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How trophic interaction strength depends on traits:
A conceptual framework for representing multidimensional trophic niche spaces

A. G. Rossberg, Å. Brännström, and U. Dieckmann

Abstract

A key problem in community ecology is to understand how individual-
level traits give rise to population-level trophic interactions. Here we
propose a synthetic framework based on ecological considerations to ad-
dress this question systematically. We derive a general functional form for
the dependence of trophic interaction coefficients on trophically relevant
quantitative traits of consumers and resources. The derived expression
encompasses—and thus allows a unified comparison of—several functional
forms previously proposed in the literature. Furthermore, we show how a
community’s, potentially low-dimensional, effective trophic niche space is
related to its higher-dimensional phenotypic trait space. In this manner,
we give ecological meaning to the notion of the “dimensionality of trophic
niche space”. Our framework implies a method of directly measuring
this dimensionality. We suggest a procedure for estimating the relevant
parameters and verifying the assumptions underlying our derivation for
empirical data.

1 Introduction

The ecological niche of an animal was originally conceived by Elton (1927) as
‘its place in the biotic environment, its relation to food and enemies’. The niche
concept is of fundamental importance in ecology and establishes a link between
individual-level traits and population dynamics. However, despite decades of
intense research and debate (Hutchinson, 1957, 1965; MacArthur, 1968; Whit-
taker and Levin, 1975; Pianka, 1983; Arthur, 1987; Leibold, 1995; Begon et al,
1996; Case and Leibold, 2003; Meszéna et al, 2006), no universal agreement
has emerged as to how niches are to be formally represented, and fundamental
questions remain unresolved.

Hutchinson (1957) conceptualized the niche of a species as a volume in a
high-dimensional space, referred to as niche space. The availability of an eco-
logical niche for a species depends, in a great variety of ways, on interactions
between the species comprising an ecological community. These interactions, in
turn, are affected by the phenotypic traits expressed by the interacting species.
Cohen (1977) introduced the concept of trophic niche space, defined as the
trophically relevant subspace of niche space. The position of a species within
trophic niche space is defined by its trophic traits alone, that is, the traits rel-
evant for determining trophic interactions. A first fundamental question raised
by Cohen (1977) is how many dimensions the trophic niche space has or, equiv-
alently, how many different trophic traits consumers and resources have. The
topology of empirical food webs, for example, has variously been interpreted
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as being indicative of for a low-dimensional (Cohen, 1977, 1978; Allesina et al,
2008) but also for a rather high-dimensional (Rossberg et al, 2006a; Rossberg,
2008) niche space, without consensus as to when one of these interpretations
is more appropriate. A second fundamental question concerns the empirical
identification of trophic traits. How are trophic traits related to the vast num-
ber of directly measurable, phenotypic, hereditary traits that characterize the
physiology, anatomy, and behavior of the individuals of a species (hereafter:
phenotypic traits)? Which objective criterion should be used to choose trophic
traits, and how is the minimal number of such traits to be found? A third
fundamental question addresses the quantitative relationship between trophic
traits and phenotypic traits. Specifically, how can the former be expressed in
terms of the latter?

These questions assert themselves with a vengeance in current models for
describing the evolution of food webs (e.g., Caldarelli et al, 1998; Drossel et al,
2001; Christensen et al, 2002; Yoshida, 2003; Tokita and Yasutomi, 2003; Bas-
tolla et al, 2005; Loeuille and Loreau, 2005; Ito and Ikegami, 2006; Rikvold,
2007; Rossberg et al, 2008; see also the review by Yoshida, 2006). These models
inevitably face the problem of having to cast the niche concept into a specific
mathematical form. The choices made are of central importance, since they
can affect the predicted system-level properties of modeled communities. Solu-
tions to this problem suggested to date, differ substantially, both in terms of
how niches are represented through trophic traits and how traits give rise to
trophic interactions. Some models simply consider the trophic links themselves
as evolving traits (Yoshida, 2003; Tokita and Yasutomi, 2003; Bastolla et al,
2005; Rossberg et al, 2006b). In other models, links are determined by trophic
traits of consumers and resources, which are then allowed to evolve (e.g., Cal-
darelli et al, 1998; Yoshida, 2003; Rossberg et al, 2006a; Ito and Ikegami, 2006;
Laird and Jensen, 2006; Rossberg et al, 2008). Trophic traits, in turn, have been
modeled as qualitative or categorical characters given by discrete numbers that
describe the presence or absence of specific trophically relevant features (e.g.,
Drossel et al, 2001) or as quantitative characters given by continuous numbers
(e.g., Yoshida, 2003). Both approaches have their merits. Categorical characters
are better aligned with the practice of cladistics (Kitching et al, 1998) and do
justice to the fact that a specific definition and associated measurement protocol
used for quantifying a quantitative character in one species might be difficult to
apply to other species. The use of quantitative characters, on the other hand,
is motivated by the observation that phenotypes change continuously, in partic-
ular when considering population averages, and that even merely quantitative
differences in trophic traits can have large impacts on the strengths of trophic
interactions.

The aim of this study is to develop a general theory of how phenotypic
traits determine trophic interaction strengths. We start from a generic charac-
terization of the dependence of interaction strengths on the phenotypic traits
of resources and consumers (Eq. (3)). This characterization can be verified and
parametrized based on field data (Appendix A). We then map phenotypic traits
onto a hierarchy of trophic traits, with the latter being ranked according to their
importance in determining trophic interaction strengths. This hierarchy, when
truncated at a given level of accuracy, gives a formal and objective meaning to
the concepts of trophic niche space and its dimensionality. Based on the trun-
cated hierarchy, we derive an approximate expression for interaction strength as
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a function of trophic traits (Eq. (4)). This result clarifies how trophic traits can
be chosen to characterize the trophic vulnerability of resources and the foraging
strategies and capabilities of consumers in a shared trophic niche space. This
finding naturally leads to interpreting the strengths of trophic links in terms
of a match between the vulnerability traits of resources and the foraging traits
of consumers. Derived from a generic ansatz, our results allow us to integrate
several different models proposed in the literature for determining trophic in-
teraction strength into a unified framework.

2 Theory

We focus on trophic interactions between species because for this type of in-
teraction theory is historically most developed and because trophic interactions
are obviously essential for all species but primary producers. It is, however, not
difficult to apply our theory to other types of interaction, such as those between
pollinators and plants. Also, the interacting units considered below can equally
well be interpreted as individuals or as higher taxa, rather than as species, de-
pending on the perspective that is most appropriate and illuminating for any
specific application.

2.1 Dependence of interaction strengths on phenotypic
traits

Following general practice in food-web modeling, we assume that trophic inter-
actions are pairwise, that is, for each pair of species (r, c) there is an interaction
strength arc ≥ 0 characterizing the intrinsic efficiency or likelihood that c eats
r. In nature, trophic interactions involving three or more species do exist (e.g.,
herbivores hiding within plants from predators), but may not be as important
in determining macroecological and macroevolutionary patterns as pairwise in-
teractions, and are therefore not considered here. The trophic energy flows from
r to c depends not only on the interaction strength arc but also on the densi-
ties, abundances, or biomasses (densities for short) of r, c, and other species,
in a form that is usually described by a functional response. In general, such a
functional response may be affected by phenotypic traits of c, such as handling
times. We assume that the trophic energy flow to c is determined at most by
the matrix arc, the densities of all species, and some phenotypic traits of c. The
phenotypic traits of species other than c affect the direct flows to c only via the
pairwise interaction strengths arc, and each arc depends only on the phenotypic
traits of r and c, but not on their densities.

The specific forms in which interaction strengths arc enter a community
model can vary considerably. Among the various measures of interaction
strength tabulated by Berlow et al (2004), arc may refer to the an element
of community’s demographic matrix (there denoted as interaction matrix) or
the maximum consumption rate of r by c, on a per-capita or a per-biomass
basis. In a typical expression for the type-II functional response of a consumer
c to N resource species of densities ρi (i = 1, ..., N), the interaction strengths
enter as

aicρi
1 + τc

∑
k akjρk

, (1)
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where τc scales the consumer’s handling time. Many other forms are conceivable
and are encompassed by our general analysis below.

Observations show that food webs possess many more weak than strong
trophic links (Kenny and Loehle, 1991; Ulanowicz and Wolff, 1991). We thus
adopt a logarithmic scale for link strength by developing our framework in terms
of ln arc. (Should arc have a unit, the unit is removed by division with a nor-
malizing constant before taking the logarithm.) Working on a logarithmic scale
requires the technical assumption that there is at least the tiniest probability
for any consumer species to eat individuals of any other species, including its
own, so that arc is always positive and ln arc is always defined. This does not
preclude the possibility that arc is so small for many consumer-resource pairs
that trophic interactions between them are never observed.

Plants, or other producers, can be included in the formalism in several ways.
One is to distinguish formally between producers and consumers, and admit
producers only in the roles of resources but not as consumers (e.g., Yoshida,
2003). Another is to avoid a formal distinction between producers and con-
sumers by stretching the idea of small arc > 0 even further; at the same time
admitting borderline cases such as parasitic or carnivorous plants in a natural
way. The formulation here is following the second approach.

We denote by ti the m-dimensional vector of numerical values of phenotypic
traits characterizing species i. We conceive of the trait vectors ti as being
high-dimensional, providing a nearly complete characterization of the average
phenotype of a species.

Not all phenotypic trait values or combinations thereof are physiologically
sustainable and anatomically or ecologically feasible. That is, there are (hy-
pothetical) combinations of phenotypic traits for which it is impossible for a
species to sustain its population even when sufficient resources are available
and no competitors or natural enemies are present. We assume that the sus-
tainable region of phenotypic trait space is bounded, i.e., there is a tmax such
that all trait vectors t with |t| > tmax are unsustainable. Satisfying this assump-
tion might require a suitable nonlinear transformation of trait vectors (e.g., by
taking logarithms, reciprocal values, etc.).

We now examine the dependence of ln arc on the traits of an arbitrary re-
source species r and an arbitrary consumer species c. The indices r and c are
suppressed where the dependence on r and/or c is clear from the context. We
denote by v the 2m-dimensional vector obtained by concatenating the trait
vectors tr and tc, that is,

v =

(
tr
tc

)
. (2)

The vector v therefore characterizes a consumer-resource pair.
By definition, the interaction strength arc is a function of v alone. A general

functional form describing this relationship needs to respect several considera-
tions. First, food-web dynamics are most affected by resource-consumer pairs
(trophic links) with large interaction strengths. The description of arc should
therefore be able to accurately model ln arc where it is large, that is, near its
maximum; for values of v where arc is close to zero, less accuracy in ln arc is
required. Second, to admit a mathematical analysis, the functional form should
not be overly complex. Third, it should be possible to describe all qualitatively
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Fig. 1 Schematic illustration of the projection technique used for the dimensional reduction of niche space, for the case that the phenotypic
single-species trait space is one-dimensional (m = 1). The corresponding single trait might, for example, characterize the preferred habitat. The
sustainable range is some interval S on this niche axis. (a) All sustainable values of v = (tr tc)T are located within a square S×S. The ellipsis in the
tr-tc-plane indicates the range where the interaction strength arc attains sizable values. Along the short axis of this ellipse arc varies considerably
within S× S, while along its long axis this variation is small. (b) The projection of v onto the short axis (parametrized by the match between
trophic traits, V1−F1) is therefore sufficient for an approximate determination of arc. Since the starting point is here already a one-dimensional
niche space, the projection does not lead to the dimensional reduction realized in cases with larger m, which are more difficult to visualize.

ecologically niche space will generally be larger than the
2n-dimensional space spanned by Vi and Fi, since some phe-
notypic traits have non-trophic ecological implications. The
2n-dimensional space spanned by Vi and Fi is therefore a
sub-space of the ecological niche space. However, Eq. (4)
shows that a different but equivalent representation may be
more illuminating: each species can be represented by two
points V and F in an n-dimensional space, with coordi-
nates Vi and Fi, respectively. This space is the community’s
trophic niche space: while V determines a species’ niche in
its role as resource, F determines its niche in its role as con-
sumer, and the vicinity of V and F for species pairs deter-
mines their trophic interactions. Independent of whether n
is large or small it can be interpreted as the number of di-
mensions of trophic niche space. Applying our framework,
the old problem of determining the dimensionality of trophic
niche space (Cohen, 1977) is therefore reduced to the much
more practical task of estimating from empirical data the
quadratic polynomial (3).

While there is no general guarantee that the dependence
of trophic traits on phenotypic traits is such that all trophic
traits can be chosen independently for a given species, this
becomes likely when n¿m: With many potentially relevant
phenotypic traits, those determining foraging capacities are
likely to be different from those determining vulnerabilities.
Largely independent foraging and vulnerability traits may
indeed be required to understand the observed differences
between the rates at which species evolve in their roles as
resources and as consumers (Rossberg et al, 2006a; Bersier
and Kehrli, 2008). Naturally, one must expects some pheno-
typic traits to strongly affect both foraging and vulnerability
of species. Examples are body size or the preferred height
above or depth below ground. In general, however, such
phenotypic traits will determine the values of trophic traits
only in combination with other phenotypic traits. Consider,

for example, the predator-prey body-mass ratio PPMR, that
is, the difference between logarithmic body masses of con-
sumers and their resources logMc− logMr, which has been
shown to be a good predictor of trophic interactions (Brose
et al, 2006). While trophic interactions are generally more
likely to occur within a certain intermediate range of the
PPMR (Otto et al, 2007; Troost et al, 2008), the prey-size
preference of a predator is not determined by its body size
alone (Jennings et al, 2002), but also depends on its mode
of foraging, the shape of its ingestive organ, and many other
characteristics. Usually, the corresponding term in Eq. (4)
will therefore not describe a simple size matching based on
Vi = logMr and Fi = logMc−D for some constant D, but
other phenotypic traits will enter Fi and Vi, leading to numer-
ically independent values of Fi and Vi for a given species. In
short, since foraging and vulnerability traits are derived as
linear combinations of very many phenotypic traits, func-
tional dependencies between trophic traits are likely to be
rare.

3 Comparison with other approaches

Here we briefly review five alternative approaches from the
literature for determining trophic interaction strengths from
traits, and show how our synthetic framework enables in-
terpreting these formally different approaches in a unified
fashion. Reformulating the existing approaches in this man-
ner draws attention to some special assumptions that might
be difficult to motivate from the vantage point of our more
general framework. This raises the question how these as-
sumptions affect the community-level structure and dynam-
ics of the resulting model food webs.

The Webworld model refers to a family of models ini-
tially introduced by Caldarelli et al (1998), which has been
developed further in the works of Drossel et al (2001), Lugo

Figure 1: Schematic illustration of the projection technique used for the dimen-
sional reduction of niche space, for the case that the phenotypic single-species
trait space is one-dimensional (m = 1). The corresponding single trait might, for
example, characterize the preferred habitat. The sustainable range is some in-
terval S on this niche axis. (a) All sustainable values of v = (tr tc)

T are located
within a square S × S. The ellipsis in the tr-tc-plane indicates the range where
the interaction strength arc attains sizable values. Along the short axis of this
ellipse arc varies considerably within S ×S, while along its long axis this varia-
tion is small. (b) The projection of v onto the short axis (parametrized by the
match between trophic traits, V1−F1) is therefore sufficient for an approximate
determination of arc. Since the starting point is here already a one-dimensional
niche space, the projection does not lead to the dimensional reduction realized
in cases with larger m, which are more difficult to visualize.

different ways in which interaction strengths may depend on a phenotypic trait:
it may increase or decrease steadily and thus reach its maximum at the edge of
the sustainable region of trait space, or is may exhibit a minimum or maximum
somewhere within this range. The quadratic polynomial

ln arc = ln a0 + bTv +
1

2
vTCv (3)

is perhaps the simplest general functional form satisfying these criteria. In
this expression, a0 is a positive scalar, b is a vector of length 2m, and C is a
symmetric 2m × 2m matrix. We stress that Eq. (3) should not generally be
interpreted as an expansion of ln arc around v = 0 or at the point at which in-
teraction strength attains its maximum (which might be outside the sustainable
region of trait space). Rather, the quadratic polynomial is chosen so as to best
approximate arc across the sustainable region. A judicious parametrization of
phenotypic traits in t can improve the accuracy of this representation; we will
come back to this point in Discussion.

Eq. (3) determines the interaction strength between any two species r and c
with trait vectors tr and tc: therefore, the values a0, b, and C characterize an
entire community, rather than just one specific species pair. Notice that, while
our framework allows for cross-feeding between any pair of species, arc will often
be significant in one direction and negligible in the other. In Appendix A we
propose a specific scheme for estimating b and C in Eq. (3) from empirical data
on interaction strengths (e.g., records of observed interactions) and phenotypic
traits. It is thus possible to evaluate for any particular empirical application
whether Eq. (3) provides an adequate representation. Enabling such direct em-
pirical verification, our theory goes beyond many other theoretical approaches to
describing the dependence of trophic interaction strength on phenotypic traits.
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2.2 Dependence of interaction strengths on trophic traits

Starting from the general representation of the dependence of trophic interaction
strength on the phenotypic traits of consumer-resource pairs in the form of
Eq. (3), we derive in Appendix B the approximation

arc = a1 exp

[
V ∗ + F ∗ +

1

2

n∑
i=1

λi(Vi − Fi)
2

]
, (4)

with constants n, a1, and λi (i = 1, ..., n). The vulnerability traits V ∗ and Vi
depend only on the phenotypic traits of the resource r while the foraging traits
F ∗ and Fi depend only on the phenotypic traits of the consumer c. Vulnerability
and foraging traits together define a species’ trophic traits, since they alone
suffice to determine, in this approximation, the strength of trophic interactions.
Eq. (4) is obtained by a truncation of the hierarchy of eigenvectors of the matrix
C, retaining only the eigenvectors with the n dominating eigenvalues. (Since
C is symmetric, all its eigenvalues are real.) The choice of n depends on the
structure of the eigenvalue spectrum of C and the desired accuracy. Technically,
this approximation is similar to a principle component analysis.

The trophic traits Vi and Fi for i = 1, . . . , n are obtained as projections of the
phenotypic trait vectors t onto the trophically most relevant axes of trait space.
The main idea is illustrated in Fig. 1; details are provided in Appendix B. The
trophic baseline traits V ∗ and F ∗ describe the interaction strength a1 exp(V ∗+
F ∗) that results when all vulnerability traits and foraging traits are matched,
Vi = Fi for i = 1, ..., n. Strong contributions to F ∗ come from phenotypic
traits of c for which all quadratic effects are relatively small, since these traits
always facilitate or hinder foraging. Likewise, strong contributions to V ∗ come
from phenotypic traits of r for which all quadratic effects are relatively small,
since these traits always increase or decrease defense against foraging. Examples
are, respectively, the maximum speed of locomotion or the armor strength of
resources. Increasing the former strengthens the interaction between r and c by
enhancing F ∗, while increasing the latter weakens this interaction by reducing
V ∗.

The sum of quadratic terms in Eq. (4) formalizes the idea that trophic in-
teractions are determined by matches between trophic traits of consumers and
resources in a shared trophic niche space. Specifically, when all λi (i = 1, . . . , n)
are negative, trophic interactions are strongest when the consumer has foraging
traits Fi that equal the corresponding vulnerability traits Vi of the resource.
As an illustration, consider the color Fi at which a consumer’s eyes are max-
imally sensitive in relation with the dominant color Vi of a resource’s body.
Positive values λi may be less likely to occur in natural systems. They imply
that the trophic interaction is weakest for a particular match of consumer and
resource traits, and thus correspond to defense strategies specialized to partic-
ular kinds of consumers. Conceivable cases of this type would be camouflages
that are efficient only when viewed at a particular distance or from a particular
angle, as defenses against consumers searching for prey from particular heights
or positions.

In comparison with Eq. (3), Eq. (4) affords a substantial reduction of eco-
logical complexity when the number 2n + 2 of trophic traits is much smaller
than the number 2m of phenotypic traits, that is, when n � m. Two reasons
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suggest that this relation is widely fulfilled in natural systems. First, the trophic
effects of many phenotypic traits are negligible, and second, the trophic effects
of groups of other phenotypic traits are similar and they can to good accuracy
be summed up in single trophic trait variables. Whether n � m indeed holds
for a particular natural system and for a particular set of phenotypic traits is
an empirical question. Our theory allows answering this question in two steps:
by identifying the most suitable trophic traits as described in Appendix B and
by confirming that Eq. (4) achieves a satisfactory degree of accuracy across the
sustainable region of trophic niche space.

The trophic traits V ∗, F ∗, Vi, Fi of a species are derived from its phe-
notypic trait vector and determine its place in a (2n + 2)-dimensional space.
As explained above, the trophic baseline traits V ∗ and F ∗ only determine a
species’ overall vulnerability and foraging capacity, and hence are not involved
in the assessment of species interactions in terms of trait matches. For the
latter purpose, we can represent each possible species by a point (V, F ) in the
2n-dimensional space spanned by the coordinates Vi and Fi. Hutchinson’s 1957
ecological niche space may either be conceived as identical with the traits space
encompassing all conceivable trait vectors t, or as its restriction to the traits or
trait combinations that are ecologically relevant. In either case, this ecologically
niche space will generally be larger than the 2n-dimensional space spanned by
Vi and Fi, since some phenotypic traits have non-trophic ecological implications.
The 2n-dimensional space spanned by Vi and Fi is therefore a sub-space of the
ecological niche space. However, Eq. (4) shows that a different but equivalent
representation may be more illuminating: each species can be represented by
two points V and F in an n-dimensional space, with coordinates Vi and Fi,
respectively. This space is the community’s trophic niche space: while V deter-
mines a species’ niche in its role as resource, F determines its niche in its role as
consumer, and the vicinity of V and F for species pairs determines their trophic
interactions. Independent of whether n is large or small it can be interpreted as
the number of dimensions of trophic niche space. Applying our framework, the
old problem of determining the dimensionality of trophic niche space (Cohen,
1977) is therefore reduced to the much more practical task of estimating from
empirical data the quadratic polynomial (3).

While there is no general guarantee that the dependence of trophic traits
on phenotypic traits is such that all trophic traits can be chosen independently
for a given species, this becomes likely when n � m: With many potentially
relevant phenotypic traits, those determining foraging capacities are likely to
be different from those determining vulnerabilities. Largely independent forag-
ing and vulnerability traits may indeed be required to understand the observed
differences between the rates at which species evolve in their roles as resources
and as consumers (Rossberg et al, 2006a; Bersier and Kehrli, 2008). Naturally,
one must expects some phenotypic traits to strongly affect both foraging and
vulnerability of species. Examples are body size or the preferred height above or
depth below ground. In general, however, such phenotypic traits will determine
the values of trophic traits only in combination with other phenotypic traits.
Consider, for example, the predator-prey body-mass ratio PPMR, that is, the
difference between logarithmic body masses of consumers and their resources
logMc − logMr, which has been shown to be a good predictor of trophic inter-
actions (Brose et al, 2006). While trophic interactions are generally more likely
to occur within a certain intermediate range of the PPMR (Otto et al, 2007;
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Troost et al, 2008), the prey-size preference of a predator is not determined
by its body size alone (Jennings et al, 2002), but also depends on its mode of
foraging, the shape of its ingestive organ, and many other characteristics. Usu-
ally, the corresponding term in Eq. (4) will therefore not describe a simple size
matching based on Vi = logMr and Fi = logMc −D for some constant D, but
other phenotypic traits will enter Fi and Vi, leading to numerically independent
values of Fi and Vi for a given species. In short, since foraging and vulnera-
bility traits are derived as linear combinations of very many phenotypic traits,
functional dependencies between trophic traits are likely to be rare.

3 Comparison with other approaches

Here we briefly review five alternative approaches from the literature for deter-
mining trophic interaction strengths from traits, and show how our synthetic
framework enables interpreting these formally different approaches in a unified
fashion. Reformulating the existing approaches in this manner draws attention
to some special assumptions that might be difficult to motivate from the van-
tage point of our more general framework. This raises the question how these
assumptions affect the community-level structure and dynamics of the resulting
model food webs.

The Webworld model refers to a family of models initially introduced by Cal-
darelli et al (1998), which has been developed further in the works of Drossel
et al (2001), Lugo and McKane (2008), and many others. Each species is char-
acterized by a set of L realized categorical characters picked from a larger set of
K possible categorical characters: the L traits are assigned the value 1, while
the remaining K−L traits are assigned the value 0. In the framework developed
above, t ∈ {0, 1}K with the sustainable region of trait space given by |t|2 = L.
Link strengths are determined according to arc = max(0, tTrW tc), where W is a
zero-mean, antisymmetric random matrix. Apart from replacing the maximum
function by an exponential, this is equivalent to Eq. (3) with a0 = 1, b = 0, and
C having a block structure

C =

(
0 W
WT 0

)
. (5)

With the prescription for W by Drossel et al (2001), and also with the variants
proposed by Lugo and McKane (2008), one finds numerically, quite independent
of the details, that (i) eigenvalues always come in quadruples (with each eigen-
value λ having a multiplicity two and being accompanied by the eigenvalue −λ
also of multiplicity two) and (ii) otherwise eigenvalues are spread fairly evenly
across a range from −λmax to λmax. Hence, in this model, no efficient dimen-
sional reduction with n � m is possible. As a result, a species’ foraging and
vulnerability traits are not independent, which might impose constraints on the
food-web topologies derived from this model.

Yoshida (2003) employed a hybrid model involving both the autonomous evo-
lution of trophic links and the evolution of trophic traits determining trophic
links. The strength of trophic links was determined in two steps. First, trophic
traits determine the probability for establishing a trophic link. Second, if es-
tablished, a link’s strength is independently drawn at random. Here we only
consider the first step, interpreting the linking probability as a trait-mediated
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interaction strength. In Yoshida’s model, species are, among others, charac-
terized by ten vulnerability traits and, independently, by ten corresponding
foraging traits, all chosen from within a hypercube. The probability of estab-
lishing a link between a consumer and a resource is given by the fraction of
the consumer’s foraging traits that differ from the resource’s corresponding vul-
nerability traits by less than a certain niche width w. A similar form can be
obtained by setting V ∗ = F ∗ = 0, and λi = −w−2 (for all i) in Eq. (4), which
yields

arc = a1 exp

[
− 1

2w2

n∑
i=1

(Vi − Fi)
2

]
. (6)

In both cases, all directions of trophic niche-space are treated equally, and the
interaction strength (or probability) is a function of the differences between vul-
nerability and foraging traits only. However, while the contours of the matching
kernel in Eq. (6) are simple hypersphere, they are more complex in the model
of Yoshida: specifically, the linking probability is elevated around ten hyper-
planes normal to the niche axes, more elevated along the pairwise intersections
of these hyperplanes and even further elevated along higher-order intersections.
While such a specific structure would be difficult to motivate within the gen-
eral framework introduced above, Yoshida’s model did inspire the choice of
a functional form for the interaction strength very similar to Eq. (6) in the
population-dynamical matching model (Rossberg et al, 2008).

In a model developed by Loeuille and Loreau (2005), trophic interactions
between a consumer and a resource are determined by their body masses Mc and
Mr alone. The defining equation is a special case of Eq. (4), with V ∗, F ∗ = 0,
n = 1, λ1 < 0, V1 = Mr, and F1 = Mc − d1, where d1 > 0 is the body-
mass difference that allows predators to consumer their prey most efficiently. In
addition, the matching kernel is truncated above Mr ≥Mc. A representation of
trophic traits in terms of logarithmic masses (e.g., V1 = lnMr, F1 = lnMc−d1)
might have been more appropriate, because it leads to preferred mass ratios
(e.g., Mc/Mr = exp d1), which is more in line with observations (Warren and
Lawton, 1987; Warren, 1989; Cohen et al, 1993; Memmott et al, 2000; Brose
et al, 2006) than preferred mass differences.

A simple, more general model for food-webs based on a one-dimensional
niche space can be constructed by associating each species with four quantitative
characters t1, ..., t4, setting V1 = t1, F1 = t2, V ∗ = t3, and F ∗ = t4, and
choosing parameters in Eq. (4) such that

ln arc = V ∗ + F ∗ − (V1 − F1)2. (7)

The classical niche model for describing food-web topology (Williams and Mar-
tinez, 2000) naturally arises from Eq. (7) by focusing on the special case
V ∗ = t3 = 0, choosing triplets (t1, t2, t4) independently for each species from a
distribution particular to this model (see Williams and Martinez, 2000), and
considering a trophic link as present whenever ln arc > 0. A consumer’s “niche
center” is then controlled by F1, and the “niche width” by F ∗, which implies
that, in this model, a consumer’s trophic generality is positively correlated with
its maximum link strength.

One can also consider the other extreme, by examining food-web topologies
determined by a large number of independent traits. The matching model (Ross-
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berg et al, 2006a) represents this approach. Trait matching as implemented in
this model can be reproduced by an interaction strength as in Eq. (6) with
large n, if one restricts admissible trait values to the alternatives Vi = ±c1 and
Fi = ±c2 with constants c1 and c2. The value of ln arc is then fully determined
by the number of cases for which the signs of Vi = ±c1 and Fi = ±c2 are
matched. When considering a trophic link as present when ln arc, and therefore
the number of trait matches, exceeds a given threshold, a food-web topology is
obtained. In the matching model, however, a second condition needs to be sat-
isfied for establishing trophic links: the mean body mass of a consumer species
cannot be smaller than a certain fraction of that of its resource species. With
this unrealistically sharp threshold for the predator-prey mass ratio, it is difficult
to combine the two conditions the matching model uses for establishing links
into a thresholded interaction strength of the general form defined by Eq. (4).
It would be interesting to check whether the good fit of the matching model
with empirical data can be reproduced when recasting the matching model in
such a generalized form.

4 Discussion

The past two decades have seen a growing interest in food-web modeling and
there is now a substantial number of models aimed at reproducing the demo-
graphic and evolutionary dynamics of large ecological communities. These mod-
els have increased our understanding of macroecology and can potentially be
used to address many questions related to the conservation and management
of biodiversity and living resources. In practice, however, the application and
wider acceptance of these models is restricted by a lack of understanding of their
range of validity and their resultant limitations. Questions naturally arise as to
whether such models offer sufficiently detailed representations of the complex-
ity of real ecosystems. Here we have proposed a general framework for framing
some of these questions in such a way as to make them accessible to direct
empirical investigation.

The route from phenotypic traits to the expressions of interaction strength
in terms of trophic traits necessarily involves some simplifying assumptions. In
our framework, the most important of these is arguably that logarithmic in-
teraction strength can be expressed as a quadratic polynomial in phenotypic
traits (Eq. (3)). While this assumption may at first glace seem too restric-
tive, it should be kept in mind that the adequate choice and suitable nonlinear
transformation of phenotypic traits can significantly improve the accuracy of
this representation, allowing higher-order dependencies among the traits to be
implicitly included. Consider, for example, a species that uses warning calls as
a defense against predation. For these calls to be efficient, the species should
not only show (1) a behaviour to emit warning calls in dangerous situations,
but should also have (2) an audio-sensory apparatus to register them and (3)
a behavioural repertoire to react appropriately. Thus, for warning calls to be
efficient, at least three different kinds of traits t̃1, t̃2, t̃3 must come together
synergistically. In order to incorporate this into the quadratic form (3), one
could, in the simplest case, transform the phenotypic traits by a nonlinear map-
ping B such that one component of t = B(t̃) equals t1 = t̃1 · t̃2 · t̃3, and two
further components are chosen such as to make this transformation invertible
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(up to a few singular points), e.g., by setting t2 = t̃2, t3 = t̃3. Further work
might also extend the results presented here by expanding the representation of
trophic interaction strength to third or higher order, or by making use of the
mathematical concept of manifolds as non-linear generalizations of the linear
sub-spaces of trait space we worked with.

Until now, no formal framework systematically related phenotypic traits
to trophic traits. Consequently, evolutionary food-web models so far had to
incorporate trophic traits in an ad-hoc manner. A major promise of the theory
presented here is the unification of these disparate approaches within a synthetic
framework, thus enabling comparisons and broadening the basis for scientific
exchanges and discussions. We believe that models of interaction strength that
can be derived from general, verifiable ecological considerations will make food-
web models more reliable and conclusions drawn from them more trustworthy,
thus strengthening the role that food-web research can play in ecology.
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A Empirical determination of parameters relat-
ing phenotypic traits and interaction strength

In this appendix we shortly describe a procedure for estimating the pre-factor
a0 , the vector b and the matrix C in the expression for the interaction strength
Eq. (3), based on measured trait vectors ti and in- teraction strengths âij for
all pairs of species (i, j) in a community of N species.

Presumably the most laborious aspect of this procedure is the mea- surement
of the empirical interaction strengths âij . In principle it would be desirable to
obtain these quantities from measured functional re- sponses. Due to practical
constraints, one will often assume linear functional responses and, for each pair
(i, j), estimate the interaction strength âij as the biomass flow density from
species i to species j divided by the biomass densities of i and j (other curren-
cies of flows and abundances can be used as well). A set of phenotypic traits,
adequate for the community under consideration, has to be defined and the
traits have to be measured for each species. One phenotypic trait vector ti is
obtained for each species i. Finding the parameters entering the expression for
the interaction strength Eq. (3) might, at first sight, appear to be a general-
ized linear regression problem. In practice, however, many empirical interaction
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strengths will be zero, which requires ad hoc assumptions when go- ing over to
the logarithmic scale. Ignoring these data points is not an option, since the fact
that one species does not consume another is important ecological information.
For these reasons, we propose using non-linear regression of aij directly to fit
the parameters, i.e., choosing parameters in such as way that, in a well-defined
sense, the residual errors

εij = âij − a0 expb

(
ti
tj

)
+

1

2

(
ti
tj

)T

C

(
ti
tj

)
(8)

are minimized. The standard assumption of independent, normally distributed
errors suggests least-square fitting, i.e., a choice of a0 , b, and C so that the
sum

∑
i,j ε

2
ij is minimized. More complex error models lead to other criteria,

e.g., via likelihood maximization, and might suggest weighting errors differently.
However, it has to be kept in mind when solving this problem that the particu-
lar form we assumed for the de- pendence of interaction strength on phenotypic
traits was motivated by qualitative considerations. One should therefore not
generally expect more than a semi-quantitative approximation of the data by
this expression. The residuals εij thus combine contributions from measurement
errors of the âij with approximation errors. Rather than weighting each data
point (i, j) according to the accuracy of the measured interaction strength aij
, we therefore recommend to weight the data more evenly. The total number
of parameters to be fitted is 1 + 3m + 2m2, where m is the number of traits
considered. For m = 10, this corresponds to 231 parameters and the number
of measured âij should be significantly larger than this. These data require-
ments might first appear daunting. However, for most resource-consumer pairs
(i, j) expert knowledge will be sufficient to exclude trophic interactions, and
âij can then be set to zero without measurements. Expert knowledge will also
be sufficient to exclude significant effects of certain phenotypic traits on either
foraging or vulnerability. The corresponding entries in b and C can then be set
to zero a priori, reducing the number of parameters to be estimated, and thus
the demands on data. For the validation of our model of interaction strength
we recommend, again keeping its semi-quantitative nature in mind, to inspect
graphs relating measured interaction strengths to the predictions by our model
with fitted parameters. Strong outliers that are not explained by measurement
errors in âij do not necessarily show that the model is inappropriate, they could
also indicate that important phenotypic traits have not been included in the
analysis. Inspection of the underlying ecology and inclusion of the relevant phe-
notypic traits should improve the correlation between measurements and model
pre- diction. If the trophic niche space of a community is high-dimensional, that
is, if the number of relevant trophic traits is large, the number of relevant phe-
notypic traits must be large, too. It may then be difficult in practice to achieve
good model fits, even when the underlying model is a good description. This sit-
uation can be identified by verifying that (i) the correlation between predicted
and measured interaction strength improves as the number m of phenotypic
traits considered increases, even when carefully guarding against over-fitting
and (ii) the dimensionality of trophic niche space continues to increase with m.
When only enhanced correlations (i) are observed with increasing m, but not
increased dimensionality (ii), this is a signature of a low-dimensional niche space
with the few relevant trophic traits depending on a large number of phenotypic

12



traits. When the correlation between model and data does not improve with
the number of traits considered, this indicates that the models given by Eq.
(8) or, equivalently, by Eq. (3) may be inappropriate. The main assumption
underlying our theory is thus open to empirical falsification.

B Identification of trophic traits

The following describes the detailed procedure for deriving Eq. (4) from Eq. (3).
By the spectral decomposition theorem, the symmetric matrix C can be

represented as C =
∑

i eiλie
T
i in terms of an orthonormal set of 2m eigenvectors

ei and the corresponding real eigenvalues λi. Without loss of generality, we
assume that the eigenvalues are sorted so that |λ1| ≥ |λ2| ≥ ... ≥ |λ2m|. Now,
define for each i = 1, ..., 2m partial eigenvectors e′i, e

′′
i ∈ Rm representing the

components of ei referring to resource and consumer, respectively, that is

ei =

(
e′i
e′′i

)
. (9)

The 2m-dimensional vector v can now be represented as

v =

2m∑
i=1

ei
(
eTi v

)
=

2m∑
i=1

ei(Vi −Gi) (10)

with vulnerability traits V1, ..., V2m of r and corresponding (raw) foraging traits
G1, ..., G2m of c defined by

Vi := e′i
T
tr, Gi := −e′′i

T
tc. (11)

Note that, since the 2m values Vi are determined by linear projections of the m
components of tr, at most m values Vi are independent. Similarly, there are at
least m linear relationships between the 2m values Gi.

Putting Eq. (10) into expression (3) for ln arc yields

ln arc = ln a0 +

2m∑
i=1

bTei(Vi −Gi) +
1

2

2m∑
i=1

λi(Vi −Gi)
2. (12)

To simplify this expression, consider the last sum first. Note that the upper
bound |t| < tmax (see Sec. 2) implies an upper bound on |Vi − Gi|: With
|v|2 = |tr|2 + |tc|2 ≤ 2t2max one obtains

|Vi −Gi| = |eiTv| ≤
√

2 tmax. (13)

Dropping terms with small |λi| from the second sum will therefore often yield
good approximations for ln arc.

Denote by n the number of terms in the sum that need to be retained to
maintain a given level of model accuracy. Define the lumped linear traits (note
the lower bounds of the sums) by

V ∗ :=

2m∑
i=n+1

bTeiVi and F ∗ := −
2m∑

i=n+1

bTeiGi, (14)
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the offsets between matched vulnerability and raw foraging traits

di :=
bTei
λi

(i = 1, . . . , n), (15)

the (adjusted) foraging traits

Fi := Gi − di (i = 1, . . . , n), (16)

and the scaling factor

a1 = a0 · exp

(
−

n∑
i=1

λid
2
i /2

)
. (17)

Putting these definitions into Eq. (4), i.e.,

ln arc = ln a1 + V ∗ + F ∗ +
1

2

n∑
i=1

λi(Vi − Fi)
2,

it is readily verified that this is equivalent to Eq. (12) with the second sum
truncated at i = n. As discussed in Sec. 2, chances are good that the first 2n
values Vi and Fi (i = 1, ...n) of a species are all numerically (but not necessarily
statistically) independent from each other, even though this is certainly not the
case for the original set of 2 × 2m values Vi and Gi (i = 1 ..., 2m) defined by
Eq. (11).
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