Figure 1

by use of some special structures, referred to as "hierarchical".

There are two fundamental and by now classical ideas in hier

archical control:

(i) the multilayer concept (Lefkowitz 1965), where the

action of determining control for an object (plant)

is split into algorithms (called "layers") acting at

different time intervals;

(ii) the multilevel concept (Mesarovi6 et al., 1965-1970)

where the goal of control of an interconnected, com

plex system is divided into local goals and accord

ingly coordinated.

The multilayep concept is best depicted by Figure 2, where

we envisage the task of determining control m as being split

into:

Follow-up Control, causing contpolled vapiables c to be

equal to their desired values cd'
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Optimization, or an algorithm to determine optimal values

of cd' assuming some fixed parameters B of the plant and/or

environment,

Adaptation, with the aim of setting optimal values of B.

The vector of parameters B may be treated more generally

as determining also the structure of the algorithm performed at

the lower layer and may be divided into several parts which would

be adjusted at different time intervals: Thus, we might speak

about having several adaptation layers.

The most essential feature of the structure in Figure 2 is

that the layers intervene at different and increasing time inter-

vals and that each of them is using some feedback or environ-

ment information. The latter is shown in the figure by dotted

lines.

The application of structures like Figure 2 is usually

associated with control of industrial processes, e.g. chemical

reactors, furnaces, etc. It is not exclusive of other applica-

tions. For example the same philosophy underlies the case where

the higher level of authority prescribes certain goals to be

followed, but does not go into the detailed'decisions necessary

to actually follow the goals. Since it is the responsibility

of the higher level to chose the optimal goals - the lower level

may not even know the criterion of optimality.

The philosophy of a system like Figure 2 is clear and almost

obvious: it is to implement control m, which cannot be strictly

optimal (due to discrete as opposed to continuous interventions

of the higher layers, which are thus unable to follow the strict-

ly optimal continuous time pattern), but may possibly be obtained
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in a cheaper manner. The clue must, therefore, be the tradeoff

between loss of optimality and the computational and informa

tional cost of control. A problem of that kind is most sound

technically and also most difficult to formalize in a way per

mitting effective solutions.

The multilayer concept can also be related to a control

system where the dynamic optimization horizon has been divided,

as illustrated in Figure 3. The following two features are now

essential:

each of the layers is considering a different time

horizon; highest layer has the longest horizon;

the "model" used at each layer or the degree to which

details of the problem are considered is also different:

the least detailed consideration is done at the top

layer.

Control structures of the kind presented in Figure 3 have

been most widely applied in practice, for example in industrial

or other organizations, in production scheduling and control,

etc. These applications seem to be rather ahead of formaltheo

ry, which in this case - as it also was for Figure 2 - fails to

supply explicit methods to design such systems. For example,

we would like to determine how many layers to form, what horizon

to consider at each layer, how simple the models may be, etc.

Except for some rather academic examples, these questions can

be answered only on the case by case basis.

The multilevel concept in hierarchical control systems has

been derived from decomposition and coordination methods devel

oped for mathematical programming. We should especially note
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the difference between:

(a) decomposition applied to the solution of optimization

problems, where we operate with mathematical models only and

the goal of decomposition is to save computational effort,

(b) multilevel approach to on-line control, where the

following features are important:

the system is disturbed and the models are inadequate,

reasonable measurements are available,

no vital constraints can be violated,

computing time is limited.

The "Mathematical Programming" decomposition can be applied

directly only as an open-loop control ( as a rule - with model

adaptation) as shown in Figure 4. But here in fact any method

of solving the optimization problem can be used and the results

achieved will be all the same - all depending on model accuracy.

Nevertheless, the study and development of decomposition methods

in programming is highly desirable even from the point of view

of control. The open-loop structures like Figure 4 should not

be dismissed, since they offer advantages of inherent stability

and fast operation. Structuring the optimization algorithm in

Figure 4 as a multi-level one may also be desirable Eor the

reasons of software (computational economy) as well as hardware

(multi-computer arrangement) considerations. Nevertheless, in

the rest of the paper we shall be paying much more attention

to those multilevel structures of control where feedback infor

mation from the real system is used to improve control decisions.

Figure 5 illustrates what we mean.
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It is essential to see in Figure 5 that we have loaal

deaision units and a aoordinator, whose aim it is to influence

the local decision units in such a way as to achieve the over

all goal. All these. units will use mathematical models of the

systems elements, but they may also use actual observations.

If we now look at the hierarchical systems in the whole

(compare Figures 2,3 and 5) we see that they have one feature

in common: the deaision making has been divided. Moreover, it

has been divided in a way leading to hierarchical dependence.

This means, that there exiDt DeVeral deaision units in the

struature, but only a part of them have aaaess to the aontrol

variables of the proaess. The others are at a higher level of

the hi~rarahy - they may define the tasks and aoordinate the

lower level units, but they do not override their deaisions.

We should say a few words about why the decision making

should be divided and why we should have a hierarchy, as op

posed to parallel decision units.

Some of the more general reasons were mentioned at the

beginning. Let us add, that in industrial control applications

the trend towards hierarchical control can also be associated

with the technology of control computers.

Namely, the advent of microprocessors makes control com

puters so cheap and handy that they may be introduced almost at

every place in the process, where previously the so-called

analog controllers had been used. The information processing

capabilities of the microprocessors are much more than needed

to replace the analog controllers and they may easily be
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assigned an appropriate part of the higher layer control functions,

e.g. optimization.

All the above speaks for decentralization but it does not

say yet why should we have coordination of the decentralized

decision units. The general answer would be that in several

cases the performance of a controlled system with a purely de-

centralized control structure may be unsatisfactory, if its

internal interconnections are intensive.

Some of the other reasons for using hierarchical rather

than centralized structures of control are:

the desire to increase the overall system reliability

("robustness": will the system survive if one of the

control units breaks down),

the possibility that the system as a whole will be

less sensitive to disturbance inputs, if the local

units can be made to respond faster and more adequately

than a more remote central decision unit.

The tasks of the theory of hierarchical control systems

may be twofold: we may be interested in the design of such

systems for industrial or organizational applications, or we

may want to know how an existing hierarchical control system

behaves.

example.

The second case applies to economic systems, for

The focus of the two cases differs very much, as do,

the permissible simplifications and assumptions that can be made

in the investigation.

For example, in relation to the multilevel system of Figure

5, if we want to design such a system, we would have to deal

with questions like:
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what kind of coordination instruments should the

coordinator be allowed to use and how will his decisions

enter into the local decision processes?

how much feedback information should be made available

to the coordinator and to the local decision units?

what procedures (algorithms) shall be used at each level,

respectively, in determining the coordinating decisions

and the control decisions (control actions) to be applied

to the real system?

how will the whole of the structure perform when distur

bances appear?

what will be the impact of distortion of information

transmitted between the levels? etc. etc.

In an existing system som~ of the above questiorts were

answered, when the system was designed and put into operation.

However, we are often interested in modifying and improving an

existing system, and the same system design problems will come

up again.



-10-

3. Multilayer systems

3.1 Temporal multilayer hierarchy

Let us discuss the two principal varieties of multilayer

systems in some more detail, starting with the temporal multi-

layer hierarchy.

One of the most essential features of a dynamic optimiza-

tion problem is that, for the control or decision to be taken
(

and applied at the current time t, we consider the future be-

havior of the system. We deal with the optimization horizon.

As mentioned (see Fig.3), the optimization horizon can be divi-

ded, which results in a specific hierarchical system.

Let us exemplify the operation of such a hierarchy by refer-

ence to control of a water supply system with retention reservoirs.

The top layer would determine, at time zero, the optimal state

trajectory of water resource up to a final time, e.g. equal one

year. This would be a long horizon planning and the model sim-

plification mentioned before could consist in dropping the

medium-size and small reservoirs, or lumping them into a single

equivalent capacity. The model would be low-order, having only

a few state variables (the larger water retentions). We can see

on this example why it is necessary to consider the future when

the present decision is being made and we deal with a dynamical

system: the amount of water which we have in the retention at

any time t may be used right away, or left for the next week,

or left for the next month, etc., etc. Note that the outflow

rate which we command today will have an influence on the reten-

tion state at any future t.
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It might be good to note the difference between control of

a dynamic system and control o~ a stat.ic time-varying system.

In the latter .casepothing is being accumulated or stored and

the present control decision does not influence the future. An.. .

example might be the situation when we consider supplying water

to a user who has a time-varying demand, but no storage facility

of any kind.

The long horizon solution does supply the state trajectory

for the whole year, therefore also for the first month, but this

solution is not detailed enough: the states of medium size and

small reservoirs are not specified. The intermediate layer would

now be acting, computing - at time zero - the more detailed state

trajectory for the month.

From this trajectory we could derive the optimization prob-

lem for the first day of system operation. Here, in the lowest

layer, an all-detailed model must be considered, since we have

to specify for each individual reservoir what is to be done, for

example what should be the actual outflow rate. We consider

each reservoir in detail, but we have here the advantage of con-

sidering a short horizon.

Let us now describe this hierarchy more formally.

Assume the water system problem was

maximize
t f 1 1 . 1 1 ..

JfO(X (t),m (t),z (t))dt,

to

and the system is described by state equation

·1 1 1 1 1x (t) = f (x (t) ,m (t) ,z (t)) •
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1In those expressions x stands for the vector of state

variables, m1 for vector of manipulated variables (control va

riables), z1 for vector of disturbances (the exogenous inputs).

The state x 1 (to) is given and x
1

(t f ) is free or specified as

the required water reserve at t = t f .

Let us divide this problem between three layers.

(i) Top layer (long horizon)

with

maximize
t f 3 3 3 3J fO(x (t),m (t),z (t»dt

to

·3 3 3 3 3 3 3x (t) = f (x (t),m (t),z (t»,x (to) given, x (t f ) free or

specified like in the above.

3 3'
Here, x is the simplified (aggregated) state vector, m

is simplified control vector, z3 is simplified or equivalent

disturbance.

Solution to long-horizon problem determines, among other

... 3 ( ') . .things, state x t f 1.e., the state to be obtalned at time t f
(this could be one month in the water system example). This

state is a target condition for the problem considered at the

layer next down the hierarchy.

(ii) Intermediate layer (medium horizon)

I
tf 2 2 2 2

maximize fO(x (t),m (t),z (t»dt

to
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with

·2 2 2 2 2 2 2x (t) = f (x (t) ,m (t) ,z (t)), X (to) given, x (t f ) given

""3 .
by x (tfl .

The final state requirement cannot be introduced directly

because vector x 2 has a lower dimension than x 3
, according to

the principle of increasing the number of details in the model

as we step down the hierarchy. We must introduce a function y2

and require

Function y2 is related to model simplifications (aggregation

of state as we go upwards) and should be determined together with

those simplifications.

Solution to the lntermediate layer problem determines among

other things the value of ~2(xf')i.e., the state to be obtained

at t = tf' (this could be one day in the water system example).

(iii) The lowest layer (short horizon)

J
t f 1 1 1 1

maximize fO(x (t),m (t),z (t))dt

to

with

-1 1 1 1 1 1
x (t) = f (x (t),m (t),z (t)),x (to)

by y 1 (x1 (t
f

')) = ~2 (tf') •

1
given, x·(t f '} gi~en

We drop explanation of the details of this problem since

they are similar to those of previous problems.
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Note only that the functions f6(·) used here are the

same as in the original problem (this means "full" model), but

the time horizon is considerably shorter. The lowest layer

"1solution determines the control actions m to be taken in the

real system.

Consult Fig. 6 for a sketch of the three layers and their

linkages.

Please note that if no model simplifications were used the

multilayer structure would make little sense. If we used the

full model at the top layer, we wOl.,lld have determined the trajec-

~1 . A1
tory x and the control act10ns m right there, and moreover not

only for the interval (to,tt') but for the whole horizon (to,tf ).

The lower layers would only repeat the same calculations.

Let us now introduce feedback, trying to use the actual sys-

tern operation to improve control. One of the pos$ibilitieswo~ld

be to use the really obtai~ed x
1
(ti') as the initial condition

for the intermediate layer problem. This means that at time t' ,
f

(one day in the example) we re~solve the intermediate layerprob-

lem (ii) using as initial condition:

After the second day, i.e., at t = 2ti' we would use

and so on.
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This way of using feedback is often referred to as "repeti

tive optimization", because the computational ~open-loop) solu

tion will be repeated many times in course of the control system

operation.

The same feedback principle could be used to link feedback

information up to the higher layers, with a decrea~ed repetition

rate. We shall refer to this concept of feedback when dealing

with dynamic coordination in multilevel systems.

Consider what would be obtained if we used no feedback in

form of really achieved states. The system would be a mUltilayer

structure but its performance might be unnecessarily deteriorated.

Note that without any updating the case would correspond to cal

culation of the targets for all days of the year being done at

time zero, thus depending entirely on the accuracy of the model

and prediction of environment behavior. The prediction itself

calls for repetition of the optimization calculation at appro

priate intervals. Dropping the feedback would be a waste of

available information.

Needless to say that feedback would be redundant in the

case where the model used at lowest layer would exactly describe

the reality, inclusive of all disturbances - but this is not

likely to happen.

An example of existing multilayer hierarchy is shown iri

Fig. 7, based on a state-of-the-art report on integrated control

in steel industries (IIASA CP-76-13). We can see there how the

time horizon gets shorter when we step down from long-range

corporate planning to process control. It is also obvious that

the problems considered at the top do not encompass the details.
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On the contrary, at the bottom level each piece of steel must

receive individual consideration, because the final action (mani

pulation) must be specified here.

It is a proper time now to ask the question if the top

level model can really be an aggregated one and how aggregated

it can be. A qualitative answer is as follows: the details

of the present state have little influence on the distant future,

and also: the prediction of details for distant future makes

no sense, because it cannot be reliable. Quantitative answers

are possible only for specific cases.

The multilayer hierarchy of Fig.3,6 or 7 made use of dif

ferent optimization horizons; it may be appropriate to say a

few words about the choice of horizon in a control problem.

Roughly speaking, we may distinguish two kinds of dynamic

optimization problems:

(i) problems where the time horizon is implied by the problem

itself,

(ii) problems where the choice has to be made by the problem

solver.

Examples of the first variety are: a ship's cruise from

harbor A to B, spaceship flight to the moon, one batch in an

oxygen steel making converter.

Examples of the second kind could be: operation of an

electric power system, a continuous production process, oper

ation of a shipping company, operation of steel making shop.

For the problems of the second kind it is necessary to

choose an optimization horizon. We are going to show, in a

rather qualitative way, how this choice depends upon two
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principal factors: dynamics of the system and characteristics

of the disturbance.

Assume we have first chosen a fairly long time horizon t f

and formulated a problem

Itfmaximize Q = fO(x(t) ,m(t) ,z(t»dt

to

for a system described by

~(t) = f(x(t),m(t),z(t»

with x(t
O

) known andx(t f ) free.

Because of the disturbance z this is a stochastic optimi-

zation problem and we should speak about maximizing expected

value of Q, for example. Let us drop this accurate but rarely

feasible approach and assume that we convert the problem into

a deterministic one by taking 2, a predicted value of z, as if

it was a known input. Assume we have got the solution: state
A A

trajectory x and control m for the interval (to,t f ).

Fig. 8 shows what is expected to result in terms of a
....

predicted z and of the solution x. There seem to be two cru

cial points here. First, a predicted z will start from the

actually known value z(tO) and always end up in a shape which

is either constant or periodic. This is because when the "cor-

relation time" elapses the initial value z(tO) has no influence

on the estimated value of the disturbance and what we get as z

must be the mean value or a function with periodic properties.

Secondly, if (to,t f ) is large enough (say one year for an

industrial plant) we expect that in a period far from t = to
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the initial state x(t
O

) has no influence any more on the optimal

values x(t). If we are still long before t = t f , the final

conditions have no influence either.

Thus what we expect is that the calculated at t = to opti
A

mal trajectory x will exhibit a quasi-steady state interval

A
(t 1 ,t2 ) where x depends only on z. But since z is going to be

either constant or periodic, ~ will also do so (a more thorough

discussion of it can be found elsewhere (Findeisen 1974).

The above has been a qualitative consideration, but it

allows us to explain why practically we would be allowed to con-

sider only (t
o
,t1 ) as the optimization horizon for our problem.

Note that if we decide to use this short horizon we must formu-

late our problem as one with given final state:

}
t 1maximize Q = fO(x(t) ,met) ,z(t))dt

t o

for a system described by. -
x(t) = f(x(t),m(t),z(t))

A .

with x(tO) known and x(t1 ) given as x(t 1 ) from Fig. 8.

o '"The next clue is that the solutlon x got from this problem

A

and the control m are correct only for a short portion of (t
o
,t1 )

due to the fact that real z will not follow the prediction z.
Thus we have to repeat the solution after some interval 0 much

shorter than (t1-t
O
)' using the new initial values z (to+o) and

x(to+o). The horizon should now reach to t
1

+0. We have a

floating horizon or shifted horizon control scheme.
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It is relatively easy to verify our reasoning by a linear-

quadratic problem study, by simulation or by just imagining how

some real systems operate.

If we want a conclusion to be stated very briefly we can

say: "the optimization horizon is long enough if it permits to

take a proper control decision at t = to".

3.2 Functional multilayer hierarchy. Stabilization and opti-

mization layers

The Introduction has explained very briefly (see Fig.2)

what we intend to achieve by a functional mUltilayer hierarchy:

a reduction in the frequency and hence in the effort of making

control decisions.

Let us discuss the division of control between the first

two layers: stabilization(direct control, follow-up control)

and optimization, see Fig.2.

Assume that for a dynamic system described by

x(t) = f(x(t),m(t),z(t))

we have made a choice as to what variables of the plant should

become the controlled variables, see Fig.9. We do it by setting

up some functions h(·), relating c(t) to the values of x(t) ,m(t)

at the same time instant

c(t) = h(x(t),m(t)) •

We will assume that c are directly measured (observed) .

•Functions h(·) would be identities c = x if we chose the

state vector itself as controlled variables - but this choice

may be neither possible nor desired and a more general form

expressed by function h(·) is appropriate.
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The direct control layer (Fig. 9) will have the task of

providing a follow-up of the controlled variables c with respect

to their set-points (desired values) cd:

DIRECT CONTROL LAYER: provide for c = cd

The optimization layer has to impose cd which would maxi

mize the performance index of the controlled system ("plant" in

the industrial context):

OPTIMIZATION LAYER: determine cd such as to maximize Q .

Note that Q has to be performance assigned to the operation

of the controlled system itself, for example the chemical reac-

tor's yield, with no consideration yet of the controllers or

control structure. In other words Q is performance measure

which we should know from the "user" of the system.

The question is how to choose the controlled variables c,

that is how to structure the functions h(·). It is all too

easy to say that the choice should be such as to bring no de-

terioration of the control result achieved in the two-layer

system as compared to a direct optimization. It should be

Q = max Q
m

where the number on the left is plant performance achieved with

the two-layer system of Fig.9 and the number on the right is

the maximum achievable performance of the plant itself, since it

involves directly the manipulated inputs that are available.
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In order to get some more constructive indications let us

require that a setting of cd should uniquely determine both

state x and control m which will result in the system of Fig.9

when a cd is imposed. Since we are interested in getting optimal

values x,m let us demand the following property:

~ ~

c = c =>x = x, m = m
d

A trivial solution and a wrong choice of controlled varia-

bles could be c ~ m.
"-

Imposing m = m on the plant would certain-

ly do the job. It is a poor choice, however, because the state

x that results from an applied m depends also on the initial

condition x(tO) - the optimizer which sets cd would have to

know x(tO).

A trivial ~xample explains the pitfall. Assume we made a

two-layer system to control a liquid tank using two flow con-

trollers as in Fig. 10. We delegate to the optimizer the task

of determining the optimal flows, F 1d and F2d . The optimizer

would have no idea of what level x will be established in the

tank, unless it memorized x(tO) and all the past actions. We

can see it better while thinking of a steady-state: if theopti-

mizer would impose correct steady-state optimal values
/'..,

F 1d = F2d = Fd , it still would not determine the steady level x

which will result in the tank.

Let us therefore require that the choice of c should free

the optimizer from the necessity to know the initial condition:

c (t) = cd (t) = > x (t) = ; (t) ,m (t) = m(t) ,vt ::: t 1 > to

and the implications shall hold for any x(tO).
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An example of what we aim at may be best given by consid-

ering that we want a steady-state x(t) = x = const to be ob-

tained in the system, while the system is subjected to a con-

stant, although unknown disturbance z(t) = z. In that case also

m and c = cd will not be time-varying. The state equations of

the plant reduce to

(i)j = 1, ... ,dim xf.(x,m,z) = 0,
J

due to the fact that ~(t) = 0, and if we add the equation. which

is set up by our choice of the controlled variables

i = 1, ... ,dim c (ii)

we have a set of equations (i) and (ii) for which we desire that

x,m as the dependent variables be uniquely determined by c. But

we also want (i) and (ii) to be a non-contradictory set of

equations; their number should not exceed the number of depen-

dent variables x,m and thus we arrive at the requirement that

dim c = dim m: the number of controlled variables should be

equal to the number of manipulated inputs. Then,from the impli-

cit function theorem, it is sufficient for the uniqueness of x,m

that f.,h. are continuously differentiable, and
J 1

at. af.
-----2 -----2
aXk amk

det r!0
ah. ah.

1 1--
aXk amk

\ve leave it to the reader to verify that the system of

Figure 10 does not comply with the above demand.
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We should warn the reader of a possible misinterpretation

of our argument. We have shown the conditions under which

steady-state x,m resulting in the control system will be single-

valued functions of c, but these functions may still contain z

as a parameter. In other words, we did not say that a certain

value of c will enforc~ the value of x,m in the plant, irre-

spectivcly of the disturbance. If, for example, we are inter-..
ested in enforcing the value of state, we could choose c = x.

But note that this may be not entirely feasible if we have too

few manipulated inputs (remember that dim c = dim m) .

The structure of Figure 9 can of course also be thought of

as operating when the plant state x is time-varying. Then we

should write, instead of (i) and (ii):

x.(t) = f.((t),m(t),z(t»,
J J

h. (x(t) ,m(t» = c. (t),
1 1

j = 1"",dim x

j = 1, .•. , dim c

(ia)

(iia)

The value of state at time t, that is x(t), will still de

pend upon the enforced c(t) = cd(t), but the dependence involves
,

also x(t). This means that in order to obtain a certain state

x(t) we must take into account the initial state x(to )' distur

bance input over the interval [to,tJ, z[t ,tJ' and appropriate
o

ly shape the control decision cd[to,tJ.

If we want to enforce the value of state x(t) in spite of

the disturbances and without dependence on the initial state, we

must investigate the [allow-up controllability: is it possible,

using the input m, to cause state x to follow a desired trajec-
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Assume the follow-up has been achieved, that isx(t) = xd(t),

x(t) = xd(t), ~t. Then the state equations give

j = 1, ... ,dim x (iii)

We should note the meaning of (iii). Disturbance z is

varying in time and its value z(t) is random. If (iii) has to

hold we have to adjust m(t) so as to offset the influence of

z(t). This must of course require certain properties of the

functions f. (.) and we also expect to have enough manipulated
J

inputs. The requirements will be met if the set of equations

(iii) will define m(t) as single-valued functions of z(t). The

conditions for this. are that f. (.) are continuously differen
J

tiable and moreover that,

rank

This implies dim m ~ dim x. We should note that the actual

value m(t), as required by the disturbance z(t), should never

lie on the boundary of the constraint set of manipulated inputs.

Physically it means that we must always have the possibility

to adjust m(t) up or down in order to offset the influence of

the random disturbance. The actual value of this required re-

serve or margin depends on the range of possible disturbances.

Any control practitioner knows this as an obvious.thing.

Remember that we have set a requirement related to con-

trollability, that is to the properties of the plant itself.
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Controllability does not say how to generate control m such that

x = xd ' it tells only that this control exists. If we decide

to build a feedback control system as shown in Fig. 9 we have

to choose the controlled variables c in an appropriate way.

For the dynamic follow-up to be enforced by the conditionc = cd'
A

the choice would have to be c = x, that is the state variables

themselves (as opposed to c = h(x,m) which was all. right for

steady-state uniqueness of x) .

The choice of controlled variables has been till now dis-

cussed from the point of view of the "uniqueness" prop~rty: how

to choose c in such a way that when c = cd will be enforced,

some well-defined values x,m will result in the plant. We have

done this for the plant described by ordinary differential equa-

tions. An extension of this consideration to distributed·para-

meter plants with lumped manipulated inputs is possible.

We turn now to the more spectacular aspect of choosing the

controlled variables: can we choose them in a way permitting to

reduce or to entirely avoid the on-line optimization effort, that

is to eliminate the optimization layer in Fig. 9, leaving only

the follow-up control?

To make the argument easier let us consider steady-state

optimization.

For a plant

f.(x,m,z)= 0,
J

we are given the task

j = 1, ... , dim x

maximize Q = fO(x,m,z)
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subject to inequality constraints

g.(x,m)<b.,
1 - 1

1 = 1, .••

". " " ,...Assume the solution is (x,m). At point (x,m) some of the

inequality constraints become equalities (active constraints),

and other inequalities are irrelevant.

system of equations:

/\ A

Thus at (x,m) we have a

;. "f. (x,m,z) = 0,
J

" ,.,g.(x,m) =b.,
1 1

j = 1, ... ,dim x

1 = 1, ... , k < dim m .

If it happens that k = dim m then the rule is simple:

choose the controlled variables as follows:

h.(.) = g.(.),
1 1

i = 1,.~., dim m ,

b.
1

This simply says that you put the controllers "on guard"

that the plant variables (x,m) are kept to the appropriate bor-

der lines of the constraint set.

Note two things:

(i) we have assumed gi (x,m) and not gi(x,m,z), i.e., the dis

turbance did not affect boundaries of the constraint set~

(ii) we have assumed k = dim m ( the number of active constraints

equal to the number of controls), and we also failed to

. ..... "consider that even in such a case the Solutl0n (x,m) may

lie in different "corners" of the constraint set for dif-

ferent z.
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Even under these assumptions, however, the case makes sense

in many practical applications, since solutions to constrained

optimization problems tend to lie on the boundaries.

For example, the yield of a continuous-flow stirred-tank

chemical reactor would increase with the volume contained in the

tank. This volume is obviously constrained by tank capacity,

therefore, the control system design would result in implement-

ing a level controller and in setting the desired value of the

level at the full capacity. The level controller would perform

all the current control, by adjusting inflow or outflow to keep

the level. No on-line optimization is necessary.

We have mentioned already in the Introduction that the

approach we have taken by letting the "direct controller" make

current control decisions and providing for an upper level to

set a rule or goal to which the direct control has to keep, has, . .

more than only industrial applications. It is also clear that

a rule or goal does not have to be changed as often as the cur-

rent decisions and hence a two-layer structure makes sense.

. .... "If the solutlon (x,m) fails to lie on the boundary of the

constraint set, or the number of active constraints k < dim m,

we may

way as

z.

still look to structure the functions h. (.)
1

to make the optimal value cd independent of

in such a

disturbances

The way to consider this may be as follows. We have solu-

"''' ,.. '"tions m = m(z) and x = x(z). Put them into the functions h j (.)

for j = k + 1, •.. , dim m:

'" ,.h.(x,m)
)

1\ "= h j (x(z) ,m(z»), j = k + 1, ••. , dim m
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By an appropriate choice of h j (.) we may succeed in getting

ah.
-----2az = 0, j=k+1, ...

in the envisaged range of disturbances z.

We turn now to a more elaborate example of building-up a

two-layer system.

3.3 Example of two-layer control

Consider a stirred-tank continuous-flow reactor presented

in Fig. 11. Some material B inflows at rate FB and has temper

ature TB, material A inflows with FA and TA, mixing and reaction

A + B takes place in the vessel, resulting in a concentration

CA' Heat input H is needed for temperature T to be obtained in

the reactor. Outflow FD carries the mixture of A and B out of

the vessel. We want to provide a controi structure that would
,

optimize the operation of this reactor, having FA and H as

manipulated inputs. Let us do it in some orderly steps.

(i) Describe the plant

There will be three state variables and state equations:

C = f (0)
A 2

T = f (.)
3

We drop the detailed structure of the functions f2(~)'

f 3 (') because it is not important for the example.
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(ii) Formulate optimization problem

Assume we want to maximize production less the,cost of

heating:

maximize , ,

where IjJ ('I') expresses the cost of reaching temperature T.

There will be inequalLty con~traints

T < T
m

and we also have to consider the state equations and initial

and final conditions.

If there are reasons to assume that the optimal' operation

of the reactor is steady-state, x = const, then' the' plant equa-

tions reduce to

f 1 (.) = FA + FB -FO = 0

f (.) = 0
2

f (.) = 0
3

and the optimization goai would be

(iii)Solve optimization problem

Assume the optimization problem has been solved and the

results are (the problem has, really been solved for a full

example) :
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/\

W = W
M

~.

if z£Z1' CA = ~1(z) < CAm otherwise

,'.
T = 4'2(z) < Tm

,',

FA = ~3(z)

/,

H = c/l 4 (z)

T otherwisem

where z stands for disturbance vector (FB,FD,TA,TB) and Z1 is a

certain set in z-space, that is a certain range of disturbance

values.

(iv) Examine the solution a,nd choose control structure

Let us make a wrong step and choose as controlled variables

the flows FA' H. We. would th~n: fail to get a uniquely deter

mined steady~state volume W in the tank (a check on determinant

condition would show it) and also the optimizer which sets the

desired FAd' Hd would have to know disturbance vector z and

functions ~3(·)'~4(·). Note that this would involve an accurate

knowledge of the state equations of the plant.

Inspection of optimization solution reveals volume W as a

first-choice candidate to become controlled variable. The opti-

mal W is W under all circumstances, no on-line optimization willm .

be required, and no knowledge of plant state equations.

The second choice (we shall have two controlled variables

since we have two manipulated inputs) could be either concen-

tration C
A

or temperature T.

Let us consult Fig.12 for a discussion. We have displayed

there the feasible set in (W,CA) plane and shown where the opti

mal solution lies in the two cases, that is when z£Z1 (point 1)
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and in the other case (point 2) 0 Note that solution is in a

corner of the constraint set, but unfortunately not in the same

corner for all z. Consider that you may:

take CA as a controlled variable and ask the optimizer

to watch disturbances z and perform the following

CAd = ~1 (z) otherwise

whereby a knowledge of the function ~1 (0) is required,

or take CA as a controlled variable when z£Z1 and then

set CAd = CAm' whereby for ztz1 you would switch to T as

controlled variable with a setting Td = Tmo In this case

the second-layer control would consist in performing the

switching, that is, in detecting if z£Zl. This may be

easier to do than to know the function ~1 (0) which was

required in the first alternative.

3.4 The relevance of steady-state optimization

Steady-state optimization, foliowing the structure of Fig.9

is a quite common practice. It might be worthwhile to consider

when it is really appropriate. If we exclude the cases where

the exact solution for the optimal state is x= const, we may

think of the remaining cases in the following way.

Let (a) i~ Fig. 13 be the optimal trajectory of a plant

over optimization horizon (to,t1).

Assume we control the plant by a two-layer system, have x

as controlled variables, and choose to change desired value xd

at intervals T, being a small fraction of (to,t1) 0 Then (b) is
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the plot of xd(t). Note we have thus decided to be non-optimal

because x
d

should be shaped like (a), and not be a step-wise

changing function. Note also that the step values of xd would

have to be calculated from a dynamic (although discrete) opti-

mization probiem.

Now let us look at the way in which the real x will follow

the step-wise changing xd in the direct control 'system, compare

Figure 9. In case (c), Fig.13, x almost immediately follows xd .

In case (d) the dynamics are apparently slow and the following

of xd cannot be assumed.

It is only in case (c) of Fig. 13 that we may be allowed to

assume that state x ,is ppactically constant over periods T, thus

•permitting to set x = 0 into the state equations and calculate

the step value of ,xd from a steady-state optimization problem.

The question is when will case (c) occur. By no means are

we free to choose the interval T at will. We must relate it to

the optimization horizon (to,t1). Interval T would be a suitable

fraction of this (1/10 or 1/50 for example). And here is the

qualitative answer to the main question: if (to,t1 ) has resulted

from slow disturbances acting on a fast system, case (c) may

take place, that is we may be allowed to calculate a step ofx
d

under steady-state assumption.

The importance of the possibility to replace the original

dynamic optimization problem by an almost equivalent static op-

timization done in the two-layer system cannot be overemphasized.

The reason is of computational nature: dynamic problems need

much more effort to solve and for many life-size control tasks,
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for example for a chemical plant, may be practically unsolvable,

in the time being available. On the other hand, the operation

of many plants is close to steady-state and the optimization of

set-points done by static optimization is quite close to the

desired result.

We devote in this paper a considerable space to steady-state

on-line optimization structures. It is the more justified that

the procedures for static optimization are principally different

from those suitable for dynamic control, if feedback from the

process is being used.

3.5 RAmapks on adaptation layep

Let us come back to Fig.2. We have presented there an "adap-

ti.Jtion layer" and assigned to it ,the task of readjusting some para-

meters P, which influence the setting of the value of cd. Assume

this setting is done by means of a fixed function k(·):

c = k(8,z)
d'

where z stands for the disturbance acting on the plant. We assume

at this point, that it is measured and thus it can enter the

functionk(·) .

We may of course assume existence of the strictly optimal

value of cd' referred to as ~d(z). With 2d (z) we would get a

top value of performance denoted by Q(Bd(z)). It represents

the full plant possibilities.

Optimal values of 8 in the optimizer's algorithm could be

found by solving the problem

minimize
8

Ellcd(z) - k(6,z)11
·z
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We drop discussion of this formulation because we should

rather assume that the optimizer has only a restricted informa-

tion about z, denoted z* (it could for example be samples of z

taken at some intervals). This leads to Cd = kCB,z*) and the

parameter adjustment problem should now be

minimize
B

E * [Q(cdCz) )-Q(k(B,z*))]z,Z

which means that the choice of B should aim at minimizing the

loss of performance with respect to full plant possibilities.

An indirect and not equivalent way, but which may be easier to

perform would be

minimize
B

E * I ICd' (z) - k ( B, z *) I Iz,Z

Note that we would not be able to get B = B such that

EI \. I I would be zero, since the basis for k(B,·) is z* and not

z. It means that, with the best possible parameters, the con

trol is inferior to a fully optimal one, the reason being the

restricted information.

Our formulations till now apply to adjusting parameters B

once, and Keeping them constant thereafter for some period of

time (it is over this period that the expectations EI I· I I should

be taken).

In some practical adaptive systems we try to obtain the

values of parameters of the plant, and thus also the values of B,

by some kind of on-line identification procedure. We may refer

to it as "on-line parameter estimation". A limit case may beof

interest where we would assume that B are estimated continuously.

Let us consider what this limit case could supply.
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A

Note that for each z, an optimal value a(z) maximizing the

performance exists and means a perfect control. We must assume,
A

however, that we do not have B(z) but an estimated value of it,

B(z). With B(z) our optimizing control would be

c = kU~(z) ,z*)
d

where we assumed, realistically, that not all z is directly

measured and only z* is available as current information.

The application of this control gives a loss of optimality

which amounts to

"
z ,Ez * [Q (cd (z) ) -Q (k (e (z) , z * ) ) ]

This value could be discussed with respect to the quality

of estimating 13, insufficiency of disturbance information z*,

etc. In other words, it measures the overall efficiency of

adaptation.
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4. Decomposition and coordination in steady-state control

In this section we shall consider the multilevel control

structures shown by Fig.5 in some more detail. One of the points

of this and of the next section will be to indicate the practical

difference between steady-state and dynamic control structures.

4.1 Steady-state multilevel control and direct coordination

Let us first describe the complex system of Fig. 1 more

carefully.

Denote for the subsystem i : x, the state vector, m. mani-
1 1

pulated input, z. disturbance, u. input from other subsystems,
1 1

y. output connected to other subsystems. The subsystem state
1

equation will then be

X (t) .I. ex (t ),m, ] U'[t t] z'[t t]) (1)i = 'l'i[to,t] i 0 l[t o ,t, 1 0' , 1 0'

For the use of this section we assume (1) to be in the

particular form of ordinary differential equation

•x.(t) = f.(x.(t), m.(t), u.(t), z.(t))
1 1 1 1 1 1

(1 I )

The output y. will be related to (x.,m.,u.,z,) by output
11111

equation

y.(t) = g.(x.(t),m.(t),u.(t),z.(t))
1 1 1 1 1 1

(2 )

Now assume that the first-layer or direct controls are

added to the subsystem such that the following is enforced (see

the previous Section for this idea)

c. (t) = h. (x, (t) , m. (t) , u. (t)) = cd l' (t)
11111

(3 )



Assume we are in steady-state, x. (t)=O,Vt, and the functions
1

h. (.) have been chosen properly so as to ensure uniqueness of the
1

state xsi and manipulated output mi(t) in response to the imposed

c i (t) and ui(t), with zi(t) as a parameter. Then (1 1
) becomes

f.(x .,m.(t),u.(t),z.(t)) = a (4)
1 Sl 1 1 1

and (4) along with (3) provides for x .,m. (t) to be functions
Sl 1

of c. (t). Therefore (2) becomes the following input-output
1

dependrmce:

/. (L)
1

I". (f:. (L) , lJ. (I ) , z . (t) )
1..l 1 1

( 5)

Eqn. (5) is a relation between the instantaneous values.

We have obtained it by assuming the system to be in steady-state,

x(t) = x = const. In the. steady-state the system ceases to be
s

il dynilm i Col one, becuusc' there. is no change in accumulat~ons.

We can consider the state to be time-varying; then (5) can

be true only under the assumption that the actual state x is

always enforced, that is, it follows the desired state trajec-

tory xdi . As mentioned in Section 2.2 this is possible if the

subsystem complies with the follow-up controllability condition

and if h i (') is chosen for example such that c i ~ xi'

In the general case of time-va~ying state we would have to

put into (2) the formula (1) for xi(t), which makes yet) depen

dent upon initial state xi(t O) and upon the inputs over interval

[to,t], that is upon mi[to,t] ,ui[tO,t],zi[to,t]. The Existence

of an appropriate equation {3) allows to eliminate mi[to,t] in

favor of ci[to,t] and thus we become; instead of (5)
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(5' )

The input-output relation in the fo~m (5') is not very

convenient for notational reasons. We may tacitly assume the

initial state to be known, or we can treat xi(tO) as part of the

disturbance z .. If we, additionally, use notation y.,c.,u.,z.
1 1 1 1 1

to express time functions (as opposed to their values y. (t), etc.),
1

then (5') bec6mes

y. = F.(c.,u.,z.)
1 1 1 1 1

(5")

The important difference with respect to (5) is that (5")

denotes a mapping between time functions (describes a dynamical

system) .

When the subsystem is in steady state, (5) will hold. Its

practical meaning is that "the dynamics of the subsystem are

suppressed" and that is why we have a static input-output rela-

tion. We usually write (5) in abbreviated form, dropping the

argument t and sometimes also the disturbance input:

y.=F.(c.,u.), ie::1,N
1 111

(6)

Note that the form of (6)' is similar to (5") and the nota-

tion does not indicate whether we describe a static or a dynamic

system. This is rather convenient for considerations of general

nature, but may also be misleading as the difference tends to

be overlooked.

Right below weare going to speak, about steady-state and we

consider y. ,c. ,u. to stand for y. (t) ,c. (t) ,u. (t).
111 111
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The interconnections in the system are described by

u. = H.y,
1 1

so that u = Hy (7 )

where H. i p part of matrix H.
1

We assume a IIresource constraint ll is imposed on the system

as a whole

N
~r.(c.,u.) < rLJ 1 110

1

(8 )

and also that some local constraints restricting (ci,ui ) may

exist

( c . , u .) €. CU., i E 1, N
111

(9 )

We further assume that a local performance index (local

objec-cive function)' is associated with the subsystem

Q.(c.,u.),
111

( 10)

whereby a global system performance is also defined and it is

( 11 )

The function ~ is assumed to be strictly order-preserving.

Note that (10) and (11) may result from two practical cases.

It might be that there were some local decision makers already

in existence and we decided to set up an overall Q to provide

for some harmony in their actions. But it also might be that we

had overall Q first and we then decided to distribute the decision

making among the lower level units.
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We are now ready to define the goal of the coordination

level: it has to ensure that the overall constraints would be

preserved and the overall performance would be extremized.

Coordination will be done by influencing decision making

in the local units (and not by overriding control decisions

already made) .

We start with presenting coordination by direct method.

The simplest way to present direct coordination (also called

primal or parametric coordination) is to assume that the coordi-

nator would prescribe the outputs Yi' demanding an equality

y. = Yd ,. If a resource constraint (8) is present, coordinator
1 1

would also allocate a value r di to each local problem.

A local decision problem would become

maximize Q.(c.,u.)
1 1 l'

subject to

F. (c. ,u.) = Y
d1

'
111

(c . ,u.) £ CD.
111

r. (c. ,u.) < r
d1

.
1 11-

When this problem is solved, results depend upon (yd,rdi ). Note

they depend on the whole Yd' not on Ydi only, since we had
A

U i = Hiyd . We denote the results as ci(Yd,rdi ) and
~ 6 ~

Qi (ci(Yd,rdi),HiYd)= Qi(yd,rdi )

The coordination instruments (yd,rd ) have to be adjusted

to an optimum by solving the problem
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A '"
maximize Q = w(Q1 (Yd,rd1 ) ,···,QN(yd,rdN »

(Yd,rd )

sUbject to

< r
o

The main difficulty of the method lies in the fact that a

local problem may have no solution for some (Yd,rd ) because of

its inequality ~onstraints (an output value may be not achiev

able and the allocated resources inadequate). Therefore the

Vulucs (yd,r
d

) set by the coordinator must be such as to keep

UI(~ lOCul probl(~ms fCi1sjbl(~, (yd,rd ) I YR, where YR is the

feasible set.

The set YR cannot be easily determined, because it implic-

itly depends on local constraints.

Moreover, the boundaries of set YR may be affected by the

disturbances, since these boundaries are related to local con-

straints and to the element equations. This has the implica-

tion that the "coordinator" would have to keep his decisions

(yd,rd ) in a "safe" region of YR, where "safe" would relate to

the worst case of system uncertainties. Apart from the diffi-

culty to define the safe region we of course realize that the

worst case approach may give the result that the "safe region"

is very small or even empty.

Before trying to find a remedy to this situation we shall

~ake some additional remark on the direct method of coordina-

tion; namely, this method may entirely fail to be applicable if

the number and role of local controls are inadequate.
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We note that by prescribing the outputs we also preset the

inputs and hence in the local subsystem equation we have only

c. as a free variable:
1

F. (c. ,H . Yd ' z .) =
111 1

Strictly speaking we should consider the interconnected

system in the whole, where we have

F(c,u,z) = Y

and with y = Yd' u ~ Hy this gives

F(c,HYd'z) = Yd

The above equality is to be enforced. ?his means that c must be

available such that a certain system of equations, which we de-

note as

K(c,z) = Y
d

could be satisfied by adjusting c (the control decision) for

any Yd , z in their range envisaged.

The question would be: do we have an adequate number of

control variables c., j = 1, ..• , dim c and are they appropriate
J

ly placed in the system equations?

Let us clarify the implications by an example. Remember

the chemical reactor of Fig. 11. The output vector y would in

this case be (FO,CA,T) since the outflow from the reactor is



-43-

characterized by flow rate (Po)' composition (uniquely expressed

by CA) and temperature (T). We have only two manipulated vari

ables FA' H and hence two controlled variables, say Wand CA.

Therefore, dim c = 2 while dim y = 3. We should be unable to

prescribe an arbitrary value for the output vector. Indeed, the

steady-state equation y = K(c,z) of the reactor inclusive of

direct controls would be in scalar notation

where z1 stands for the flow rate demanded (imposed) by the

receiving end of the pipe, and z for the whole vector of dis-

turbances. By choosing WO' CAd we would be able to steer the

output CA and T, but not PO. Note that our control influence

on the output T is rather complicated and the actual T depends

also on disturbances. Nevertheless we can influence it by ad-

justing Wd ' which means that we have "adequate c" for the purpose.

The question of local controls is vital for the direct me-

thad. We should, however, consider that in practical cases where

this hierarchical structure would be applied, the number of 10-

cal controls will always exceed the number of outputs which are

being prescribed. Otherwise we might doubt if it makes sense to

apply the st~ucture:

sions directly.

the coordinator CQuld make all the c. deci
1
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Let us now come back to the problem posed by the ignorance

of the feasible set at the coordination level. A solution is

subject of the next subsection.

4.2 Penalty functions in direct coordination

We can propose an iterative procedure to be used at the co-

ordination level such that the feasible set YR would not have to

be known. The main idea is to use penalty functions in the local

problems while imposing there the coordinator1s demands. If we

use penalty function for the matching of the output, the local

problem will get the form:

max imi ze Q ~ = Q, (c, , u.) - K. (y, -Yd' )
-1 -1 1 1 1 1 1

with the sUbstitutions

y, = F. (c. , u, )
1 111

and subject to constraints

(c . , u .) E: CD,
111

r. (c. , u.) < r
d1

,
111

As can be seen we used penalty function to enforce the condi-

tion y.= Yd'. The resource constraint could also be dealt with by
1 1

a penalty term, if necessary. Also the substitution u i = HiY
d

may be, if needed~ replaced by. penalty term. Interaction input

u i would then become a free decision variable in the local prob

lem.
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The result of using penalty formulation is that solution to

the local problem would exist even for a non-feasible Ydi' The

demand on the output would simply not be met.

We must now establish a mechanism to let the coordinator

know that he is demanding something impossible. We let his

optimization become:

maximize ~[6, (Yd,rd ,)-K,(9,-yd ,» , ... , (6N(Yd,rdN)-KN(9N-YdN»]
Yd,rd

where the clue is that we introduce local performances less the

penalty terms. Hence, the coordination iterations will try to

adjust Yd so as to reduce the values of penalty terms, whereby

"the local problems do the same on their part, by influencing Yi'

It can be shown, under relatively unrestrictive conditions

that when the iterations reach their limit where penalty terms

vanish, the values Yd obtained there are both feasible and

strictly optimal.

Moreover, gradient procedures can be used at the coordina-

tion level, while in the pure form of direct method the subsystem
A

results Qi(yd,rdi ) are, in general, non-differentiable.

4.3 A mechanistic system or a human decision making hierarchy:

The reader of the previous text may get confused as to what

do our considerations really apply. Let us clarify it as

follows:

(i) In the first place, we can obviously think of coordination

used in off-line, model-based solving of a set of local

problems. This would be "decomposition and coordination

in mathematical programming" and it is quite appropriate

there to discuss, for example, whether gradient procedures

can be used or not.
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Should we apply the solution of optimization problem, that

"is the finally obtained control values c. to a real system,
~

feasibility of the result with respect to the real system

(differing from the models) must be considered. The problem

of "generating feasible controls" will arise. From the con-

trol point of view we would have an open-loop structure.

(ii) In the second place, we can consider the coordination level

as acting on local decision makers who control the real sys-

tern elements and try to comply with the coordinator's demands.

Here we may not even know what is the local decision making

process. Let us look at this situation by assuming that the

coordinator works by iteration; at each step of the itera-

tive procedure the local decision makers "do their best"

with respect to the real system inputs. Would we know the

algorithm which the local decision maker is using, a dis-

cussion of time-behavior of the system from one coord ina-

tion step to another could be done. Let us only state

that this behavior may be unstable due to many separate

decision makers acting on the same system. If the system

is stable and a steady-state is achieved, the coordinator

may make his next step, trying to improve the value of his

performance function (whether in the penalty form or with-

out it). Note that in the case where no penalty terms are

used the direct coordination can in principle be achieved

in one step: the coordinator sets values (Yd,rd ) which

should optimize the system according to his best knowledge

(i.e. according to the model of the system) and then the
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local decision makers do their job by achieving Yi= Ydi

and complying with the resources constraint. .It is in

t_his case, however, that ydi should be feasible for the

real system, otherwise the expectations of the coordinator

may not become reality.

If the coordinator's demands are feasible for the real sys

tem (for instance because he knows exactly the constraints,

or he ~as decided to move in the "safe region" only), then

the iterations of the direct method have the property that

the demands are feasible in every step of the iterative

procedure. Hence, the direct method is sometimes referred

to as "feasible method". As opposed to it, the direct

penalty coordination is using non-feasible demands in

course of the iterations. When the local decision maker is

trying to comply with a non-feasible demand, his output may

violate the constraints related to the input of another sub

system.

(iii)We can also consider a mechanistic decision making hierarchy

of control, where we. implement certain formal algorithms

of decision making at the local level, ~s well as ~t the

coordination level. It could be an open-loop control struc

ture but this may not be a satisfactory and ultimate solu

tion. The performance of control can be improved by using

feedback information; the human decision makers postulated

above in (ii) were using such information implicitly. Now

we would have to say very explicitly what kind of current

information is available. and how it is beinq used in the
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formal algorithms. For example we c~n assume that the real sub-

system outputs y*i are measured. Then we can consider them to

be used in essentially two ways: in the local algorithm and ln

the coordination algorithm. The second possibility has been

quite satisfactorily explored and is discussed to some extent

below. Using this kind of feedback, we are able to obtain coor-

dination algorithms which

end in a point non-violating the real system constraints

(provided they are of the form (c.,u.) E CU. and y € Y),
111

provide for a value of overall performance which is

superior to the result of open-loop control.

4.4 ~ mor~ comprehennive example

A typical area of application of steady-state optimal con-

trol are the continuous chemical processes.

Let us present how the multilevel approach could be applied

to control of an ammonia plant.

(i) Description of the process

Fig. 14 displays the principal parts of the plant. The

first is methane conversion~where H2 is gained from the methane

and N2 from atmospheric air, water steam being added to care

for stochiometric balance. The second is converAion of carbon

oxide, where CO is turned to CO2 (CO could not be removed

directly). Then we have decarbonization~ where CO2 is removed

from the gas stream. At this point there should be no CO or

CO2 present in the gas stream - the rests of them are neutra

lized by turning them back into methane in the /1J" t I",]Ii 1::-:'1: i {' 1/

part of the plant. The reason for doing it is that CO



and CO 2 are toxic to the catalyst use9 in the synthesis reactor.

The synthesis reactor is the last essential part of the plant -

here the mixture 3H 2 + N2 reacts to 2NH 3 at high pressure and

high temper~ture~ A cooled liquid (ess~ntially pure ammonia)

F leaves the plant. The characteristic feature of the ammoniaa

synthesis process is that the synthesis reactor works with a

recycle, whereby its input flow consists of both ,the fresh gas

and of the recycled gas - the latter with NH 3 removed (trans

ferred to the liquid Fa)' The fresh gas, however, contains not

only H2 , N2 but also some "inerts", i.e. components not reacting

in the process. They would mainly be.argon from the atmospheric

air and CH 4 due tO,the methanization process used for rem~ving

the rest CO and CO 2 , Inerts are no harm but they would cycle in

the synthesis reactor ,loop endlessly~ as new inerts.continuously

flow in with the fresh gas we would end in a considerable in-

crease of inerts in the loop gas, leaving no space for the use-

Inerts have to be removed. There is, however, no

practical way to remove them selectively and the inert level is

kept down by a very simple measure: part of the loop gas is

being blown out into the atmosphere as the so-called purge, F .
P

(ii) The optimization problem

Assume we aim at maximizing the steady-state production

rate Q of ammonia ( in kg/hr). We have

(A) Q = Fa - Fa L r.
j J

where r. is solubility of j-th component of the circulating gas
J

in liquid ammonia.
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In order to get variables of other parts of the plant in-

volved in the expression for Q let us write two mass balance

equations.

Overall mass balance of the synthesis loop will be:

(B) F + F = Fa p s

where F is the fresh gas inflow.s

Mass balance of the inerts in the synthesis loop will be:

(C) F r. + F Y . = F Y .a 1n p p1 S Sl

where r in is solubility of inerts in liquid ammonia, ypi is

concentration of inerts In purge gas, y . the same for fresh
Sl

gas.

The use of (B) and (C) allows to arrive at

(D) Q = F (1s •

At this state we assume from physical and chemical know-

ledge: r., r. do not depend on any plant variables, and) 1n

Under these circumstances we can see that Q

is maximized when F is maximized, y . is minimized and y . is
S Sl p1

maximized (please look at the physical meaning). We thus would

have

y .-a
= bF (1 _ Sl )

S Y .-ap1

where a, b are constants. Note ~ is in this case a strictly

order-preserving function.
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There could be three local probl~ms:

"
maximize F , minimize

s

Ysi' maximize Ypi.

Since the local problems are of course interconnected, a

coordination will be needed to provide for max Q and preserving

all constraints at the same time. In an actual study performed

it was assumed that F will be given.s
It was, however, found

reasonable to replace Y . by two local performance indices, both
Sl

to be minimized:

A 1 1
YCH + Yco'

4

:0 2
= YCH 4

and to form three subsystems as shown in Fig. 15. They have the

performance indices Q1'

1We denoted by YCH 4
of the first subsystem.

A

Q2 and Q3 = Ypi' respectively.

the concentration of CH 4 at the output

This CH 4 directly contributes to the

inert content in the gas F , therefore it makes sense to mini~s

mize it right away. The same applies to CO content here, be-

cause co will not be removed in decarbonization. The perfor-

mance index Q2 for the second subsystem is CH 4 concentration in

the fresh gas stream Fs . This CH 4 involves result of methaniza

tion, which had to be done on CO 2 . Local control can decrease

this CH 4 by improving decarbonization, i.e. by decreasing the

rest CO 2 content. Operation of the second subsystem is subject

to the constraint that methanization is always complete, i.e. no

CO 2 or CO can be left in the stream.

In the third subsystem we have to maximizeQ3 = Y 0' thep1

concentration of inerts in the purge gas. This means of course

that possibly little H2 , N2 is lost, because in the balance all

incoming inerts must be let out:
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F Y . = canstp pl

Note that we could replace the goal "maximize y ." by thepl

equivalent "minimize F ".
P

(~ii)Coordination variables and coordination method

For the non-additive function ~ in

we have to use coordination by direct method (the price coor-

dination, described further on, could not be used here). Let

us look at the possible coordination variables. In principle

they should be all the subsystem outputs (or inputs). The co-

ordinator would prescribe their values and thus separate the

subproblems one from another.

Here a serious failure of the approach was encountered.

Examination of the real plant has shown that there are many

feed-forward and recycle linkages between parts of the system,

not only in the main stream. This was due to the plant design

where the linkages serve to utilize the heat energy generated

in the plant and thus make the plant self-supporting in this

respect.

The main links are shown in Fig.16. The failure of~pproach

consisted in the fact that to describe a crosscut through all

links would take about 40 variables; these would have to be

decision variables in the coordination problem. But all parts

of plant together had only 22 control variables to be adjusted

(the set points of 22 different controllers). Hence we would

replace a 22-variable problem by a 40-variable problem at the
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coordination level plus a need to solve the local problems also.

The two-level problem was more complex and expensive than the

direct one.

An insight into quantitative properties of the problem and

into the actual operating experience has permitted to propose

an approximate solution. Only 5 out of 40 variables were found

to be "essential" and were consequently chosen as coordination

variables:

v, - gas (CH 4) inflow to the process,

v 2 stearn inflow,

v 3 - gas pressure ih the gas preparation section,

v
4

,v
5

- two principal heat stearn flows

The other variables were found to be either directly re

lated to the five, or were assumed to be constant and needing

no adjustment by the coordinator, or their values were almost

irrelevant for the plant optimization.

Note, for example, that the coordinator would not have to

prescribe the air inflow to the process. If he sets gas and

stearn, the amount of air is automatically dictated by the

required N2 to H2 ratio.

The ammonia process has indicated an important topic for

hierarchical control studies: subcoordination that is the use

of less coordination variables than would be required for a

strict solution.

4.5 Subcoordination

Let us very briefly present the problem of subcoordination

for the case of the direct coordination method. The main point



-54-

is that the coordinator would prescribe the output y by using a

vector v instead of Yd' where dim v < dim y. There may be two

principal ways of using v in coordination.

One way of using v could be to set up a fixed matrix Rand

specify for the local problems:

y = Rv, that is y = R.v for each subsystem.d . di 1

Not~e that if we knew our system accurately, we could set

an adequate matrix R = R and a value v = v, obtaining Yd = Yd

(the strictly optimal value), whatever the dimension of v.

This makes little sense, however; model vs. reality difference

must be assumed to make the investigation meaningful.

Another way of using v could be to set a fixed function

y(.) and require from the local problems to comply with

( (y) = v, that is y. (y.) = v. for each subsystem.
].]. ].

This makes more sense intuitively, since we are granting

the subproblems thei~ freedom except for the fulfilment of the

demands specified in v. For example, we demand a total produc-

tion but do not specify the individual items. However, in this

case the subproblems are not entirely separated and analysis of

such a system is much more difficult.

SUbcoordination approach is also possible in the price

method. We will see it in the next paragraphs.

4.6 CooY'd1:na/;-ion hy /.h?~ usp- of pr'1:~C~jl:nt(:Y'a('t7:()rl h1. 70I/,','

method

Let us recall the description of the system and of the con-

trol problem, as was given by (6) (10) in section 4.1, that
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is, recall the subsystem equations, system interconnection

equation, resource constraint, local constraints, and local per-

formance indices.

Note that even before we define the global performance

index of the system we can define the task of coordination,

which can be to influence the local decision makers in such a

way that system constraints will be preserved.

ppice coopdination consists in authorizing the coordinator

to prescribe prices on inputs, outputs and resources and then

perm~tting the local'decision makers to define their own choices

of the values of these variables. The system is coordinated

when the local choices cause the interconnection equation (7)

to be satisfied and the global constraint (8) to be non-violated.

The prices which effect thi$ state of the system can be termed

equilib~ium p~ices~ since satisfaction of (7) means an equili-

brium of the inputs and outputs.

The equilibrium prices bring about overall system optimum

if the global pe~fo~mance index is a sum of local ones

N
Q = E

i=1
Q.

1
( 12 )

It is worth remembering, that direct and penalty function

coordination methods presented before allowed a more general

form of global performance, see (11).

The discussion of price coordination which will now follow

omits the resource constraint (8), focusing on interconnections

(7) •
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We will discuss the so-called Interaction balance method

(IBM). In this case the local problems i.e. problems associated

with the individual subsystems can be formulated as follows

(assuming Q. (c.,u.) has to be minimized):
111

minimize Q = Q.(c.,u.) +<A.,U.> - <~.,F.(c.,u.» (13)i mod 1 1 1 1 1 1 1 1 1

subject to

(c. , u.) £ CU.
111

,. ,..
= F.(C.(A),U.(A».

1 1 1

If (13) is related to a finite-dimensional problem ( as is

the case in steady-state optimization), then the scalar product

<A. , u . > means
1 1

dim u.
1

E
j=1

A.. U.. , and <lJ., (F. (c. ,u.) > means
1J 1J 1. 1 11

dim Yi

E
j=1

~ .. F .. (c.,u.)
1J 1J 1 1

In the problem (13) we assumed coordination to be effected

by a price vector A, composed of prices on inputs in the whole

system. Hence Ai are prices on interaction input u. ;
1

the prices

~' on output y. are defined as well by virtue of (7), namely
1 1

~i =
N
E

j=1

T
Hoo)'"

J1 J

It is therefore right to say that the results of (13) are

dependent exclusively on vector A.
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'"The interaction balance or equilibrium prices A will be

defined such as to provide for

..... ,..
u (A)

,... '"
HY(A) = 0 ( 14 )

""here Y (A) = F (c 0.) ,u (;\ ) )

Providing for the condition (14) to be satisfied is the

task of the coordinator. In the classical economics this could

be assigned to a "tatonnement" procedure at the stock exchange:

a person outside the negotiating parties would vary the price A,
A

watch the responses Y(A) and U(A), and stop the procedure at
A

A = A.

Several questions can now be raised, for example:

existence conditions .for A, that is for the equilibrium

price;

system optimality with control C(A);

procedures to obtain A.

The answers are based upon discussion of the Lagrangian

function of the global problem. After the local min~mizations

(13) have been performed, this Lagrangian is

N
rj,(A) = 2;

i=1

A ~ ~ A ~

Q. (c. (A) ,u. (A» + < AI U( A) - HF (c ( A) ,u ( A) ) >
-1 1 1

and it is required that it has a maximum at A = A:

6 p.) = max Ij> (;\ )
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If A so defined exists, its further use to determine opti

mal control is practically restricted to the case where (e,u),

the mathematical solutions are single-valued functions of \.

This requirement appears to be vital for applications. Unfor-

tunately we know sufficient conditions only:
~ ~

(c,u) are single-

valued if the functions Q. (.) are strictly convex and the map
1

A .
pings F. (.) are affine (linear). with A = A the unique Solutlons

1
~ ~.

CIA) ,U(A) are optimal.

It may be appropriate to indicate that the requirement of

uniqueness of (c,u) in response to a change in A has a simple

interpretation: since the prices A aim at providing a match of

the outputs to the inputs of other subsystems, they should have

a well-defined influence.

In many real-life problems the uniqueness of response can

be predicted by physical considerations for systems far from

being linear (remember that we fail to know necessary conditions,

while the sufficient ones are too severe to be of much practical

use) .

It is quite easy to show an example where the uniqueness of

response will fail to appear. If A would be price imposed by

the coordinator on some product and yeA) the optimal amount

produced by a subsystem according to its own local optimization,

the output yeA) will not be well-defined in the particular case

where the unit production cost would be equal to A. Note that

there would be no local gain or local loss associated with the

size of production y.

Let us now turn back to the main stream of our considera-

tions. What procedures could be used at the coordination level
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continuous and F. (.)
1
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It can be shown [25] that if Q. (.) an'
1

are continuous, then gradient procedures

forA can be used, provided we find a way to deal with the points

where the (c,u) are not unique and where the gradient is not

defined (subgradients can be considered there). In those regions

of A-space where (~,u) are unique, the following formula holds

for the (weak) derivative of ~(A)

'" ,/'\ ....,
'J 1/1 ( A) = u ( A) - HF (c ( A) ,u ( A) ) ( 1 5 )

Note that this is exactly the input-output difference (the

di3cooPdination in the system, and it has to be brought to zero.

The second derivative, V2~(A)' does not exist in the general

case.

Let us mention that the interaction balance method (IBM)

described so far can be applied to both static and dynamic prob-

lems, because we are dealing with models only. In particular,

the search for A is based on the difference, ~(A)-II~(\). It is,

therefore, a computational concept rather thana control struc-

ture. In a sy~tem which is already in operation the inter-

connection equation is satisfied all the time, for any control

c. We could never see if A is correct. We could, therefore,

use the described concept for open-loop control only. It means

"" "-that we would first compute and then apply'the computed C(A) to

the real system; the result will of course strongly depend on

the accuracy of the models.

Let us now come back for a while to the resource constraint

( 8) :

r 1 (c 1 ' u 1) + ... + r n (cN' ~) .::. r o .
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This additive form of global constraint can be incorporated

in the price coordination scheme by using an additional price

vector n (the resource price) and adding to each local problem

a value <n,r. (c.,u.», so that the local objective function be
111

comes:

Qi mod = Q.(c.,u.) + <A.,u.> - <\J.,F.(c.,u.» +
1 1 1 1 1 1 1 1 1

+ <ll,r.(c.,u.»
1 1 1

( 1 6)

By varying fj the coordinator would change the resource

requirements of the local problems so as to satisfy the overall

constraint.

In the mathematical programming terminology, n would be a

Kuhn-Tucker multiplier.

The next paragraphs will show some other ideas of price

coordination, where feedback from the operating system will be

used to improve control.

4.7 Price coordination in steady-state with feedbaek to
coordinator (the IBMF method)

In this section we shall consider the optimization problem

to be in the finite-dimensional space, i.e. to be a problem of

non-linear programming. In terms of control it means control of

steady-state in a complex system. We remember from Section 2.4

that steady-state control is an appropriate technique if the

optimal state trajectory of a dynamic system is slow enough to

assume that the value of state vector x is at any time related

•to control only, the state derivative x being so small as to be

neglected.
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The mappings F., Q. are now functions in finite-dimensional
1 1

space. We have therefore the following model-based global prob-

lem:

N
minimize Q = E

i=1

subject to

y. = F. (c. , u. ) ,
1 111

u = H Y

(c . , u .) E CU.,
111

Q. (c. , u. )
1 1 1

We have dropped the resource constraint for simplicity. A

"..

solution to the model-based problem yields model-based control ~.

We intend now to pay considerable attention to the difference

between model and reality, let us therefore formulate the fol-

lowing real problem :

N
minimize Q = E

i=1

subject to

y. = F*. (c. , u. ) ,
1 111

u = H Y

(c . , u .) E: CU.,
111

Q.(c.,u.)
111

i E 1,N
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We should notice that the only difference between model

and reality is herewith assumed to exist in the subsystem equa-

tions, that is the functions F*i (.) are different from the model

ones F. (.). We shall indicate in the sequel some effective
1

way to fight the consequences of this difference.

It must be stressed, however, that differences may exist

also in the performance function and in the constraint set. For

example, if a performance function is explicitly Q. (c.,u.,y.)
111 1

then it will reduce to some Q. (c.,u.) by using the subsystem
111

equation, but this makes it model-based. The real Q*. (c.,u.)
1 l. 1

would be different from Q. (c.,u.). A similar reason may lead
111

to the set cu*. being different from cu ..
1 1

Solution to the real problem will be termed real-optimal

A
contrf)l c*. It is not obtainable by definition since reality

is not known. We can only look for a structure which would

yield a control that would be better than the purely model-

based
A
c, but in principle what we will achieve is bound to be

/\
inferior to c*.

One of the possible structures is price coordination with

feedback to the coordinator. It is shown schematically by Fig.

1 '7 •

The local problems are exactly the same as in the open-loop

interaction balance method, that is we have for each i t ~N:

minimize Q. (c. ,u.) + <>... ,u. > - <11' ,F. (c. ,u.) >
1111111 1 l.

subject to

(c . , u .) £ CU.
111
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A

The controls c. (A) determined by solving this problem.
1

(computationally) for the current value of A are applied to the

real system, resulting in some u* and y*. The coordination con-

cept consists in the following upper-level problem:

A "-
find A = A such that U(A) ( 17)

Condition (17) is an equality of model-based optimal input
,...
U(A) and of the input u*, measured in the real system and caused

A
by control C(A). Providing for this equality is the basic con-

tept of "interaction balance method with feedback" (IBMF).

The properties of control based on condition (17) have been

studied quite extensively, see [12]. The usual questions of

existence of~, system optimality with control ~(r) and proce

dures to obtain 1 have been discussed and answers have been for-

mulated. The essence of these answers is in principle as follows.

Solution ~ exists, if solution ~ of the open-loop interaction

balance method (IB~1) exists for all s-shifted systems

u = H F (c, u) + s

where s E S, and S is the set of all possible values of the

model-reality difference

H F*(c,u) - H F(c,u) = s

with (c,u) E CD = CD 1 x x CDN.

'" '"When the models do not differ from reality, C(A) is strict-

ly optimal control and ~ equals equilibrium prices 1 which would

be obtained by solving the problem by the interaction balance

method of the previous paragraph. When models differ from

reality, the control based on (17) is in the first approximation

"always non-inferior to the one based on open-loop value A. In
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the particular case where

F*.(c.,U.) = F.(c.,u.) + 8.
111 111 1

i e: 1,N

that is the model-reality difference of the sUbsystems consist

in a shift, the control based on (17) is strictly real-optimal.

The open-loop would of course in this case be much inferior.

A most important feature of control based upon (17) is its

property to keep to the constraints in the real system. Note

that the "real control c* equals model-based c for any A, be-

cause the result ~ (A) is applied to the system. For A= Awe also

have u* = u.
.... ....

Since the model-based solution will keep (c.,u.)
1 1

e: CU., i = 1,N the same will be kept in the real system, but
1

_ A ~

only, at A = A. Note that the open-loop control C(A) may violate

the constraints in the real system, because at A =A it will in

general be u* f u.

The control based on A = A does not violate the constraints

(c.,u.) e: CU. if the real constraint sets equal the model ones
111

CU*. = CU., i e: 1,N. There exists also a modified method (MIBMF)
1 1

where the case CU*i f CUi is covered by appropriate use of feed~

back information, see [12].

A~ far as the procedures to find A are concerned, iterations

have to be done at a rate acceptable by the real system, i.e. per-

mitting new values u* to establish themselves after a change of

A. Unfortunately, the expression

'" ,..
R* (A) = u ( A) - u* (c (A ) ) ( 18)

which has to be brought to zero is not a derivative of any func-

tion, as it was in the case of interaction balance method. The
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value A has,to be found by equation-solving methods, aiming at

R*(A} = O. It should be stress~d that if there are inequality

constraints in the local problems, R*(A} will in general be non

differentiable. Suitable numerical methods to find A have been

proposed [12] [31] .

We are now able to justify discussion ,of steady-state.con~

trol here as opposed to more general problem formulation in the

previous paragraph. The reason is the practical field of appli-

cation of coordinat~on principle (17): it must be iteratively

done on the real system. This can be performed in steady-st<ilte

optimization, but not in a dynamical one. ~he o~ly except~on
I ;: .

would be iterative optimization of batch or cyclic processe9,
, • • i. I •.

the iteration in time-function space being performed from on~

batch to another. For that particular case all considerations

can be appropriately'generalized.

Let us add an example to explain what the on-line price

coordination really means. Consider the electric power system

and its customers. The amount of power that is being produced

is matched to the current load. How can we tell whether the

price on electrical energy is correct since there is no demand-

supply difference? The on-line price adjus~ment proposed in
,- .1". ~,.

this section applies to this problem: t~e price is consiqered
.;,'

to be correct when the production-load balance of the powyr
~ ' .

which has actually estab~ished itself in t~e real system (u*)

. '"is equal to the model~based optlmal value (u). The difference

would be used to generate price modification.
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4.8 Decentralized control lJith priee r'oor'dinai,iort (j\:el1f;(I('''':
to local decision units)

The structure of Fig.17, although proved to be effective

and superior to open-loop model-based control, may be criticised;

the information about real system u. is made available to the

coordinator only. The local problems base on models and calcu-
A

late their imaginative ri for each A, "knowing" that reality is

different. The scheme of Fig. 17 is therefore a structure suit-

able for a mechanistic oontrol system, but does not reflect the

situation which would be established if the local problems were

confined to decision makers with more freedom of choice.

We can expect that the local decision maker would tend to

use the real val~e u*. in his problem, that is that he would
1. . .

perform

minimize Q.(c.,u.) + <A.,u•. > - <\J.,F.(c.,u•. » (19)
1 1 1 1 1 1 1 1 . 1 .

sUbject to

(c.,u.,) c CU.
1 1 ·1

Schematically this is presented in Fig. 18 as feeding u*~....

to the corresponding local problem. Even with fixed A the con-

trol exercised by local decision makers on the system as a whole

remains to some extent coordinated, since the value of \ will

influence the control decisions. However, since u.~ are used

locally, we may call the structure o~ Fig. 18. d,'(?entraZ £2ed.

A problem for itself is system stability or the convergence

of iterations made by local optimizers while trying to achieve

their goals. It is obvious that all the iteration loops in the
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system are interdependent, since an u*i will depend on the deci

sions c = (c 1 ' ... ,c
N

) in the previous stage, that is on the de

cisions of all decision units.

"If the iterations converge, some steady-state values ~(A),

ri*(A) and Y*(A) will be obtained for the given price vector A.
,...

It may be predicted that if this A would happen to be A

from the previous paragraph, the result of decentralized control

would also be the same as in the previous structure. This does

not say that we should aim at it, since the ~esults obtained
,...

with A are not real-optimal and a better value of A may exist.

We should look for some way to iterate on prices A in the

system of Fig. 18. A possibility might be

minimize Q =
N
l: Q. (a. (A) , Q* . (A) )

i=1 1 1 1
(20 )

which simply means to find a price A such that the overall re-

suIt of local controls be optimized.

Two properties of the problem seem predictable. If the

models are adequate, and all iterations converge, they will

converge to the strict overall optimum for the system. If the

models differ from reality, then the constraints (c.,u.) € CU.
111

will be secured (like in the structure in Fig.17), but the

overall result will be suboptimal. This suboptimality is due

to the fact that in performing the local optimizations we con-

tinue to have an inadequate (model-based) value of the output Yi.
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5. Dynamic multilevel control

The structures of on-line dynamic control using decompo

sition of the control problem differ from those applicable to

steady-state. The differences lie in the use of feedback from

the system in operation. In steady-state control we could use

feedback in the form of measured inputs or outputs of the sys

tem elements and provide for an extremum of a current or "in

stantaneous" performance index, as described above. The dynamic

optimization needs considering at time t the future behavior of

the system, that is to consider an "optimization horizon".

Since the future behavior depends on both the initial state

and the control input that follows it, we cannot determine the

optimal control unless we know the present state of the system.

It means that if we wish to have a control structure with feed

back, this feedback must contain information on the state x(t) .

There are three principal ways in which local dynamic con

trol problems can be formed and, subsequently, coordinated by an

appropriate supremal problem. They are the following:

dynamic price coordinatio~where time-varying prices

on the inputs and outputs are imposed by the coordina

tor, along with the target states to be achieved by each

subsystem over the local optimization horizon;

structure based on state-feedback concept, where the

local decision making is reduced to a static (instanta

neous) feedback decision rule, and the coordinator sup

plies signals which serve either to modify the local

decisions, or to modify the local decision rules, so as

to account for the performance of the system as a whole;
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structures using conjugate variables~ where the local

decision making is a kind of static (instantaneous) opti-

mization, and the optimal dynamic policy is secured by a

vector of prices on the trend of the subsystem state

(i.e. by the vector of conjugate variables) imposed on

the subsystems and readjusted by the coordinator.

In this section we shall briefly discuss these alternatives.

We will particularly expose the "dynamic" features.

5.1 Dynamic Price Coordination

Assume the global control problem of the interconnected

system to be as follows:

N
minimize Q - I

i=1

subject to

q . (x. (t) ,m. (t) ,u. (t) )dt
01 1 1 1

(21)

x.(t) = f.(x.(t),m.(t),u.(t)), i £ 1,N (state equations)
11111

y. (t) = g. (x. (t) ,m. (t) ,u. (t)), i £ 1,N (output equations)
11111

u (t) = Hy (t) (interconnections)

with x(O) given, x(t f ) free or specified.

Decomposition

Consider that in solving the problem we incorporate the

interconnection equation into the following Lagrangian:
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N Jt f t f
E q . (x. (t) ,m. (t) ,u. (t) ) d t + f0··· <A(t) ,u (t ) - Hy (t» d t

i=1 0 01 1 1 1

dim u
where <A(t) ,u(t)-Hy(t» means E

j=1
A . (t) (u (T) - Hy (t) ) .

J J

Assume the solution to the global problem using this

Lagrangian has been found and it has provided for

"- optimal trajectoriesx. , i = 1 , ... ,N - state1

A
i 1 , ... ,N optimalm. , = controls

1
A

optimal inputsu. , i = 1 , ... ,N
1

"y. , i = 1 , .•. ,N - optimal outputs
1

- solving value of Lagrangian multipliers.

Note that now the Lagrangian can be split into additive

parts, thus allowing to form a kind of local problems:

minimize

where

t f
Q. = J [q. (x. (t) ,m. (t) ,u. (t» +

1 0 01 1 1 1

+ <~.(t),u.(t» - <C'. (t),y. (t»]dt1 1 1 1

(22)

Y1·(t) = g.(x.(t),m.(t),u.(t»1 1 1 1

and optimization is subject to

x.(t) = f.(x.(t),m.(t),u.(t»1 1 1 1 1

where xi(O) is given and xi(t f ) is free or specified as in the

original problem.



"In the local problem the price vector A. is an appropriate
1

A A . ~

part of A and ~. is also given by A as
1

"~i =
N
1:

j =1

T"H.. A.•
J 1 J.

Notice that we have put optimal value of price vector A

into the 16cal problems, which means that we have solved the

global problem before. Thanks to it the solutions of local

problems will be strictly ~ptim~l. There is little sense, how-

ever, in solving the local problems if the global was solved
,..

before, be'cause the global solution would provide not only A

but
,.. A

sys'tem.also x,m for the Whole

Short horizon and feedback' at local level

To make the' thing practical let us try' to shorten the

local horizons and to use feedback in the local problems. If

we shorten the horizon from t f to ti' the local problem (22)

becomes

minimize Q. =
1 ro [q . (x. (t) ,m. (t) ,u. (t» +

01 1 1 1

(23)

~ 1\."+ <A.(t),U.(t» - <\-I.(t),y.(t»]dt
1 1 1 1

with xi(O) given as before, but the target state taken from the

global long-hor!zonsolution, xi(ti) = ;i(ti). Here we might

remind the reader on the discussion of multilayer hierarchies

with the divided time horizon, discussed in Section 2.1, (see

Fig. 7) •
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For the local problem (23) we must of course supply the

~ A A
price vectors A., ~ .. It may be reasonable to use also u. from

111

the global solution, that is the "predicted" input value.

The short horizon formulation (23) will pay-off if we will

have to repeat the solving of (23) many times as opposed to

solving the global problem once only. Consult now Figure '9

where the principle of the proposed control structure is pre-

sented.

Feedback at the local level consists in solving the short-

horizon local problems at some intervals T, < ti and using the

actual value of measured state x*i(kT,) as new initial value

for each repetition of the optimization problem.

This brings a new qualitYi we now have a truly on-line

control structure and can expect, in appropriate caSeS, to get

results better than those dependent on the models only.

The operation of the structure is more exactly as follows:

at t = a we solve the problem max Qi for the horizon [O,ti] with

~

x. (0), then we apply control m. to the real system for an inter-
1 1

val [O,T,], at t = T, we again solve max Qi for horizon [T"ti]

with initial state Xi(T,) = x*i(T,) as measured, then we apply
~

control mi to the real system for the interval [T,,2T,], etc.

We now have a practical gain from both decomposition and

shortening the horizon. The local problems, which have to be

repeated at intervals T" are low-dimension and short-horizon.

We should mention disturbances which act on the real sys-

tern and were not yet shown explicitly in the formulations. Dis-

turbance prediction would be used while solving (2') and (23),
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that is the global and the local problems. And it is indeed

because of the disturbances which in reality will differ from

their prediction that we are inclined to use feedback structure

of Figure 19.

Feedback at coordination level

The feedback introduced so far cannot compensate for the,

• • A.
errors done by the coordlnation level in setting the prlces A.

Another repetitive feedback can be introduced to overcome this

shortage, for example bringing to the coordinator actual value

x*i a~ time ti! 2ti, .•• and asking the global problem to be

resolved for each new initial value. This principle of control

is also indicated in Figure 19.

We sho~ld very well note that feeding back the actual values

of state achieved makes ?ense if the models used in computation

differ from reality, for example because of disturbances. Other-

wise the actual state is exactly equal to what the models have

predicted and ~he feedback information is irrelevant.

A doubt may exist whether the feedback to the coordinator

makes sense, because the lower level problems have to achieve

xi(ti) = ~i(ti) ~s their goal and already use feedback to secure

it. It should be remembered, however, that the model-based tar

get value ~i(ti) is not optimal for the real system and asking
,..

the local decision making to achieve exactly x*i(ti) = xi(ti)

may be not advisable or even'not feasible.

The coincidence of feedback to coordination level with

times ti, 2ti is not essential. It might be advisable to use

this feedbaqk.andperform the re-computatioh of the global prob-

lem prior to time ti, that is more often.
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Static e~ements

In a practical case it may happen that some of system ele-

ments can be approximately considered as statio, that is non-

dynamical. It can be explained as follows.

The length of the global problem horizon t f has to be

matched to the slowest system element dynamics and the slowest

of the disturbances. The shortened horizon t f for the local

problems would in fact result from considering repetitive opti-

mization at the coordination level, for example as 1/10 of t f .

It may then happen that the dynamics of a particular system

element are fast enough to be neglected in its local optimiza-

tion problem within the horizon t f . This means, in other words,

,. "that if we would take m. ,u. from the global optimization solu
1 1

tion, "the optimal state solution x. follows these with negli-
1

gible effect of element dynamics.

To make this assumption more formal let us consider that

the system element has been supplied with first-layer follow-up

controls of some appropriately chosen controlled variables c.,
1

see section 2.2. We are then allowed to assume that c. deter
1

mines both x. and m. of the original element and the optimiza-
1 1

tion problem becomes

minimize Q.
1

,.,
[q' . (c. (t) , u. (t» + < >.. i (t) , u

l
' (t) >

01 1 1

"- <ll·(t),y.(t»]dt
1 1

(24)

where g'. (.) is a reformulation of the function q . due to
0101

substituting c. in place of x.,m ..
111
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Note well that although (24) will not be a dynamic problem

its results will be time functions.
~ .

In particular c. wlll be
1

time-varying control. This is due to time-varying prices

A . , ]..J ••
1 1

Let us repeat the essential assumption under which the

dynami·cal local problem (23) reduces to the static problem (24):

the dynamic optimal solutions

The use of simplified models

" A r-m.,u.,x. were assumed to be slow.
111

In the described structure of on-line dynamic coordination

we have made no use till now of the possibility of having a sim-

plified model in the global problem, which is being solved at

the coordination level at times 0, ti, 2 ti' etc.

The global problem may be simplified for at least two

reasons: the solution of the full problem may be too expensive

to be done, and the data on the real system, in particular pre-

diction of disturbances, may be too inaccurate to justify a

computation based on the exact model.

Simplification may concern dimension of state vector (intro

duce aggregated XC instead of x), dimension of control vector

(m
c

instead of m) and dimensions of inputs and outputs (uc = HCyc

instead of u = Hy).

The global problem Lagrangian will now be

N rtf
Jtf)" c c c c <A c (t) ,uc (t)L = J qoi (x. (t) ,m. (t) ,u. (t) )dt +

i~1 111

0 0

C c dt (25)- H Y (t»

The simplified solution will yield optimal state trajectory

~c c c c cx = (x
1

' x
2

, ... , x N ) and optimal price function A . The
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linking of those values to the local problems cannot be done

directly, because the local problems consider full vectors

x. , u. and y ..
111

"We have to change the previous requirement xi(ti) = xi(ti)

to a new one

y. [~. (t f')] = x~(tf')
111

which incidentally is a more flexible constraint, and we also

have to generate a full price vector A:

A "c
A = RA

where R is an appropriate "price proportion matrix". The prices

composing the aggregated AC may be termed "group prices".

We should note that functions y. and matrix R have to be
1

appropriately chosen. The choice may be made by model consider-

ations, but even with the best possible choice optimality of

overall solution will be affected, except for some special cases.

System interconnection through storage elements

The system interconnections considered till now were stiff,

that is an output was assumed to be connected to an input in a

permanent way. We may consider also another type of interconnec-

tion, a "soft" constraint of integral type:

(u .. (t)- Yl (t) )dt = 0
1J r

which corresponds to taking input u .. from a store, with some
1J

output Ylr connected to the same store and causing its filling.
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Asking for integral over [ktb ,(k+1)tb ] to be zero means that

supply and drain have to be in balance over each balancing

period t b •

A store may be supplied by several outputs and drained by

more than one subsystem input. There may also be many stores,

for example for different products. If we assume the same

balancing period for all of them the integral constraint

becomes

where u,y are parts of u, y connected to the stores (thew w

stiffly interconnected parts will be termed us'Ys)'

Matrices H1 ,H2 show the way by which uw' Yw are connected

to various stores. The number of stores is of course dim H1yw

= dim H2Uw' A state vector w of the inventories can also be

introduced

ktb+ t

w(ktb + t) = w(ktb ) + J (H 1Uw(t)- H2Yw(t)dt (26)

ktb

With both stiff and soft interconnections present in the

system, the global problem Lagrangian becomes
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q . (x. (t) ,m. (t) ,u. (t) )dt +
01 1 1 1

<). (t) ,u (t) -Hy (t) >dt +s s

(k+ 1) t
b

< nk
, [ (H1 U w (t)-H

2 Yw(t))dt>

ktb

. (27)

and we of course continue to consider

•x.(t) = f.(x.(t),m.(t),u.(t)),
1 1 1 1 1

Y1' (t) = g. (x. (t) ,m. (t) ,u. (t))
1 1 1 1

1 = 1, ... ,N

i = 1, ... ,N

In comparison with the previous Lagrangian a new term has

now appeared, reflecting the new constraint. Note that prices

Ti
k associated with the integral constraint are constant over

periods tbo Note also, that if t b will tend to zero, the

integral constraint gets similar to the stiff one and the step

wise changing n will change continuously, like 1 does.

With two kinds of interconnections the local problems also

change correspondingly and they become

[

t

of
A

minimize Q.= [q .(x.(t),m.(t),u.(t))+<.\.(t),u .(t»-
1 01 1 1 1 1 Sl

(20)

,..
-<jJ.(t),y .(t»]dt +

1 Sl

t f t
b

k=--1 It I\kL b < n, (H 1 . u . (t) - H
2

. Y . (t ))d t >
k=O 0 1 W1 1 W1
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where y . (t) = g . (x. (t) ,m. (t) ,u. (t»,y . (t) = g . (x. (t) ,m. (t),
S1, S1 1 1 1 W1 W1 1 1

u. (t» and optimization is subject to
1

•x.(t) ,,- f.(x.(t),m.(t),u.(t»
1 1 l' 1 1 .

Xi (0) given, xi(t f ) free or specified.

A new quality has appeared in problem (28) in comparison

wi th (23): the inputs u . taken from the stores are now free
W1

control variables and ~an be shaped by the local decision maker,

who previously had only m. in his hand. The local decisions
1

,., ,. 0 1
will be under the influence of prices A and n=(n ,n , .•. ), where

,.. ~

both A and n have to beset by the solution of the global prob-

lem.

The local problem (28) has no practical importance yet; it

will make sense when we ~ntroduce local feedback and shorten the

horizon, like it was'in the previous stiff-interconnection case.

We.shall omit.th~ details and show it ?nly as a control

scheme (see Figure 20).

Thinking about how to improve action of the coordinator we

made previously a proposal to feed actual x*(t~) to his level.

We have now additional state variables, the inventories w. If

the price ~k is wrong, the stores will not balance over

[ktb ,(k+1-) t b ]. ,It is almost obvious that we can catch-up by

I\k+1 dinfluencing the price for the next period n an that we should

condition the change on the differencew[(k+1)tp]- w*[(k+1)tb ],

where w*(·) is a value· measured in the real system. This kind

of feedback is also shown in Figure 20.
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Conclusion on dynamic ppice cooPdination

It has been shown that time-varying prices are a possible

coordination instrument which can be used in a multilevel struc

ture of on-line control. They must, however, be accompanied by

prescribing also the target states.

The local problems may be formulated as short-horizon and

each of them has low dimension. The coordination level must

solve the global problem for full horizon in order to generate

the optimal prices and the target states for the local problems.

It is expected that a simplified global model may be used in

appropriate cases.

The price coordination structure applies to systems with

stiff interconnections and also to systems with interconnections

through storage elements.

The operation of the structure depends on the possibility

of numerical solution of optimization problems.

Analytical solutions of the dynamic problems involved are

not needed, therefore we are by no means restricted to linear

quadratic systems.

5.2 Multilevel contpol based upon state-feedback concept

The literature on optimal control has paid considerable

attention to the structure where the control at time t, that is

m(t), would be determined as a given function of current state

x(t). Comprehensive solutions exist in this area for the linear

system and quadratic performance case, where the feedback func

tion proved to be linear, that is, we have
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"met) = R(t) x(t)

where R(t) is in general a time-varying matrix.

Trying to apply this approach to the complex system we

might implement for each local problem

"m. (t) = R .. (t) x. (t)
1 11 1

where R .. is one of the diagonal blocks of the matrix R.
11

(29)

The result of such local controls, although all state of

the system is measured and used, is not optimal. Note that for

"m. (t) we would rather have to use
1

;.,
mitt) = Ri (t)x{t)

"that is we should make mi(t) dependent on the whole state x{t).

We can compensate for the error committed in (29) by adding

a suitably computed correction signal

~ ~

m. (t) = R.. (t)x. (t) + v. (t)
1 11 1 1

(30 )

"The exact way to get viet) would be to generate it contin-

uously basing upon the whole x(t). This would, however, be

equivalent to implementing state feedback for the whole system

directly, with no advantage in having separated the local prob-

lems.
"-

From the local problem point of view, adding v. (t) as in
1

(30) means, in fact, overriding the local decision. In particular,

dim v. = dim m..
1 1

Exactness has to be sacrificed. with this in mind we may

propose various solutions, for example ( see Figure 21).

(i) "v. will be generated at t = 0 for the whole optimization
1

horizon t
f

(open-loop compensation);
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(ii) v. will be generated at t = 0 as before but will be recom
1

puted at t = ti < t f , using actual x(ti), etc. (repetitive com-

pensation) ;

(iii)v. will not be generated at all, but we implement instead
1

in the local problems

"m
1
. (t) = R. . (t) x. (t) ( 3 1 )

11 1

~here R .. is adjusted so as to approach optimality. This struc
11

ture may be referred to as decentralized control. We could

think of re-adjusting R .. at some time 'intervals, which could
11

I,c' J ()()k(~d upon uS aduptation. This adaptation would present a

way of on-line coordination of the local decisions.

It may be worthwhtle to mention that local decision making

based upon (29), (30) or (31) makes more sense for a mechanistic

implementation than for a hierarchy of human operators, where

the previous approach based on "maximization of local perfor-

manca subject to imposed prices" seems to be more adequate, to

what really happens in the system.

We should also remember that the feedback gain solutions

to optimization problems are available for a restricted class

of these problems only.

5.3 Structures using conjugate variables

It is conceivable to base on-line dynamic control upon

maximization of the current value of the Hamiltonian, thus

making a direct use of the Maximum Principle.

For the complex system optimization problem, described as

(21) at the beginning of this section, the Hamiltonian would be

N
7e = - I

i=1
q .(x.(t),m.(t),u.(t» +<IjJ(t),f(x(t),m(t),u(t» .

01 1 1 1

(32)
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The interconnection equation

u (t) - Hy (t) u (t) - Hg (x (t) , m(t) , u (t)) = 0

provides for u(t) to be a function of (x(t) ,m(t)) in the inter-

connected system

u(t) = <I>(x(t),m(t))

Therefore

N

J:
i 1

q . (x. (t),m. (t),11. (x(t),m(t)))+
OL 1 1 1

+ .... IfI (t) , f (x: ( t) , m (t) , tj> (x (t) , m (t) ) ) > (33 )

}\ssumc the global problem has been solved (model.,..based)

using this Hamiltonian and hence the optimal trajectories of

conjugate variables ~ are known.

We are going to use the values of ~ in local problems.

Pirst let us note that having ~ we could re-determine opti-

mal control by performing at the current time t

maximize Je. = -
N

L
i=l

q . (x. (t) ,m. (t),<I>. (x. (x(t) ,m(t)))+
01 1 1 1 1

"-+ "l/I(t) ,f(x(t) ,m(t) ,(~(x(t) ,m(t))» (34)

will' "(' IIII' problem is Lln " instantaneous maximization" and needs

no consideration of final state and future disturbances. This

information was of course used while solving the global problem
/\

and determining wfor the whole time horizon.

For the (34) to be performed we need the actual value of

state x. We could obtain it by simulating system behavior
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starting from the time t, when initial condition x(t,) was

given, that is by using equation

•x (t ) = f (x (t) ", m (t) , ¢> (x (t) , m (t) ) )

with x(t,) given and m

solutions of (34).

~= m known for [t"t] from the previous

We could also know x(t) by measuring it in the real system

(note that a discussion of model-reality differences would be

necessary) .

Problem (34) is static optimization, not a dynamic one.

We would now like to divide it into subproblems. It can be

done if we come back to treating u(t)-Hy(t) = 0 as a side con-

dition and solve (34) by using the Lagrangian

L =
N

l
i='

A
q . (x. (t) , m. (t) , u. (t)) + < IjJ (t) , f (x (t) , m (t) , u (t) » +

01 1 1 1

+ < >.. (t) , u (t) - Hy (t) > (35 )

where y (t) := g (x (t) ,m (t) ,u (t))

.
Before we get any further with this Lagrangian and its

decomposition let us note the difference with respect to dyna-

mic price coordination presented before. We have had there

t f N
( l

L := J i='
o

sUbject to

t f
q . (x. (t) , m. (t) , u . ( t)) d t +f < >.. (t) , u (t) - Hy (t) >d t

01 1 1 1

o

•x. (t) = f. (x. (t) ,m. (t) ,u. (t)),
1 1 1 1 1

It was a dynamic problem.
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In the present case there are no integrals in L(·) and the

dynamics are taken care of by the values of conjugate variables
1\
$. The differential equations of the system are needed only to

compute the current value of x in our new, "instantaneous"

Lagrangian. No future disturbances are to be known, no optimi-

/\
zation horizon considered - all these are imbedded in w.

Assume we have solved problem (35), using system model

i.e., by computation and we have the current optimal value of

price~, that is ~(t). We can then form the following static

local problems to be solved at time t

(36)

maximize L . = - qo i (xi (t) ,m
1
, (t) ,u. (t) + <~. (t) ,f , (x. (t) ,m. (t) u. (t) ) >

1 1 1 11 1 '1

~ ~

+ <;\. (t) ,u. (t) > - <]J. (t) ,yo (t) >
1 1 1 1

These goals could be used in a structure of decentralized

control, see Figure 22. The local decision makers are asked

here to maximize L. (.) in a model-based fashion and to apply
1

A

control m. (t) to the system elements. Current value x. (t) is
1 1

needed in performing the task. The coordination level would
A /\ ~

supply $. (t) and the prices A. (t) ,u. (t) for the local problem.
111

They would be different for each t.

Note that there is no hill-climbing search on the system

itself.

Figure 22 would first imply that the local model-based prob

lems are solved immediately with no lag or delay. We can therefore

assume, conceptually, that the local decision making is nothing

else but implementation of a state feedback loop, relating con

1\
trol m. (t) to the measured x. (t).

1 1
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If analytical solution of (36) is not the case we have to

implement a numerical algorithm of optimization and some time

will be needed to perform it. An appropriate discrete version

of our control would have to be considered, but we drop this

formulation.

Now let us think about feedback to the coordinator. We

might decide to let him know the state of the system at some

time intervals ti' that is x(kti). On this he could base his
~ ~

solution ~ for all t > kti and also the prices A for the next

interval [kti' (k+l)t f l. This policy would be very similar to

what was proposed in the "dynamic price coordination".

It might be worthwhile to make again some comparisons be-

tween dynamic price coordination and the structure using both

prices and conjugate variables.

In the "maximum principle" structure the local problems

are static. The local goals are slightly less natural, as they
~

involve < ~.,~. (t» that is the "worth of the trend". This would
1 1

be difficult to explain economically and hence difficult to imple-

ment in a human decision making hierarchy. As the problem is

static, no target state is prescribed.

Note that both these cases avoid to prescribe a state tra-

jectory. It is felt that in the dynamic control this kind of

direct coordination would be difficult to perform if model-

reality differences are assumed.

5.4 A compapison of the dynamical stpuctupes

We have shown three main possibilities to structure a dy-

namic multilevel control system, using feedback from the real

system in the course of its operation. We do not think it
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possible at this stage to evaluate all advantages and drawbacks

of the alternatives. It may be easily predicted that if the

mathematical models used do not differ from reality, all struc-

tures would give the same result, the fully optimal control.

The clue is what will happen if models are inadequate. Quanti-

tative indications are essentially missing in this area, although

efforts are being made and some results are available [11], [13].

Another feature of the structures concerns their use in a

human decision making hierarchy. In that case it is quite

essential what will be the local decision problem, confined to

the individual decision maker. He may feel uncomfortable, for

example, if asked to implement only a feedback decision rule

(as it happens in the "state feedback" structure), or to account
/\ .

for the worth of the trend <w. (t) ,x. (t» in his own calculations,
1 1

as it is required in the structure using conjugate variables, see

Table 1.

Table 1. Comparison of dynamic coordination structures.

SYSTEM COORDINATOR LOCAL LOCAL
TYPE PROBLEMS GOALS

DYNAMIC solves global problem, dynamic maximize performance,. '"PRICE sets pr~ces A and tar- optimiza- achieve target state
COORDINATION " tiongets x.

~

STATE-FEEDBACK solves global problem, state feed-
CONCEPT supplies compensation back decision no goal

. 1" rules~gna v.
~

USING solves global problem, static maximize performance
• J\

CONJUGATE sets pr~ces A and con- optimiza- inclusive of
VARIABLES jugate variables $. tion

i\ •<w. (t) ,x. (t»
~ ~ ~
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6. Conclusions

Hierarchical control systems, as a concept, are relatively

simple and almost self-explanatory. They exist in many applica

tions, ranging from industrial process control, through produc

tion management to economic and other systems [10], [17], [23],

[301, [331. Some of these systems may involve human decision

makers only, other may be hierarchies of control computers, or

mixed systems. The hierarchical control theory is developing

quite rapidly; its goals may be defined as

- to explain behavior of the existing systems, for example

find out the reasons for some phenomena which occur;

- to help designing new system structures, for example deter

mining what decisions are to be made at each level, what

coordination instruments are to be used, etc;

- to guide the implementation of computer-based decision

making in the system.

In the first two cases a qualitative theory may be sufficient,

whereby the models or the description of the actual system do not

have to be very precise. The available hierarchical control theory

seems to be quite relevant for this kind of applications, and can

help in drawing conclusions as well as in making system design de

cisions.

The third case calls for having relatively exact models of

the system to be controlled (although suitable feedback structures

relax the requirements) and calls also for having appropriate de

cision making algorithms, which would have to be programmed into

the control computers. The existing theory and above all the

existing experience are rather scarce in this area.
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Fig. 20 On-line dynamic price coordination
in a system containing stores in
the interconnections.
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Fig. 21 Dynamic multilevel control based
on feedback gain concept.
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Fig. 22 Dynamic multilevel control using
conjugate variables




