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Abstract We consider the interaction between a general size-structured con-
sumer population and an unstructured resource. We show that stability prop-
erties and bifurcation phenomena can be understood in terms of solutions of a
system of two delay equations (a renewal equation for the consumer population
birth rate coupled to a delay differential equation for the resource concentra-
tion). As many results for such systems are available [9], we can draw rigorous
conclusions concerning dynamical behaviour from an analysis of a character-
istic equation. We derive the characteristic equation for a fairly general class
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of population models, including those based on the Kooijman-Metz Daphnia
model [19], [34] and a model introduced by Gurney-Nisbet [10], [15], and next
obtain various ecological insights by analytical or numerical studies of special
cases.

Keywords Physiologically structured population models · Size-structure ·
Delay equations · Linearised stability · Characteristic equation

Mathematics Subject Classification (2000) 34K20 · 37N25 · 45D05 ·
65L03 · 92D25

1 Introduction

Population dynamics is first and foremost concerned with changes in numbers
of individuals due to death and reproduction. But once one realises that both
fertility and the force of mortality may depend heavily on the stage of devel-
opment of an organism, it becomes clear that population models cannot avoid
to incorporate submodels for this development of an organism. In other words,
we need to introduce the notion of individual state (i-state) and next model
the distribution of i-state-at-birth and the dynamics of the i-state. We refer
to de Roos & Persson [32] and the references given there for further ecological
motivation.

If individuals would be independent from each other, equations would be
linear and the analysis would be relatively easy. Dependence arises, e.g., by
competition for food (i.e., the consumption by one individual reduces the avail-
ability of food to others) but also via the predation pressure (if an individual
falls victim to a predator, that might have as an immediate effect that the
predator is satiated and that accordingly the predation pressure on other in-
dividuals is reduced; but the long term effect may be that the reproductive
success of the predator becomes higher and hence the future predation pressure
on other individuals enhanced). By “environmental interaction variables” we
denote quantities like food concentration and predation pressure that mediate
the dependence. (As a side remark we mention that in the case of cannibalism
both the food concentration and the predation pressure are partly determined
directly by the focal population.)

The task of a population modeller is to specify how survival, reproduction
and development depend on the i-state and environmental interaction variables
and, in addition, to specify how the dynamics of the interaction variables is
influenced by feedback from the population. Restricting ourselves to “size”
of an individual as i-state, a unique size-at-birth and deterministic growth of
individuals, and competition for food, we can reformulate this as: a population
model consists of a specification of

(i) ξb , the size at birth of individuals
(ii) g(ξ, S), the rate of growth of an individual, as a function of size ξ and

food concentration S
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(iii) β(ξ, S), the probability per unit of time of giving birth, as a function of
size ξ and food concentration S

(iv) µ(ξ, S), the probability per unit of time of dying, as a function of size ξ
and food concentration S

(v) γ(ξ, S), the rate of food consumption of an individual, as a function of
size ξ and food concentration S

(vi) the dynamics of the resource S in the absence of consumers

Based on these ingredients, one may now either start with a finite number
of individuals and do simulations or consider, at the population level, the
deterministic system obtained by letting the interactions depend inversely on
a quantity called system size, and taking the limit for system size going to
infinity while keeping the initial densities (numbers divided by system size)
constant. Here we restrict to the second option and, moreover, neglect any
influence that spatial structure might have.

Way back in the late eighties of the last century, de Roos et al. [34] analysed
a model for Daphnia feeding on algae, with exactly this structure. They found,
among other things, that variable maturation delay can lead to cohort cycles
that differ markedly from the standard prey-predator cycles (see Murdoch
et al. [29] and de Roos & Persson [33] for a more recent account that also
relates to experimental and field data). At the beginning of Section 5 of [34]
de Roos et al. wrote : “The stability analysis of the internal equilibrium is
not a straightforward procedure. At present the existing general theory on
structured population models of the type that we study in this paper is not
yet sufficiently developed to answer even the first questions about the existence
and uniqueness of solutions and the validity of the linearised stability principle.
In principle this means that at present there exists no valid and mathematically
rigorous technique to analyse the stability of the internal equilibrium.”

The first aim of the present paper is to show that now, at last, such a
“mathematically rigorous technique” exists. A second aim is to present a gentle
derivation of the relevant characteristic equation for a wider class of models,
thus showing that the new framework has more to offer than just mathematical
underpinning. We then use this characteristic equation to study some aspects
of variable maturation delay in more detail.

The mathematical theory that justifies the principle of linearised stabil-
ity for a quite general class of delay equations was presented by Diekmann,
Getto & Gyllenberg [9]. Here we assert that for a large class of physiologically
structured population models, the long term dynamics are fully described by
solutions of delay equations. The trick is to reconsider the notion of population
state.

As explained in detail by Metz & Diekmann [28], the natural way to rep-
resent a population is by way of a distribution (a measure that may or may
not correspond to a density) over the i-state space. The corresponding math-
ematical theory is involved [6,7,1] and despite hard work over a long period
of time, we did not manage to prove the principle of linearised stability for
the corresponding nonlinear semigroups of operators. The breakthrough came
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when we realised that the current population size and composition is fully de-
termined by the population birth rate in the past, provided we also prescribe
the environmental interaction variables in the past (as indeed we then can use
the submodels for survival and development to cover the period in between
being born and the current time). For Daphnia-type models, this means that
we prescribe the history of the Daphnia birth rate as well as the history of the
algae concentration. The future values of these variables are next determined
by solving the system consisting of an equation for the population birth rate b
and a differential equation for the food concentration S. As the b-equation also
involves the history of S, this is a system of delay equations, more precisely, a
coupled system of a renewal equation and a delay-differential equation.

By restricting ourselves to initial distributions that can be constructed
from a history of b and S, we put up with a certain loss of generality. Should
we care? We claim we should not! The point is that we do not miss any
candidate attractors (or, more generally, invariant sets) and that instability
has to manifest itself within the restricted class of initial conditions. This is
easiest observed if there is an upper bound, say Amax, on the length of the
life of any consumer individual, as then the population state is necessarily of
the “restricted” type for t > Amax. In the general case one has to exploit that
for any reasonable model the direct influence of those initially present goes to
zero for t →∞.

We shall formulate our results for a one-dimensional i-state, interpreted as
size. However, they hold equally well for a higher dimensional i-state, as long
as there is a unique state-at-birth. If finitely many states-at-birth are feasi-
ble, one has to add a certain dose of linear algebra. If there is a continuum
of possibilities for state-at-birth, one has to work a bit harder (Diekmann &
Gyllenberg [2]) and it is no longer possible to separate the determination of
eigenvalues via a characteristic equation from the determination of the corre-
sponding eigenvectors.

It is well-known that some age-structured models incorporating a juvenile
period of fixed length can be described by delay differential equations, see
e.g. Kuang & So [20] and the references in there. Here we consider a general
size-structured model with variable maturation delay and yet we find that the
dynamical behaviour is completely described by the solutions of a system of
delay equations (more precisely : a coupled system consisting of one renewal
equation and one delay-differential equation). Since the length of the juvenile
period depends on the food supply, one could call this a system of state-
dependent delay equations.

The structure of the paper is as follows. In Section 2 we derive the system of
delay equations directly from biological assumptions and we show that, under
additional but still natural assumptions, a unique steady state exists. In Sec-
tion 3 we describe the structure of the linearised system and the corresponding
characteristic equation, while in Section 4 we express the ingredients of the
linearised system in terms of quantities that can be computed from the ingre-
dients ξb, g, β, µ, γ and the rules for production and decay of substrate (first
for the smooth case and next for models that involve an abrupt juvenile-adult
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transition upon reaching a critical size ξA). In Section 5 we introduce some
didactical examples of how to analyse the characteristic equation. In Section 6
we present the results of numerical studies and interpret these. In Section 7 we
show that for the Daphnia model of de Roos et al. [34], we recover exactly the
characteristic equation studied in that paper. The final Section 8 is devoted
to a summary in recipe form.

2 Daphnia models

In this section we describe a class of consumer-resource models that is built
from assumptions concerning the behaviour of individuals. More specifically,
we describe how individuals grow in size, survive, reproduce and consume
food, dependent on their own size and the concentration of food. (We do so
in somewhat abstract mathematical generality, meaning that we introduce
functions that need to be specified in more and more detail when one moves
towards concrete applications.) In a second step we then derive bookkeeping
equations that pertain to the population level. For historical reasons and for
the ease of formulation we call the consumers Daphnia and the food algae.

We assume that all Daphnia are born with the same size ξb and that their
growth is deterministic according to the differential equation

dξ

da
(a) = g(ξ(a), S(t(a))), (2.1)

where ξ denotes the size, a the age, S the food concentration and t(a) the time
at which the individual that we consider has age a. (We postpone the formu-
lation of smoothness and other assumptions concerning the function g(ξ, S),
but have in mind that these should at the very least guarantee that (2.1)
with initial condition ξ0 = ξb has a unique solution for any given continuous
and positive function S(t).) We assume that the survival probability F of an
individual decreases with age according to

dF
da

(a) = −µ(ξ(a), S(t(a)))F(a) (2.2)

and that a newborn is produced with probability per unit of time

β(ξ(a), S(t(a))). (2.3)

The energy needed for maintenance, growth and reproduction is derived from
the ingestion of algae which proceeds at a rate

γ(ξ(a), S(t(a))) (2.4)

but for the time being we leave the relationship between, on the one hand g
respectively β and, on the other, γ, unspecified. Finally we assume that in the
absence of Daphnia the algal concentration evolves in time according to the
differential equation

dS

dt
= f(S). (2.5)
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Essentially the model is now specified, the rest is bookkeeping. To do the
bookkeeping in an efficient way, we need to introduce some notation.

As in the theory of delay differential equations, we use the symbol St to
denote the history of the food concentration relative to t, that is, to denote
the function

σ 7→ S(t + σ), σ ≤ 0 (2.6)

(In case of a maximal age Amax we can restrict to σ ≥ −Amax, but otherwise
we need to allow σ to take any value less than or equal to zero.) It is convenient
to let ψ denote an arbitrary nonnegative continuous function defined on R−.

Now consider an individual that has age a at the current time t and suppose
St = ψ. Denote the size of this individual at age τ , with 0 ≤ τ ≤ a, by
ξ(τ) = ξ(τ ; a, ψ) (variables listed after the semicolon are suppressed in the
notation whenever that helps to keep formulas readable). It can be computed
from

dξ

dτ
(τ) = g(ξ(τ), ψ(−a + τ)), ξ(0) = ξb. (2.7)

The size at the current time is then given by

Ξ(a; ψ) := ξ(a; a, ψ). (2.8)

The fraction of individuals born at time t− a that are still alive at time t, is
given by the survival probability F(a; ψ). Let G(τ) = G(τ ; a, ψ) be the survival
probability up till time t− a + τ . Then G can be computed from

dG
dτ

(τ) = −µ(ξ(τ ; a, ψ), ψ(−a + τ))G(τ), G(0) = 1 (2.9)

and next, by definition,
F(a; ψ) = G(a; a, ψ). (2.10)

Let b(t) denote the Daphnia population birth rate at time t. Then the assump-
tions above imply that

b(t) =
∫ ∞

0

b(t− a)β(Ξ(a; St), S(t))F(a;St)da,

dS

dt
(t) = f(S(t))−

∫ ∞

0

b(t− a)γ(Ξ(a;St), S(t))F(a; St)da.

(2.11)

As written, this refers to Daphnia and algae that have been interacting as de-
scribed by the model since the dawn of time. When looking for steady states,
periodic solutions et cetera, this is indeed the right perspective. But alterna-
tively we can require the system of equations (2.11) to hold only for t > 0 (or,
if you wish, t ≥ 0) and to provide initial data in the form of the history of both
b and S at time zero, the first as a nonnegative locally integrable function and
the second as a nonnegative continuous function. In the mathematical theory
concerning (2.11), for which we refer to [9, in particular Section 4] and [3,
Section 5], both points of view play a role.

Note that the right hand side of (2.11) is linear in b, reflecting that the
environmental interaction variables are chosen such that all dependence is by
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way of feedback via these variables (i.e., if one considers S as prescribed, then
the Daphnia are independent from one another).

We now consider constant solutions of (2.11), i.e., steady population states.
If food is kept at the constant concentration S, then the basic reproduction
number R0 of the Daphnia is well defined and in fact given by

R0(S) =
∫ ∞

0

β(Ξ(a; S), S)F(a; S)da (2.12)

(note that here we use the same symbol to denote the value and the constant
function taking on that value). The equation

R0(S) = 1 (2.13)

determines the constant concentrations that lead to a steady Daphnia pop-
ulation. As a rule, (2.13) has a unique solution, simply since R0(0) < 1,
R0(∞) > 1 and R0 is a monotone function of S (of course other scenarios
are possible if, for instance, the food is toxic at high concentrations).

Once S is determined, we have explicitly

b = f(S)/
∫ ∞

0

γ(Ξ(a; S), S)F(a;S)da (2.14)

for the Daphnia population birth rate that keeps the algae at the steady level
S. (The steady states of more general physiologically structured population
models can be determined by following essentially the same steps, see [8].)

For later use we introduce the notation

ξ(a) := Ξ(a; S) (2.15)

F(a) := F(a;S) (2.16)

to denote, respectively, the steady state age-size relation and the steady state
survival probability. But is the steady population state stable? How does the
answer depend on the parameters? What dynamic phenomena accompany the
loss of stability? The standard way to answer such questions is to first lin-
earise the equations around the steady state, next substitute exponential trial
solutions into the linearised equations to deduce a characteristic equation and
finally to investigate how the roots of the characteristic equation are positioned
in the complex plane relative to the imaginary axis (and how positions change
if we vary parameters; see for instance the stability boundaries in a two di-
mensional parameter space depicted in Figure 2 of [34]). The key point of the
paper [9] is that the information about the roots of the characteristic equation
allows one to indeed draw conclusions concerning solutions of (2.11), in other
words, the standard way works for (2.11)! Hence we feel encouraged to present
the general form of the linearised system and the characteristic equation in
the next section and to work out in Section 4 the details of how to obtain the
constants and the kernels that figure in the linearised system from g, µ, β, γ
and f .
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3 The linearised equation

Linearising the system (2.11) one obtains a system of the form

y(t) = c1z(t) +
∫ ∞

0

(k11(a)y(t− a) + k12(a)z(t− a))da,

dz

dt
(t) = c2z(t) +

∫ ∞

0

(k21(a)y(t− a) + k22(a)z(t− a))da

(3.1)

with y a small perturbation of b and z a small perturbation of S. It has a
solution of the form (

y(t)
z(t)

)
= eλt

(
y0

z0

)
(3.2)

if and only if λ is a solution of the characteristic equation
(
1− k̂11(λ)

)(
λ− c2 − k̂22(λ)

)
= k̂21(λ)

(
c1 + k̂12(λ)

)
, (3.3)

where the hat denotes Laplace transform, that is,

k̂ij(λ) :=
∫ ∞

0

e−λakij(a)da. (3.4)

The underlying assumptions are presented soon, but let us first observe that
by combining Section 4 and Corollary 2.19 of [9], one obtains the principle of
linearised stability for (2.11), albeit under the assumption of a maximal age
Amax. And by combining Section 4 and Theorem 2.21 of [9] one obtains a Hopf
bifurcation theorem for (2.11).

For the infinite delay case one has to invoke additional arguments, see Diek-
mann & Gyllenberg [2,3], and to perform a more detailed spectral analysis, as
there may be essential spectrum next to the eigenvalues that are obtained as
roots of the characteristic equation; so the principle of linearised stability and
the Hopf bifurcation theorem hold in that case too. In [3] these results were
derived by combining the methods of [4,9] which results concerning (3.1) from
[12], thus avoiding the task of characterising the essential spectrum.

We shall explain the derivation of the linearised system below, but its gen-
eral form can be predicted by combining a general mathematical result, that a
linear translation invariant integral operator is necessarily of convolution type,
(see, for a far reaching generalization, [36, Theorem 6.33]), with an observa-
tion concerning (2.11), viz., that S(t) appears at its right hand side (but not
b(t)). In general, the convolution kernel is a measure. In the present case, that
measure is absolutely continuous (the k part, deriving from the St and bt at
the right hand side of (2.11)), except for an atom in zero (the c part) in the
second component that derives from the S(t) in the right hand side of (2.11).

Our task is now to derive expressions for six quantities, the two components
of c and the four components of k, in terms of the model ingredients. Four out
of six are very easy. Since the system (2.11) is linear in b, the elements k11 and
k21 are given by

k11(a) = β(ξ(a), S)F(a), (3.5)
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k21(a) = −γ(ξ(a), S)F(a). (3.6)

Since S(t) is a scalar quantity, taking derivatives is straightforward and leads
to the expressions

c1 = b

∫ ∞

0

∂β

∂S
(ξ(a), S)F(a)da, (3.7)

c2 = f ′(S)− b

∫ ∞

0

∂γ

∂S
(ξ(a), S)F(a)da. (3.8)

The derivation of expressions for k12 and k22 is far more difficult, as we have to
deal with quantities that are implicitly defined, viz., as solutions of (2.1) and
(2.2). We delegate this derivation till the next section. The result is presented
as formulas (4.14), (4.15) for the smooth case and as formulas (4.31), (4.32) for
the case of an abrupt juvenile-adult transition. The underlying assumptions
concerning the model ingredients are

(i) f : R+ → R is continuously differentiable.
(ii) g, µ, β and γ as maps from R2 to R+ are continuously differentiable on

[ξb, ξA]×R+ and on [ξA,∞)×R+, but need not be continuous, let alone
differentiable, at ξ = ξA.

The biological idea motivating the assumption labelled (ii) is that the indi-
vidual organisms turn from juveniles into adults upon reaching size ξA and
that the behaviour of juveniles and adults may differ substantially. Note that
by assuming g ≥ 0 we have excluded shrinking. (The Kooijman-Metz model
[19,34] has additional rules to preclude shrinking, but for S not too far below
the steady state these do not kick in.) But note carefully that in the case of a
jump discontinuity at ξA we shall require strict positivity of g in ξA, see (4.16)
and the text that preceeds it for explanation and motivation.

In the remainder of this section we prepare the way for the derivation and,
while doing so, also present more details about the mathematical framework
for studying (2.11). We restrict the precise formulation to the finite delay case
and denote Amax by h. But we close with some remarks about the case of
infinite delay.

For the history of the population birth rate b we require only integrability,
but for the resource concentration we require continuity (from t = 0 onwards
the birth rate will actually be continuous and the resource concentration differ-
entiable). To express this and other aspects more precisely and more concisely
we shall use some mathematical formalism that may not be familiar to all our
readers. Such readers may skip the rest of this section.

Let
X := L1 ([−h, 0];R) ,

Y := C (([−h, 0];R) .
(3.9)

We require that (2.11) holds for t ≥ 0 and supplement the system by the initial
condition

b(t) = ϕ(t), −h ≤ t ≤ 0,

S(t) = ψ(t), −h ≤ t ≤ 0,
(3.10)
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where (ϕ, ψ) ∈ X × Y . We want to rewrite (2.11) in the form

b(t) = F1(bt, St),
dS

dt
(t) = F2(bt, St)

(3.11)

since that brings us into exactly the setting studied in Section 4 of [9]. (Alter-
natively one may work with non-densely defined Hille-Yosida operators and
integrated semigroups, see Thieme [38], Magal & Ruan [24,25].) So we need
to define, for i = 1, 2,

Fi : X × Y → R

and check that these maps are continuously differentiable. The linearity in bt

motivates us to introduce the dual space X∗, which we represent by

X∗ = L∞([0, h];R) (3.12)

with the pairing between X and X∗ defined by

〈ϕ, ϕ∗〉 :=
∫ h

0

ϕ(−τ)ϕ∗(τ)dτ. (3.13)

If we now make sure, by making appropriate assumptions about the model
ingredients, that the maps Q and R defined by

Q(ψ)(a) = β(Ξ(a; ψ), ψ(0))F(a; ψ),
R(ψ)(a) = γ(Ξ(a; ψ), ψ(0))F(a; ψ)

(3.14)

map Y into X∗ and are as such continuously differentiable, then we only have
to define

F1(ϕ,ψ) = 〈ϕ,Q(ψ)〉,
F2(ϕ,ψ) = f(ψ(0))− 〈ϕ,R(ψ)〉 (3.15)

and require that f is C1, to achieve our aim. This motivates us to require that
the maps from Y into X∗ that send ψ to, respectively Ξ(.;ψ) and F (.;ψ), so

ψ 7→ Ξ(·; ψ),
ψ 7→ F(·; ψ)

(3.16)

are continuously differentiable. Since evaluation in zero ψ 7→ ψ(0) is a contin-
uous linear map from Y into R, it only remains to check the smoothness of
the maps defined in (3.16) and this we shall do in the next section (strictly
speaking Q and R, and hence Fi, are only defined for functions ψ that take
nonnegative values; there are various ways to see that we should not worry
about that, the easiest is perhaps to restrict the assumption about the contin-
uous differentiability of the maps Fi to a neighbourhood of (b, S) ∈ X × Y ).

In the infinite delay case, i.e., when individuals can, in principle, pass
any conceivable age, any choice of space entails restrictions concerning the
growth behaviour at (minus) infinity. It is these restrictions that obstruct the
construction of the resolvent (of the generator of the linearised semigroup) for
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λ in some left half plane. As a consequence there is an essential spectrum filling
a left half plane. As long as this left half plane lies strictly to the left of the
imaginary axis and, in addition, we have suitable estimates for the essential
spectrum of the semigroup operators themselves, this need not bother us. This
is achieved by considering the initial value problem on exponentially weighted
spaces. To find a suitable weight function we first identify a % > 0 such that
the survival probability is bounded by Ce−%a for even ideal environmental
conditions. Next we choose

X = L1
%(R−) = {ϕ ∈ L1

loc(R−) : a 7→ ϕ(a)e%a belongs to L1(R−)} (3.17)

and

Y = C0,% =
{

ψ ∈ C(R−) : lim
a→−∞

e%aψ(a) = 0
}

. (3.18)

As representation of the dual space of X we take

X∗ = L∞% (R+) = {ϕ∗ ∈ L∞loc(R+) : a 7→ ϕ∗(a)e%a belongs to L∞(R+)}
(3.19)

with the pairing being given by

〈ϕ,ϕ∗〉 =
∫ ∞

0

ϕ(−a)ϕ∗(a)da =
∫ ∞

0

ϕ(−a)e%(−a)e%aϕ∗(a)da. (3.20)

The definitions of Q, R and Fi given in (3.14) and (3.15) remain unchanged.
One reason to introduce the exponential weight function is to make sure

that constant functions belong to the space X. A second reason is that once
spectral properties come into play, we need the weight in order to achieve that
the essential spectrum is bounded away from the imaginary axis, or, which
amounts to the same thing, that we can define Laplace transforms in a half
plane that extends to the strict left of the imaginary axis. In [3] this is worked
out in detail but here, from now on, we restrict our attention to the case of
finite delay.

4 Linearising individual growth and survival

Recall that ξ(τ ; a, ψ) is defined by

dξ

dτ
(τ) = g(ξ(τ), ψ(−a + τ)), ξ(0) = ξb. (4.1)

We start by considering a smooth g, and postpone the incorporation of a jump
at ξA. Let

Ω = {(τ, a) : 0 ≤ a ≤ h, 0 ≤ τ ≤ a},
then ξ is defined on Ω×Y and maps to R. Assume that ξ is differentiable with
respect to ψ and denote the derivative in the point (τ, a, ψ) by D3ξ(τ ; a, ψ).
This is, for fixed τ , a, ψ, a linear map from Y to R. We now consider ψ = S,
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the constant function and re-use the symbol ψ to denote the element of Y on
which the linear map acts. The image we denote by η. So

η(τ ; a, S, ψ) := D3ξ(τ ; a, S)ψ. (4.2)

We claim that, on fixing a and ψ, η can be found as a function of τ by solving
the ODE

dη

dτ
(τ) =

∂g

∂ξ
(ξ(τ), S)η(τ) +

∂g

∂S
(ξ(τ), S)ψ(−a + τ), η(0) = 0. (4.3)

The actual proof that ξ is differentiable with respect to ψ proceeds by in-
troducing, for any a ∈ [0, h] and ψ ∈ Y , the solution of (4.3) and next, by
combining (4.1) and (4.3), checking that (4.2), read from right to left, is in-
deed the derivative [13].

The solution of (4.3) can be written in the form

η(τ) =
∫ τ

0

K(τ, α)ψ(−a + α)dα (4.4)

with

K(τ, α) := e
R τ

α
∂g
∂ξ (ξ(θ),S)dθ ∂g

∂S
(ξ(α), S). (4.5)

(Note that for higher dimensional i-state one has to replace the explicit ex-
ponential function with the implicit fundamental matrix solution, which then
acts on the vector ∂g

∂S
(ξ(α), S).) By simply taking τ = a we obtain

D2Ξ(a;S)ψ = η(a) =
∫ a

0

K(a, α)ψ(−a + α)dα (4.6)

which is a rather explicit expression for the derivative of the first of the two
maps considered in (3.16). We next set out to compute the derivative of the
second map.

Define
ζ(τ ; a, S, ψ) := D3G(τ ; a, S)ψ, (4.7)

then ζ satisfies

dζ

dτ
(τ) = −µ(ξ(τ), S)ζ(τ)− ρ(τ), ζ(0) = 0 (4.8)

with

ρ(τ) :=
∂µ

∂ξ
(ξ(τ), S)η(τ)F(τ) +

∂µ

∂S
(ξ(τ), S)ψ(−a + τ)F(τ). (4.9)

Hence

ζ(τ) = −
∫ τ

0

e−
R τ

α
µ(ξ(θ),S)dθρ(α)dα = −

∫ τ

0

F(τ)
F(α)

ρ(α)dα (4.10)
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which, by inserting the expression (4.9) for ρ, (4.4) for η and changing the
order of integration, leads to

ζ(τ) =
∫ τ

0

L(τ, θ)ψ(−a + θ)dθ (4.11)

with

L(τ, θ) := −F(τ)
{∫ τ

θ

∂µ

∂ξ
(ξ(α), S)K(α, θ)dα +

∂µ

∂S
(ξ(θ), S)

}
. (4.12)

In particular

D2F(a;S)ψ = ζ(a) =
∫ a

0

L(a, θ)ψ(−a + θ)dθ. (4.13)

The final formulas

k12(a) = b

∫ ∞

0

{
β(ξ(a + θ), S)L(a + θ, θ) +

∂β

∂ξ
(ξ(a + θ), S)K(a + θ, θ)F(a + θ)

}
dθ

(4.14)

k22(a) = −b

∫ ∞

0

{
γ(ξ(a + θ), S)L(a + θ, θ) +

∂γ

∂ξ
(ξ(a + θ), S)K(a + θ, θ)F(a + θ)

}
dθ

(4.15)
are obtained by combining (3.14) and (3.15), the chain rule, (4.6), (4.13) and a
change in the order of integration. Note that the expression for k22 is obtained
from the expression for k12 by changing the sign and replacing β by γ.

In many consumer-resource models a distinction is made between juvenile
consumers and adult consumers, with individual behaviour changing abruptly
at the transition from juvenile to adult. In particular, reproduction is reserved
to adults. We now show that a jump discontinuity at ξ = ξA yields additional
terms to the expressions for k12 and k22.

As demonstrated in detail by Thieme in his pioneering paper [37], models
are no longer well-posed if, possibly, individuals linger at the transition (or,
in mathematical jargon, if characteristics are not necessarily transversal to
discontinuities; also see [6]). Here we exclude such a situation by requiring
that, at the very least,

g(ξA−, S) > 0 g(ξA+, S) > 0 (4.16)

where the “−” denotes the limit from below and the “+” the limit from above.
By continuity these inequalities extend to a neighbourhood (in R) of S and
that suffices for the present considerations. But in a full model analysis one
should certainly be more conservative and check that transversality holds for
a wider range of conditions.

With ξ(τ ; a, ψ) defined by (4.1) we now first consider

ξ(τ ; a, ψ) = ξA (4.17)

as an equation for τ , for given a, ψ with a large enough and ψ in some neigh-
bourhood of the constant function S. In biological terms, the solution is the
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age at which an individual matured that is presently an adult of age a and
that experienced the food history ψ. Under constant conditions, the present
age is irrelevant. We denote the solution for ψ = S and arbitrary a by τ , so

ξ(τ ; a, S) = ξA (4.18)

and τ is the age at which individuals mature under the conditions correspond-
ing to the population steady state.

By the implicit function theorem, (4.17) has a unique solution for a > τ
and ‖ψ − S‖ small (uniqueness is global because of the monotonicity of the
map τ 7→ ξ(τ ; a, ψ)). We denote this solution by τ̃(a, ψ). So

ξ(τ̃(a, ψ); a, ψ) = ξA (4.19)

and by differentiation of this identity with respect to ψ and evaluation of the
result in S, we obtain

∂ξ

∂τ
(τ ; a, S)D2τ̃(a, S)ψ + D3ξ(τ ; a, S)ψ = 0. (4.20)

Hence

D2τ̃(a, S)ψ = −η(τ ; a, S, ψ)
g(ξA−, S)

(4.21)

with η defined by (4.3). (The reason why we should evaluate g at ξA−, is that
the solution of (4.17) does depend only on g for ξ ≤ ξA).

We still define η(τ ; a, S, ψ) as the solution of (4.3) and do not worry about
the discontinuity in the derivative with respect to τ at τ = τ . But, as we will
show, (4.2) read from right to left is no longer valid. There is now an additional
term, which is a multiple of H(τ−τ), with H the Heaviside function. To derive
this, we first observe that (4.2) remains valid as stated for τ < τ . Next, consider
τ > τ and let, for a given ψ ∈ Y , ε be so small that also τ > τ̃(a, S + εψ).
Then

ξ(τ ; a, S + εψ)− ξ(τ ; a, S) =∫ τ

eτ(a,S+εψ)

g(ξ(σ; a, S + εψ), S + εψ(−a + σ))dσ −
∫ τ

τ

g(ξ(σ; a, S), S)dσ

=
∫ τ

eτ(a,S+εψ)

g(ξ(σ; a, S), S)dσ

+
∫ τ

eτ(a,S+εψ)

{
g(ξ(σ; a, S + εψ), S + εψ(−a + σ))− g(ξ(σ; a, S), S)

}
dσ

=− εg(ξA+, S)D2τ̃(a, S)ψ + o(ε) + ε(η(τ ; a, S, ψ)− η(τ ; a, S, ψ)) + o(ε).

Hence we have for τ > τ , because of (4.21), that

D3ξ(τ ; a, S)ψ = η(τ) +
(

g(ξA+, S)
g(ξA−, S)

− 1
)

η(τ) (4.22)
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and consequently

D3ξ(τ ; a, S)ψ = η(τ) +
(

g(ξA+, S)
g(ξA−, S)

− 1
)

η(τ)H(τ − τ) (4.23)

which, in turn, because of (4.4) and (4.5) yields

D2Ξ(a; S)ψ =
∫ a

0

K(a, α)ψ(−a + α)dα

+
(

g(ξA+, S)
g(ξA−, S)

− 1
) ∫ τ

0

K(τ , α)ψ(−a + α)dα ·H(a− τ).

(4.24)
The formula (4.13) likewise needs a Heaviside correction term to incorporate
the effects of the jump discontinuity. For (a, ψ) such that ξ(a; a, ψ) > ξA, we
can write

F(a;ψ) = e−
R eτ(a,ψ)
0 µ(ξ(σ;a,ψ),ψ(−a+σ))dσ−R a

eτ(a,ψ) µ(ξ(σ;a,ψ),ψ(−a+σ))dσ

which shows that, relative to the smooth situation, there is an extra term

(µ(ξA+, S)− µ(ξA−, S))F(a; S)D2τ̃(a, S)ψ.

Hence

D2F(a, S)ψ =
∫ a

0

L(a, θ)ψ(−a + θ)dθ

− µ(ξA+, S)− µ(ξA−, S)
g(ξA−, S)

F(a)
∫ τ

0

K(τ , α)ψ(−a + α)dα ·H(a− τ).

(4.25)
Finally, we reconsider (2.11). Let a = a(ψ) be the age of the individuals
that mature exactly at the present time, given that the food history is ψ. In
mathematical terms a is the solution of the equation

τ̃(a, ψ) = a (4.26)

or, equivalently, of the equation

Ξ(a;ψ) = ξA. (4.27)

Note that
a(S) = τ . (4.28)

Since juveniles do not reproduce, we replace the first equation of (2.11) with

b(t) =
∫ ∞

a(St)

b(t− a)β(Ξ(a;St), S(t))F(a; St)da. (4.29)

In the linearised equation (the first equation of (3.1)) this yields, apart from
the contributions of the Heaviside terms in (4.24) and (4.25), an extra term

−bβ(ξA+, S)F(τ)Da(S)ψ.
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Similarly the second equation of (3.1) should get an extra term

(γ(ξA+, S)− γ(ξA−, S))bF(τ)Da(S)ψ.

By implicit differentiation of (4.27) we obtain

D1Ξ(τ ; S)Da(S)ψ + D2Ξ(τ ; S)ψ = 0

which can be written as

g(ξA−; S)Da(S)ψ + η(τ ; τ , S, ψ) = 0

to deduce that

Da(S)ψ = −
∫ τ

0
K(τ , α)ψ(−τ + α)dα

g(ξA−, S)
. (4.30)

This ends the preparations and we are ready to formulate the final results.
But first we recall the notation χω for the characteristic function of the set ω.
In particular

χ[0,τ ](a) =

{
1 for 0 ≤ a ≤ τ

0 otherwise.

k12(a) =

b

∫ ∞

max{0,τ−a}

{
β(ξ(a + θ), S)L(a + θ, θ) +

∂β

∂ξ
(ξ(a + θ), S)K(a + θ, θ)F(a + θ)

}
dθ

+ χ[0,τ ](a)b
∫ ∞

τ

∂β

∂ξ
(ξ(σ), S)F(σ)dσ

(
g(ξA+, S)
g(ξA−, S)

− 1
)

K(τ , τ − a)

+ b
µ(ξA−, S)− µ(ξA+, S)

g(ξA−, S)

∫ τ

max{0,τ−a}
β(ξ(a + θ), S)F(a + θ)K(τ , θ)dθ

+ χ[0,τ ](a)b
β(ξA+, S)F(τ)

g(ξA−, S)
K(τ , τ − a).

(4.31)
k22(a) =

− b

∫ ∞

0

{
γ(ξ(a + θ), S)L(a + θ, θ) +

∂γ

∂ξ
(ξ(a + θ), S)K(a + θ, θ)F(a + θ)

}
dθ

− χ[0,τ ](a)b
∫ ∞

τ

∂γ

∂ξ
(ξ(σ), S)F(σ)dσ

(
g(ξA+, S)
g(ξA−, S)

− 1
)

K(τ , τ − a)

− b
µ(ξA−, S)− µ(ξA+, S)

g(ξA−, S)

∫ τ

max{0,τ−a}
γ(ξ(a + θ), S)F(a + θ)K(τ , θ)dθ

− χ[0,τ ](a)b
γ(ξA+, S)− γ(ξA−, S)

g(ξA−, S)
F(τ)K(τ , τ − a).

(4.32)
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5 How to analyse the characteristic equation : some didactical
examples

In this section we illustrate how one can use the characteristic equation (3.3)
to find stability boundaries in parameter space.

5.1 A stage structured model

Motivated by the work of Gurney and Nisbet [10], see also Chapter 5 of [30],
and that of de Roos and Persson [33], we consider a stage structured pop-
ulation. Here the word “stage” is used to express that g, µ, β and γ are
independent of ξ on the juvenile interval ξb ≤ ξ < ξA) and on the adult inter-
val ξ > ξA. Since the juvenile growth rate depends on the food concentration,
there is a variable maturation delay. Our purported aim is to investigate how
the density dependence of this maturation delay can lead to population cycles.

We denote the per capita death rate and the per capita consumption rate
by µ1, γ1(S) when ξ < ξA and by µ2, γ2(S) for ξ ≥ ξA, respectively. In
contrast to [33] we restrict our attention to death rates that are independent
of the resource concentration. By g(S) we denote the growth rate of juveniles
and by β(S) the reproduction rate of adults (there is no need for an index
here, as juveniles do not reproduce and the size of adults is irrelevant).

If g is bounded away from zero, the equation in τ

∫ 0

−τ

g(ψ(θ))dθ = ξA − ξb (5.1)

has a unique solution which we denote by

τ = τm(ψ). (5.2)

Biologically τm(ψ) is the age of individuals that mature at the present time,
given that the food history is ψ. If g can become zero or even negative for low
resource concentrations, one needs restrictions on ψ to guarantee the solvabil-
ity of (5.1). Close to population steady state such restrictions are automati-
cally satisfied and hence we refrain from any attempt at giving more precise
formulations.

For a > τm(ψ) we can also consider the equation
∫ τ

0

g(ψ−a(θ))dθ = ξA − ξb (5.3)

to find the age at maturation of an individual that presently has age a (and
is an adult since a > τm(ψ)). We denote the unique solution by

τ = τ̃m(a, ψ), a > τm(ψ). (5.4)

Note that the identity
τ̃m(τm(ψ), ψ) = τm(ψ)
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holds. Moreover τ̃m(a + t, St) is constant, i.e., τ̃m is independent of t. The
point of introducing τm and τ̃m is that we can now reformulate (2.11) for the
present situation in explicit detail:

b(t) = β(S(t))
∫ ∞

τm(St)

b(t− a)e−µ1eτm(a,St)−µ2(a−eτm(a,St))da (5.5)

dS

dt
(t) =f(S(t))− γ1(S(t))

∫ τm(St)

0

b(t− a)e−µ1ada

− γ2(S(t))
∫ ∞

τm(St)

b(t− a)e−µ1eτm(a,St)−µ2(a−eτm(a,St))da.

(5.6)

The steady state condition R0(S) = 1, cf. (2.13), amounts to

β(S)e−µ1τ 1
µ2

= 1 (5.7)

as follows at once from (5.5). Here τ is the common steady state value of τm

and τ̃m, so τ depends on S and is given explicitly by

τ =
ξA − ξb

g(S)
. (5.8)

This allows us to rewrite (5.7) in the form

g(S)
µ1

log
β(S)
µ2

= ξA − ξb. (5.9)

Whenever g and β are monotone increasing, the left hand side of (5.9) is
monotone increasing and so there is a unique solution provided the left hand
side is smaller than the right hand side for small S and larger for large S.
From (5.6) we obtain

b =
f(S)

γ1(S) 1−e−µ1τ

µ1
+ γ2(S) e−µ1τ

µ2

(5.10)

as the corresponding steady consumer population birth rate, cf. (2.14).
At population steady state, the size of a juvenile of age a is given by

ξ(a) = ξb + g(S)a, 0 ≤ a < τ (5.11)

and the survival probability as a function of age by

F(a) =

{
e−µ1a, 0 ≤ a ≤ τ

e−µ1τe−µ2(a−τ), a ≥ τ .
(5.12)
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5.2 The characteristic equation for purely imaginary λ

We recall that the characteristic equation (3.3) is given by
{

1− k̂11(λ)
}{

λ− c2 − k̂22(λ)
}
− k̂21(λ)

{
c1 + k̂12(λ)

}
= 0, (5.13)

where
k̂ij(λ) =

∫ ∞

0

kij(a)e−λada, (i, j = 1, 2). (5.14)

Combining (3.5) with (5.7) we find

k̂11(λ) =
µ2

µ2 + λ
e−λτ . (5.15)

Directly from (3.6) we obtain

k̂21(λ) = γ1(S)
e−(µ1+λ)τ − 1

µ1 + λ
− γ2(S)

e−(µ1+λ)τ

µ2 + λ
, (5.16)

while (3.7) and (3.8) lead to

c1 = bβ′(S)
e−µ1τ

µ2
= b

β′(S)
β(S)

(5.17)

c2 = f ′(S)− bγ′1(S)
1− e−µ1τ

µ1
− b

γ′2(S)
β(S)

(5.18)

where we have used (5.7) twice more.
In order to compute k̂12 and k̂22, we first observe that (4.5) reduces to

K(τ, α) = g′(S) for 0 ≤ α < τ (and zero otherwise) (5.19)

while (4.12) yields
L(τ, θ) = 0. (5.20)

It is now a straightforward matter to deduce from (4.31) and (4.32) that

k̂12(λ) = b
g′(S)
g(S)

{
µ1

λ
+

µ2 − µ1

µ2 + λ

}
(1− e−λτ ). (5.21)

k̂22(λ) = b
g′(S)
g(S)

e−µ1τ

{
1− e−λτ

λ

(
γ1(S)− γ2(S)

µ1

µ2

)
− γ2(S)

1− µ1/µ2

µ2 + λ
(1− e−λτ )

}
.

(5.22)
If we substitute λ = iω into (5.13) and rewrite the complex equation as two
real equations we obtain

<k̂11<k̂22 −=k̂11=k̂22 − c1<k̂21 − c2(1−<k̂11)−<k̂22 + ω=k̂11

− (<k̂21<k̂12 −=k̂21=k̂12) = 0,

<k̂11=k̂22 + =k̂11<k̂22 − c1=k̂21 + c2=k̂11 −=k̂22 + ω(1−<k̂11)

− (<k̂12=k̂21 + =k̂12<k̂21) = 0.

(5.23)
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The symbols < and = denote the real and imaginary part of a complex number,
respectively. If we define ϕ = ϕ(µ, ω) by requiring that

cos ϕ =
µ√

µ2 + ω2
and sin ϕ =

ω√
µ2 + ω2

,

then we can write

1
µ + iω

=
µ− iω

µ2 + ω2
=

1√
µ2 + ω2

e−iϕ(µ,ω).

It follows that

k̂11(iω) =
µ2√

µ2
2 + ω2

e−i(ωτ+ϕ(µ2,ω)),

k̂12(iω) =b
g′(S)
g(S)

(
µ1

iω
+

µ2 − µ1√
µ2

2 + ω2
e−iϕ(µ2,ω)

)
(1− e−iωτ ),

k̂21(iω) =
γ1(S)√
µ2

1 + ω2

(
e−µ1τ−i(ωτ+ϕ(µ1,ω)) − e−iϕ(µ1,ω)

)
− γ2(S)√

µ2
2 + ω2

e−µ1τ−i(ωτ+ϕ(µ2,ω)),

k̂22(iω) =b
g′(S)
g(S)

e−µ1τ

{
1− e−iωτ

iω

(
γ1(S)− γ2(S)

µ1

µ2

)

−γ2(S)
(

1− µ1

µ2

)
1√

µ2
2 + ω2

e−iϕ(µ2,ω)(1− e−iωτ )

}
.

We can use (5.23) to find stability boundaries in parameter space. An effective
way is to single out two parameters and to use ω to parametrise the curve in
the corresponding parameter plane at which a Hopf bifurcation occurs (see [4,
35] for details). In principle one can determine by way of additional analytic
computations whether the Hopf bifurcation is sub- or supercritical. By imple-
menting the corresponding algorithm, a useful tool for numerical bifurcation
analysis is obtained (see [14], which builds on [16,23,21,22]). As the tool is not
yet available in a user friendly form, we report some numerical experiments
that provide information concerning the direction of bifurcation in Section 6.

5.3 Analytical results

When does maturation delay lead to population cycles? This question is not
precise enough to allow a clear-cut answer (for instance, oscillations may arise
by the combined effect of several mechanisms and then, of course, it makes
no sense to call a single one of these the cause). Yet, in order to understand
complex phenomena it may help (to try) to disentangle the various mechanisms
by analysing limiting cases that are relatively simple. In that spirit we shall in
the present subsection present some analytical results and in the next section
some numerical studies.
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What follows is a telegram style preview of this section. Note that the
conclusions are based on a local stability analysis of the steady-state, but that
the choice of wording does not reflect this limitation. (Note also that in the
Hopf Bifurcation Theorem one of the conditions states that the eigenvalues
should pass the imaginary axis with positive speed if the scalar parameter
passes the critical value. In terms of the stability boundary this requires that
when we implicitly consider a one parameter path in two parameter space,
this path is supposed to cross the stability boundary transversally.)

Consumer-resource cycles may occur in unstructured models as a result of a
hump-shaped resource growth function f(S). We call these classical predator-
prey cycles. If f is a decreasing function of S, one may still have cycles in
case of maturation delay. We shall, for ease of formulation, call these ’delayed
negative feedback’ cycles.

Delayed negative feedback cycles will not occur if there are no differences
between juvenile and adult consumers in either resource ingestion rate or mor-
tality. If only adults exploit the resource, cycles are possible, but not unless
near the steady state a small relative increase of food leads to a large relative
increase in reproduction. If cycles occur, their period at ’birth’ is in between
two and four times the duration of the juvenile period, at least in a quasi-
steady-state-approximation. If only juveniles exploit the substrate, cycles are
also possible. They are promoted by a high reproduction rate. At ’birth’ their
period is between one and two times the duration of the juvenile period, at
least in a quasi-steady-state-approximation.

5.3.1 Nothing but a growth-reproduction transition

Assume that there is neither a change in the death rate µ nor in the consump-
tion rate γ(S) at ξA. We will show that the (in)stability is closely related to
that of the steady state of the corresponding unstructured model

dS

dt
= f(S)− γ(S)P,

dP

dt
= β(S)P − µP.

(5.24)

We shall briefly review the stability of (5.24). There exists a positive equilib-
rium of (5.24), denoted by (S, P ), if there exists a positive constant S such
that β(S) = µ and, moreover, f(S) > 0. The characteristic equation defined
for the linearized equations for (5.24) around the positive equilibrium is given
by

λ2 + c2λ + f(S)β′(S) = 0, (5.25)

where c2 is given by c2 = f ′(S)− γ′(S)

γ(S)
f(S). System (5.24) undergoes a Hopf

bifurcation if and only if c2 passes 0. So a necessary condition for Hopf bifur-
cation to be possible is that f is increasing on part of its domain.

For the structured model (2.11), we concentrate on the special case

µ = µ1 = µ2, γ(S) = γ1(S) = γ2(S). (5.26)
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This means that when juveniles turn into adults there is no change in uptake
rate nor in death rate. By substituting the explicit expressions for k̂ij(iω) and
ci (i, j = 1, 2) into the characteristic equation (5.23), we can derive that for
iω to be a root necessarily p(ω2) = 0 should hold, where

p(ω2) := (ω2 − γ(S)c1)2 + c2
2ω

2 + 2γ(S)µc2

(
b
g′(S)
g(S)

− c1

)
(5.27)

(the details of the derivation are presented in the Appendix). We now have

c1 = b
β′(S)
β(S)

, c2 = f ′(S)− γ′(S)
γ(S)

f(S). (5.28)

If p(ω2) = 0 has no positive real root, there exist no purely imaginary roots
of (5.23). By substituting the explicit expression for c1 we find b g′(S)

g(S)
− c1 =

b
(

g′(S)

g(S)
− β′(S)

β(S)

)
. Note that if g and β are proportional, then necessarily

g′(S)
g(S)

− β′(S)
β(S)

= 0.

So in this case we find, exactly as for the unstructured model, that a Hopf
bifurcation occurs if and only if c2 = 0, where c2 is given by the same formula
c2 = f ′(S) − {γ′(S)/γ(S)}f(S) in both cases (concerning the ’if’ part, note
that in the Appendix we show that for c2 = 0 there is indeed a pair of roots
on the imaginary axis). Hence, if adults and juveniles only differ in that juve-
niles convert substrate into growth and adults convert it into offspring, with
fixed conversion factors, then the stability properties of that model exactly
mimick those of an unstructured model. As a corollary we conclude that the
maturation delay on its own cannot lead to oscillations.

5.3.2 Substrate serves for reproduction, not for growth

Motivated by earlier work of Gurney & Nisbet [10] and by the observation
above, we next consider the case that the growth rate g is independent of S.
For consistency we assume that the juveniles have a different food source and
do not consume the substrate. So we have g′ = 0 and γ1 = 0. Note that the
maturation delay is now fixed rather than variable.

We now have

b =
β(S)f(S)

γ2(S)
, c1 =

β′(S)f(S)
γ2(S)

, c2 = f ′(S)− γ′2(S)f(S)
γ2(S)

, (5.29)

and the characteristic equation is given by
(

1− µ2

λ + µ2
e−λτ

)(
λ− f ′(S) +

γ′2(S)
γ2(S)

f(S)
)

+
µ2

λ + µ2

β′(S)
β(S)

f(S)e−λτ = 0.

(5.30)
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By reorganizing a bit we can bring this equation in the form

µ2

λ + µ2
e−λτ

λ− f ′(S) + γ′2(S)

γ2(S)
f(S)− β′(S)

β(S)
f(S)

λ− f ′(S) + γ′2(S)

γ2(S)
f(S)

= 1. (5.31)

Taking the square of the absolute value of both sides of (5.31) we obtain, after
some rearranging, the equation

ω4 + c2
2ω

2 − µ2
2c3(2c2 + c3) = 0, (5.32)

where

c3 :=
β′(S)
β(S)

f(S). (5.33)

This is a quadratic equation for ω2 which has a positive root iff

(2c2 + c3)c3 > 0.

For increasing beta we have c3 > 0 and then this condition translates into

2
f ′(S)
f(S)

− 2
γ′2(S)
γ2(S)

+
β′(S)
β(S)

> 0. (5.34)

If f is decreasing and β is proportional to γ2, (5.34) is false and hence we know
for sure that the steady state is stable. By writing (5.34) in the form

2
f ′(S)
f(S)

− γ′2(S)
γ2(S)

+
d

dS
ln

β(S)
γ2(S)

∣∣∣∣
S=S

> 0 (5.35)

we see that, for decreasing f and increasing γ2, destabilization requires that
the conversion efficiency increases rapidly with S near S. This may happen
in an energy budget model of the net-production type (in which reproduction
is proportional to the difference between the ingestion rate and maintenance
costs) if at equilibrium β is small, so that a small relative increase in ingestion
can lead to a rather large relative increase in reproduction.

To gain more insight about the possibility of destabilization we take a
drastic step and delete λ in the second factor of equation (5.30). The underlying
idea is that, when both f and γ2 are large relative to β, g, and µ2, the food
dynamics is fast relative to both maturation and demographic turnover of
the consumer population. The corresponding quasi-steady state assumption
amounts to replacing dS/dt at the left hand side of the second equation of
(2.11) with zero. At the level of the characteristic equation this amounts to
removing the term λ in (5.31). The technical way of relating results of the
reduced characteristic equation to results for the full characteristic equation is
as follows. If f has a factor ε−1 then we can multiply (5.31) with ε, and next
obtain the reduced equation by putting ε = 0. The implicit function theorem
then can be used to show that if the reduced equation has roots in the right
half plane, so has the full equation for ε positive but small.
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If we multiply the reduced equation with λ+µ2, reorganise a bit, and scale
λ with a factor τ , we obtain

λ = α1 + α2e
−λ (5.36)

with

α1 = −µ2τ , α2 = µ2τ

(
f ′(S)
f(S)

− γ′2(S)
γ2(S)

+
β′(S)
β(S)

)(
f ′(S)
f(S)

− γ′2(S)
γ2(S)

)−1

.

(5.37)
This equation is analysed in great detail in [4, Section XI.2]. The most relevant
information is summarized in Figure 1, where α1 and α2 are considered as free
parameters. Since in the case of (5.37) α1 < 0, we can infer from Figure
1 that destabilization occurs if α2 becomes sufficiently negative. We already
know that this cannot happen if β is proportional to γ2 and f is decreasing.
Reassuringly we find that α2 > 0 in this case. The condition that α2 be
sufficiently negative translates, in fact, again into the requirement that the
conversion efficiency increases rapidly with S near S. The extra information
we now have is that destabilization is indeed possible and that π/2 < ω < π
(see Figure 1), which means that the period of the limit cycle is at its ’birth’
by Hopf bifurcation between two and four times the juvenile delay τ , just as
it is in Nicholson’s blowfly model of Gurney et al [11], also see Thieme [39,
Section 16].
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Fig. 1 The equation (5.36) has a real root λ = 0 along the line α2 = −α1 and purely
imaginary roots along the curves C0 and C±k . The numbers “# =” indicate the number of
roots in the right half plane. So C0 is the stability boundary. Along the curve C0 ω increases
from 0 at the starting point on the line α2 = −α1 to ω = π/2 where C0 intersects the
negative α2-axis to π in the limit where C0 touches the line α2 = α1.

The information about how the position of the roots of (5.36) depends on
the two parameters α1 and α2 can be used to deduce biologically interpretable
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conclusions by exploiting the explicit expression (5.37). For example, if we
choose

g(S) = g0, γ2(S) = θS, f(S) = D, β(S) = ϕS − ν and µ1 = µ2 = µ,

then we have that by the inverse transformation

µτ = −α1, ντ = −α2e
−α1 .

Hence we can translate information from the third quadrant of Figure 1 to
Figure 2. Figure 2 reveals that population cycles do occur when the loss rate
of maintenance is large relative to the loss rate of mortality. Note that the
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Fig. 2 Stability boundary in the (µτ, ντ)-plane. C0, C+
1 and C+

2 are the images of the
corresponding curves in Figure 1. Note that along C0, ω ranges from π/2 at the vertical axis
to π at infinity.

quasi-steady state assumption potentially leads to the disappearance of cycles,
as was indicated in [33, subsection 3.4 and Figure 8].

In [27], substrate growth is logistic, so f has a positive derivative for S not
too large, and in that case both (5.24) and the model with fixed maturation
delay do have a periodic attractor for suitable γ (resp. γ2) and β. We conclude
that the properties of a model with fixed delay to a large extent mimick those of
unstructured models. In particular, oscillations are more easily generated by a
Rosenzweig-MacArthur type bifurcation of classical prey-predator cycles than
by a delayed negative feedback bifurcation. The latter one requires that the
conversion efficiency depends rather strongly on the substrate concentration
near the equilibrium value.

5.3.3 Substrate serves for growth, not for reproduction

The other extreme is that the birth rate β is independent of S. For consistency
we now assume that the adults have a different (and constant) food source and
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do not consume the substrate. So we have β′ = 0 and γ2 = 0. Note that the
maturation delay is now variable, rather than fixed.

We now have

b =
µ1βf(S)

γ1(S)(β − µ2)
, c1 = 0, c2 = f ′(S)− γ′1(S)f(S)

γ1(S)
(5.38)

and the characteristic equation is given by
(

1− µ2

λ + µ2
e−λτ

) (
λ− f ′(S) +

γ′1(S)
γ1(S)

f(S)− µ1µ2f(S)
β − µ2

g′(S)
g(S)

1− e−λτ

λ

)

+
β − µ2e−λτ

λ + µ1

µ1f(S)
β − µ2

g′(S)
g(S)

(
1− e−λτ

)(
µ1

λ
+

µ2 − µ1

µ2 + λ

)
= 0.

(5.39)
We now take the drastic step once again and delete λ in the second factor. If
we multiply the reduced equation with λ + µ2, reorganise a bit, and scale λ
with a factor τ , we obtain

λ + α1

(
1− e−λ

)
+ α2

1− e−λ

λ
= 0 (5.40)

with
α1 = τµ2 − α2

τ(β − µ2)
,

α2 = µ1µ2τ
2 g′(S)

g(S)
γ1(S)f(S)

γ′1(S)f(S)− γ1(S)f ′(S)
.

(5.41)

If we substitute λ = iω into (5.40), split into real and imaginary part, and
solve for (α1, α2) we obtain

(
α1

α2

)
=

1
2

(
−ω cos(ω/2)

sin(ω/2)

ω2

)
. (5.42)

Here we should keep in mind that

τ =
ln β − ln µ2

µ1

(
⇔ µ1τ = ln

β

µ2

)
(5.43)

and

S = g−1

(
ξA − ξb

τ

)
. (5.44)

Let us now concentrate on the special case

g(S) = g0S, γ1(S) = θS, f(S) = D − εS (5.45)

so that
g′(S)
g(S)

γ1(S)f(S)
γ′1(S)f(S)− γ1(S)f ′(S)

= 1− ε
S

D
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Fig. 3 Stability boundary in the (α1, α2)-plane (labelled by C1) and two more Hopf curves,
labelled C2 and C3. Numbers “# =” refer to roots in the right half plane.

with
S =

1
g0

ξA − ξb

τ
.

It follows that
α1 =

µ2

µ1
ln

β

µ2
− α2

µ2
µ1

(
β
µ2
− 1

)
ln β

µ2

,

α2 =
µ2

µ1

(
ln

β

µ2

)2 (
1− ε

S

D

)
.

(5.46)

from which we see that there are three dimensionless parameter combinations
that play a role: µ1

µ2
, β

µ2
, ε S

D . If we restrict the attention to µ1 = µ2 only β
µ2

and ε S
D remain. The boundary in parameter space of the region in which the

steady state exists is characterized by β
µ = 1 or ε S

D = 1. If we substitute the
stability boundary given by (5.42) into (5.46), it is possible to solve numerically
for β

µ and ε S
D . As a next step we may then express the result in the primary

mechanistic parameters β
µ and ε(ξA−ξb)µ

g0D = ε S
D ln β

µ . Note that Figure 4 gives,
at just a glance, more information about (in)stability of the steady state than
the information presented in [15].

We conclude that a fluctuating length of the juvenile period such that
the rate of growing up is negatively related to the juvenile density may on
its own lead to cycles. Of course this conclusion is not new (e.g. [10]) but is
mathematically rather more neatly brought out by our present calculations.

5.4 Bistability in both reality and a more complex stage structured model

After the finishing of this paper a beautiful paper by McCauley et al appeared
[26] in which a generalisation of the stage structured model of this section was
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corresponding two curves in Figure 3. Along the stability boundary C1 we have that π/τ <
ω < 2π/τ and so the period of the oscillations is between one and two times the length of
the juvenile period at their ’birth’ by Hopf bifurcation.

analysed by different means. The authors frame their model as a system of
delay-differential equations with variable delay, apply an implicit transforma-
tion of the time variable to arrive at a fixed delay and approximate the implicit
equation for the probability to survive the juvenile period by a finite system of
differential equations. The advantage of their technique is that they can then
apply the recently developed bifurcation program DDE-BIFTOOLS that also
allows them to follow limit cycles, including unstable ones, and their stability
switches. (An even better feature of the paper is that the model results are
compared with real experimental data, specifically obtained for the purpose!)
It seems worth the effort to elaborate in detail the characteristic equation (3.3)
for that model and next study it.

6 Numerical studies

In this section, we continue to investigate under what conditions density de-
pendence in the maturation delay leads to population cycles. We do this by
numerically determining when the characteristic equation (3.3) has a root ex-
actly on the imaginary axis. In addition, we do some numerical simulations,
using the Escalator Boxcar Train method (see [32]), to determine the direction
of the Hopf-bifurcation.

We make the following choices for the ingredients of (5.5) and (5.6): The
uptake of resources by adults is assumed to be proportional to the concentra-
tion of the substrate. The juveniles are assumed to spend a fraction 1 − α of
their time on exploiting a fixed alternative food supply, denoted by A, and a
fraction α on exploiting the substrate, leading to per capita uptake rates for
adults and juveniles of γ2(S) = θS and γ1(S) = αθS, respectively. The growth
rate of juveniles g(S) is determined by their total resource uptake. Hence the
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growth of juveniles is independent of the substrate when α = 0 whereas ju-
veniles completely depend on the substrate for their growth when α = 1. In
particular, g(S) is given by g(S) = g0((1−α)A+αS), where g0 is a conversion
constant transforming food intake into growth/maturation. We allow for un-
equal mortality rates for the juveniles and adults, parametrised as µ1 = qµ and
µ2 = µ, respectively. The per capita reproduction rate is proportional to the
per capita resource intake, β(S) = β0S. The dynamics of the substrate in the
absence of consumers is given by f(S) = D − εS. The number of parameters
can be reduced by scaling. By a scaling of time, i-size, birth rate and S we fix
the parameters µ, ξA − ξb, θ and D to 1. The other six parameters α, A, β0,
g0, ε and q can vary. Hereafter the latter parameters will be referred to as the
“free parameters”. The relation between the scaled and unscaled parameters
is indicated by denoting the unscaled parameter by the same symbol as the
corresponding scaled parameter but equipped with a tilde.

t = µt̃, ξ =
ξ̃

ξA − ξb
, b =

θ

µ2
b̃, S =

µ

D
S̃,

µ = 1, ξA − ξb = 1, θ = 1, D = 1,

ε =
1
µ

ε̃, A =
µ

D
Ã, α = α̃, g0 =

D

µ2(ξA − ξb)
g̃0, q = q̃, β0 =

D

µ2
β̃0.

The default values of the potentially free parameters are ε = 0.1, A = 1, α = 1,
g0 = 0.025, q = 0.1 and β0 = 5.0, when they are not varied.

We start our discussion by showing some simulation results. When varying
the parameters we always observed two qualitatively different types of asymp-
totic behaviour, convergence to a steady state, illustrated in the left panel of
Figure 6, and to periodic oscillations (population cycles), shown in the right
panel of Figure 6.

Since there are six parameters ε, A, α, g0, q and β0, we have fifteen options
for drawing one-dimensional stability boundaries. For α = 0 we have a fixed
maturation delay and model ingredients that fulfill the conditions for stability
as derived in subsection 5.3.2. This indicates that larger values of α are required
for population cycles and it makes α a good choice for one of the two free
parameters.

Figure 5 shows numerically calculated stability boundaries for different
values of ε in the (α, β0)-plane (left panel of Figure 5) and for different values
of β0 in the (α, g0)-plane (right panel of Figure 5). For the discussion we shall
distinguish two qualitatively different types of boundaries, parabola-like ones,
in which there is only one stability switch in the α-direction for all values
of the second parameter, and boot-like ones in which there occur two such
switches for increasing α. In the left panel of Figure 5, the cycle regions are
boot-like for the lower ε-values, for higher values they are parabola-like. The
instability regions shrink when ε becomes larger and have disappeared by
the time that ε = 0.25. Population cycles are absent for sufficiently small
α, with the stable region increasing with ε. This strongly suggests that the
density dependence in maturation time brings about the qualitative change
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of the dynamics, but that a delayed impact of this density dependence due
to slow substrate dynamics is essential for cycles to occur, as also concluded
by [33, subsection 3.4]. The other stability boundaries for different values of
ε in the (α, β0)-plane, of q in the (α, β0)-plane, of ε in the (α, g0)-plane and
of q in (α, g0)-plane show essentially the same features as in the left panel
of Figure 5 (results not shown). This is also the case for different values of
β0 in the (α, g0)-plane (β0 = 5.0, β0 = 1.5 and β0 = 1.15, results also not
shown). For these lower values of β0, however, the instability region does not
always provide a complete picture of the parameter combinations for which
population cycles occur. Numerical studies reveal that population cycles occur
for parameter combinations well into the stable region, in particular at the
upper boundary of the parabola-like instability regions in the (α, g0)-plane.
This suggests that for these low values of β0 the bifurcation at this particular
part of the stability boundary is subcritical. Furthermore, for high values of β0

(β0 = 10 and β0 = 20) two stability boundaries are found for the same value
of β0, corresponding to two different pairs of characteristic roots crossing the
imaginary axis. These two stability boundaries suggest that different types of
population cycles may branch of the equilibrium (see below).
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Fig. 5 Left panel: stability boundaries in the (α, β0)-plane, α the relative dependence on
the dynamic substrate, β0 the conversion constant of food into offspring, for three different
values of ε, the autonomous decay rate of the food; solid: ε = 0.1; dashed: ε = 0.2; dotted:
ε = 0.22 (A = 1, q = 0.1 and g0 = 0.025). The cycle region shrinks and eventually vanishes
as ε increases. When ε is large population cycles are not induced for small α (that is, when
juveniles are weakly dependent on the substrate for their growth). For the lower ε-values the
cycle regions are boot-like, for higher values they are parabola-like. Right panel: stability
boundaries in the (α, g0)-plane, g0 the conversion constant transforming food into growth
(maturation), for different values of β0; solid β0 = 10, dashed β0 = 20 (A = 1, q = 0.1,
ε = 0.1). For the same β0 two different sets of purely imaginary roots of the characteristic
equation are found.

Figure 6 shows the results of numerical simulations at the parameter values
indicated by stars in the right panel of Figure 5. For g0 = 0.025 the population
density converges to the steady state via a long and somewhat complicated
transient (left panel of Figure 6), corroborating that for the corresponding
point in Figure 6 all characteristic roots indeed lie in the left half of the complex
plane. The simulation results for g0 = 0.011 exhibit an additional interesting
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phenomenon (right panel of Figure 6). The population density first appears to
approach the steady state in an oscillatory manner only to move off again to
end up on a limit cycle with a different period. This saddle-like behaviour of
the steady state can be tentatively understood from the stability diagram in
Figure 5. From the fact that the parameter point under consideration is near
the second stability boundary one may infer that the slowest submanifold of
the stable manifold of the steady state is tangent to the eigenspace of the
characteristic root that is about to pass through the imaginary axis. When g0

is decreased this slowest submanifold links at the lower stability boundary to
the center manifold containing the limit cycle. So in the oscillatory approach
to the steady state one sees the ghost of the cycle that is about to branch of at
the lower of the two stability boundaries. After having approached the steady
state, the trajectory slowly diverges along the unstable manifold that brings
it to the limit cycle springing from the Hopf-bifurcation on the upper stability
boundary.
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Fig. 6 Numerical simulation results for A = 1, α = 1, β0 = 10, ε = 0.1 and q = 0.1. Left:
g0 = 0.025. The steady state is approached via a complicated transient. Right: g0 = 0.011.
The population density initially approaches the steady state, but eventually ends up cycling.

The main computational results can be summarized as follows. Population
cycles occur for parameters within the region of instability of the equilibrium,
but cycles may also occur for parameter values for which the equilibrium is
locally stable. All instability regions are bounded in the free parameters when-
ever α is chosen as one of the two parameters. In other words, population
cycles can occur only if β0, g0 or q are assigned intermediate values. The oc-
currence of population cycles depends more strongly on α when q and ε are
large. The shapes of stability boundaries can be classified into two types. One
type are parabola-like curves while another type are boot-like ones. Population
cycles are likely not to be induced for small α when the stability boundary
is parabola-like. In contrast, population cycles occur even though α is small
when the stability boundary is boot-like.

Our numerical results are to a large extent congruent with those presented
in [33] for a similar model, which however assumed death rates to depend
on substrate density. In [33, subsection 3.2] two broad classes of population
cycles were distinguished, referred to as juvenile- and adult-driven cycles, re-
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spectively, which occurred when either juveniles or adults had a larger impact
on resource levels and hence on population dynamics. The type of population
cycles found in our model resemble juvenile-driven cycles, most likely because
in our model juveniles are more dominant than adults due to their smaller
death rate. In [33] it was shown that juvenile-driven cycles disappear in case
of fast substrate dynamics, which is in agreement with our finding that the
instability region shrinks for larger values of ε. Furthermore, in [33] two types
of juvenile-driven cycles were distinguished on the basis of the ratio between
the cycle period and the maturation delay: type I cycles are characterized by
a period that is by and large equal to the maturation delay, while type II
cycles have a period by and large half that value. The two unstable regions
in the right panel of Figure 5 correspond to the occurrence of these two types
of juvenile-driven cycles over a considerable range of g0. By numerical simu-
lations for β0 = 10 and α = 0.2 we found large-amplitude cycles with a cycle
period roughly equal to the maturation delay in the lower of the two instability
regions, whereas small-amplitude cycles with a period equal to half the matu-
ration delay occur in the upper unstable region (results not shown). Hence for
each β0, the upper and lower cycle regions are characterized by juvenile-driven
type I and type II, respectively.

Juvenile-driven cycles are characterized by the appearance of dominant
cohorts in the populations [33]. The birth of such a dominant cohort reduces
the resource substantially, leading to retarded growth and dwindling repro-
duction. Not until the dominant cohort has decreased in abundance due to
mortality can resource densities recover again and can a new pulse of offspring
be produced. This offspring immediately reduces the resource level and the
cycle repeats itself. According to [33], juvenile-driven type I cycles are charac-
terized by a high mean resource density, a short juvenile period, high survival
till maturation and a low ratio between juvenile and adult peak densities.
Moreover adults have a very short life expectancy and a low fecundity. By
comparing two stability boundaries for β0 = 10 and β0 = 20 we find that
the cycle region of juvenile-driven type I for β0 = 20 is smaller than that for
β0 = 10. This observation agrees well with the fact that juvenile-driven type
I cycle are likely to occur when adult fecundity is low. Another qualitative
difference between juvenile-driven type I and II cycles is that for type I cycles
non-negligible quantities of adults are only present in the population during
short bouts of time right after maturation of the dominant cohort, whereas
for type II cycles adults are always present in the population in non-negligible
quantities [33]. According to our numerical computations, qualitative change
of population cycles from type I to type II may occur when the resource avail-
ability α or the growth speed g0 cross the boundary between two cycle regions.
In particular for β0 = 10, this kind of qualitative change can occur for almost
all values of α when the growth speed g0 increases. Hence the growth rate of
juveniles may influence the qualitative features of the size distribution. Note
that this kind of qualitative change can occur as well when juveniles become
less competitive, see [33, Figures 5 and 6].
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7 The Kooijman-Metz Model

The modern theory of Dynamic Energy Budget models [18] has its roots in
the Kooijman-Metz Daphnia model [19], that was designed to extrapolate
data on the effect of toxic substances from lab experiments to field situations,
with due attention to the various possibilities for the underlying physiological
mechanisms (does the chemical impede food uptake, maintenance, growth,
survival or reproduction?). In [34] the same model was used to study the
ecological implications for prey-predator interaction of delayed maturation of
the predator. In that analysis a characteristic equation (equation 17) figured
prominently. The aim of this section is to check that equation (3.3) in the
present paper translates to (17a) in [34] if we choose ξ, g, µ, β, γ and f in
accordance with the Kooijman-Metz model.

While comparing the present formulation with that of [34] one runs into
notational problems, as the same symbol may be used in both papers, but with
a different meaning. Our strategy is to give the present notation priority and
to provide symbols from [34] with an index 0 in case of conflict (this applies
in particular to ξ, β, γ and f).

The Kooijman-Metz model also specifies individual behaviour under star-
vation conditions. For populations close to steady state, such conditions never
arise. Therefore we omit this part of the model specification in our description
here. We collect a number of observations that will facilitate the comparison

This paper functional form interpretation reference [34]
ξ length `
S algal concentration x
g γ0(`mf0(S)− ξ) g
µ constant d
β rmf0(S)ξ2 b
γ νf0(S)ξ2 I

f α(Smax − S) or β0S
“
1− S

Smax

”
R

ξ0S
1+ξ0S

: functional response to prey density f0

Table 1 The Kooijman-Metz model

of (3.3) (with (3.5)–(3.8) and (4.31), (4.32) as specification of c and k) and
(17a) (with (17b)–(17e) as specification of the matrix components).

(i) Since the death rate is constant, L ≡ 0, cf. (4.12).
(ii) Since g is linear in ξ and linear in f0(S),

K(τ, α) = e−γ0(τ−α)γ0`mf ′0(S), cf. (4.5). (7.1)

(iii) From (3.7) we deduce that

c1 = brmf ′0(S)
∫ ∞

τ

ξ
2
(a)F(a)da
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but since (2.13) (which is (11a) in [34]) amounts to

1 = rmf0(S)
∫ ∞

τ

ξ
2
(a)F(a)da

this may be rewritten in the form

c1 = b
f ′0(S)
f0(S)

. (7.2)

Likewise we deduce from (2.14) and (3.8) that

c2 = f ′(S)− f(S)
f ′0(S)
f0(S)

. (7.3)

(iv) Directly from (3.5) and (3.6) we obtain

k11(a) = rmf0(S)ξ
2
(a)e−µaH(a− τ), (7.4)

k21(a) = −νf0(S)ξ
2
(a)e−µa. (7.5)

(v) From (4.31) and (4.32) we deduce

k12(a) =2brmf0(S)γ0`mf ′0(S)e−(γ0+µ)a

∫ ∞

max{0,τ−a}
ξ(a + θ)e−µθdθ

+ χ[0,τ ](a)b
rmf0(S)ξ2

Ae−µτ

γ0(`mf0(S)− ξA)
γ0`mf ′0(S)e−γ0a,

(7.6)

k22(a) = −2bνf0(S)γ0`mf ′0(S)e−(γ0+µ)a

∫ ∞

0

ξ(a + θ)e−µθdθ. (7.7)

(vi) By solving
dξ

da
= g(ξ, S), ξ(0) = ξb,

we obtain
ξ(a) = `mf0(S)− (`mf0(S)− ξb)e−γ0a (7.8)

from which we see that (cf. (11c) in [34])

a =
1
γ0

log
(

`mf0(S)− ξb

`mf0(S)− ξA

)
. (7.9)

The final verification that (3.3) is identical to (17) is now only a matter of
computing Laplace transforms, which, in the case of k12 and k22 involves some
changes of the order of integration. All expressions match. At this point the
reader has two options: either believe us on our word or perform these final
computations himself.

We refer to the original paper [34] for an account of the ecological insights
that can be obtained by analysing the Kooijman-Metz model.
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8 A summary in recipe form

Each of the steps below can be performed either by writing a subroutine that
performs the required calculation numerically or (in special cases) analytically
in the form of a mathematical formula.

Part 1: Model formulation and finding steady states
Step 1:

specify the individual growth rate g and the per capita death rate µ as a
function of size ξ and food concentration S

Step 2:
specify the size at birth ξb

for constant S solve, or write an algorithm to solve,

dξ

da
= g(ξ, S), ξ(0) = ξb,

dF

da
= −µ(ξ, S)F, F (0) = 1

Step 3:
specify the per capita rate of giving birth β as a function of size ξ and food
concentration S

Step 4:
solve (2.13)

Step 5:
specify the per capita consumption rate γ as a function of size ξ and food
concentration S
specify the rate f of change in S in the absence of consumers
compute the steady population birth rate according to (2.14)

Step 6:
calculate the steady state size-age relation and survival probabilities by
substituting the value of S found in Step 4 into the results from Step 2 (cf.
(2.15), (2.16))

Part 2: Determining the stability of steady states
Step 1:

define c1, c2, k11, k21 by (3.5)–(3.8)
Step 2:

define K by (4.5) and L by (4.12)
define k12 and k22 by (4.31) and (4.32) [note the simplification (4.14), (4.15)
for a smooth juvenile-adult transition]

Step 3:
take Laplace transforms of kij

Step 4:
consider the characteristic equation (3.3):
if at least one root has <λ > 0 then the steady state is unstable
if all roots satisfy <λ < 0 then the steady state is stable

Part 3: Parameter studies
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Step 1:
substitute λ = iω into the characteristic equation (3.3)
select two parameters (start with those that lead to relatively simple cal-
culations)
solve for these parameters as a function of ω
draw stability boundaries (cf. Figures 3, 4 and 5)

Step 2, 3,...:
repeat Step 1, but with another choice of (one or both of the) two param-
eters

We refer to [17,31] for suggestions concerning the numerical implementa-
tion of the computation of (the Laplace transforms of) the kernels kij . A new
edition of the former paper, employing the delay framework of the present
paper, is submitted [35].
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Appendix: Derivation of (5.27)

We rewrite the explicit expressions of k̂ij(iω) and ci (i, j = 1, 2) under the
assumption (5.26).

k̂11(iω) = cos ϕe−i(ωτ+ϕ),

k̂12(iω) = −b̄µ
g′

g

1− cos ωτ

ω
i + b̄µ

g′

g

sinωτ

ω
,

k̂21(iω) = −γ

µ
cos ϕe−iϕ,

k̂22(iω) = 0.

The real part of the characteristic equation (5.23) can be rewritten as

c1
γ

µ
cos2 ϕ− c2 + c2 cosϕ cos(ωτ + ϕ)− ω cos ϕ sin(ωτ + ϕ)

− b̄γ
g′

g
cos ϕ

{
sin ϕ

ω
− sin(ωτ + ϕ)

ω

}
= 0.

(A.1)

In the same way, the imaginary part of (5.23) can be written as

− c1
γ

µ
cos ϕ sin ϕ + ω − c2 cosϕ sin(ωτ + ϕ)− ω cos ϕ cos(ωτ + ϕ)

+ b̄γ
g′

g
cos ϕ

{
−cos ϕ

ω
+

cos(ωτ + ϕ)
ω

}
= 0.

(A.2)
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Equations (A.1) and (A.2) read in matrix form:

A(ω)
[

cos(ωτ + ϕ)
sin(ωτ + ϕ)

]
= b(ω), (A.3)

where A(ω) = [aij(ω)]i,j=1,2 and b(ω) = [bj(ω)]j=1,2 are given by

A(ω) =

(
c2 cosϕ −ω cos ϕ + b̄γ g′

g
cos ϕ

ω

−ω cosϕ + b̄γ g′

g
cos ϕ

ω −c2 cosϕ

)

and

b(ω) =

(
−c1

γ
µ cos2 ϕ + c2 + b̄γ g′

g cos ϕ sin ϕ
ω

c1
γ
µ cosϕ sinϕ− ω + b̄γ g′

g
cos2 ϕ

ω

)
,

Note that a11(ω) = −a22(ω) and a12(ω) = a21(ω). If c2 = 0, then both A(ω)
and b(ω) are zero for ω2 = b̄γg′/g if c1 = b̄g′/g and we conclude that in this
case the characteristic equation has a root iω. If

det[A(ω)] = −(a2
11 + a2

12) = − cos2 ϕ

{
c2
2 +

(
ω − b̄γ

g′

g

1
ω

)2
}
6= 0,

we find by solving (A.3)

cos(ωτ + ϕ) =
a11(ω)b1(ω) + a12(ω)b2(ω)

a2
11(ω) + a2

12(ω)
,

sin(ωτ + ϕ) =
a12(ω)b1(ω)− a11(ω)b2(ω)

a2
11(ω) + a2

12(ω)
.

Since cos2(ωτ + ϕ) + sin2(ωτ + ϕ) = 1, aij(ω) and bj(ω) must satisfy

(b2
1(ω) + b2

2(ω))− (a2
11(ω) + a2

12(ω)) = 0.

By using the relation
cosϕ

µ
=

sin ϕ

ω
,

b1(ω) is rewritten as

b1(ω) =
γ

µ

(
b̄
g′

g
− c1

)
cos2 ϕ + c2.

Since cos2 ϕ + sin2 ϕ = 1, b2(ω) is rewritten as follows.

b2(ω) = −γ

µ

(
b̄
g′

g
− c1

)
cos ϕ sin ϕ− ω + b̄γ

g′

g

1
ω

.

For convenience of computation, we introduce d1 and d2 by

d1 =
γ

µ

(
b̄
g′

g
− c1

)
and d2 = −ω + b̄γ

g′

g

1
ω

.
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Straightforward calculation yields that

(b2
1(ω) + b2

2(ω))− (a2
11(ω) + a2

12(ω))

= (d1 cos2 ϕ + c2)2 + (−d1 cosϕ sin ϕ + d2)2 − (c2 cos ϕ)2 − (d2 cos ϕ)2

= (d1 cos ϕ− d2 sin ϕ)2 + c2
2 sin2 ϕ + 2d1c2 cos2 ϕ

=
1

µ2 + ω2

{
(d1µ− d2ω)2 + c2

2ω
2 + 2d1c2µ

2
}

=
1

µ2 + ω2

{
(ω2 − γc1)2 + c2

2ω
2 + 2γµc2

(
b̄
g′

g
− c1

)}
.

Hence we obtain (5.27) as a necessary condition for the possibility that the
characteristic equation has a root iω.

References

1. O. Diekmann and Ph. Getto, Boundedness, global existence and continuous dependence
for nonlinear dynamical systems describing physiologically structured populations. J.
Differential Equations 215, 268–319 (2005).

2. O. Diekmann and M. Gyllenberg, Abstract delay equations inspired by population dy-
namics, pp. 187–200 in H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise,
J. von Below (eds.) Functional Analysis and Evolution Equations. Birkhäuser, (2008).
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