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Abstract 
 

The quick answer to the title question is: by bookkeeping, introduce as p(opulation)-state 
a measure telling how the individuals are distributed over their common i(ndividual)-state 
space, and track how the various i-processes change this measure. Unfortunately, this 
answer leads to a mathematical theory that is technically complicated as well as 
immature. Alternatively, one may describe a population in terms of the history of the 
population birth rate together with the history of any environmental variables affecting i-
state changes, reproduction and survival. Thus a population model leads to delay 
equations. This delay formulation corresponds to a restriction of the p-dynamics to a 
forward invariant attracting set, so that no information is lost that is relevant for long-
term dynamics. For such equations there exists a well-developed theory. In particular, 
numerical bifurcation tools work essentially the same as for ordinary differential 
equations. However, the available tools still need considerable adaptation before they can 
be practically applied to the DEB model. For the time being we recommend simplifying 
the i-dynamics before embarking on a systematic mathematical exploration of the 
associated p-behaviour. The long-term aim is to extend the tools, with the DEB model as 
a relevant goal post. 
 
 
 
_____________________________ 
 
key words: Physiologically structured population models · DEB models · Delay equations 
· Extinction boundary · Stability boundary  
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1. Introduction 
  
Within the framework of Physiologically Structured Population Models (PSPM) one can, 
in principle, incorporate a lot of mechanistic detail about physiological processes at the i-
level (i for individual), such as found in the Dynamic Energy Budged (DEB) models 
which form the subject of this theme issue, and yet arrive at a consistent and complete 
deterministic bookkeeping scheme for a sufficiently large population (Metz & Diekmann 
1986). The aim of such exercises is to deduce how population phenomena relate to the 
mechanisms of feeding, metabolism, maintenance, growth, reproduction, starvation 
induced death, etcetera. But in order to carry out this deduction, one needs a 
mathematical framework that provides the tools. 
  The conceptual part of the mathematical framework is easy: once the notion of  
´state´ has been introduced at the i-level (in the DEB model structural mass, non-
allocated reserve mass, etc.), it can be lifted to the p-level (p for population) by declaring 
the p-state to be the measure m on the i-state-space Ω, such that m(Ω) is the total 
population size and for every measurable subset ω of Ω the fraction of the population 
with i-state in ω is   m(! ) m(")  - in other words, m describes the population size and 
distribution - and cataloguing how the various i-processes contribute to the change of m.  
 The next task is to check that the resulting bookkeeping scheme constructively 
defines a dynamical system, that is, unambiguously defines the measure mt+s, describing 
the population at time t+s, when the measure ms, describing the population at time s, is 
specified. While carrying out this task, one is confronted with a surprising amount of 
technical difficulties (Thieme 1988, Diekmann et al. 2001, Diekmann & Getto 2005), 
many of which reflect subtle modelling issues (for example, if the rate of channelling 
energy to reproduction changes abruptly when an individual passes a certain size, as it 
seems to do for Daphnia, what does an individual do when it happens to stop growing 
exactly when reaching this size (Thieme 1988)?). Addressing these issues has some spin 
off in terms of increased biological/modelling insight. Yet, given the fact that the 
construction of a dynamical system is a very preliminary contribution to unravelling the 
p-behaviour, it is somewhat depressing that so much hard work is needed for what ought, 
one feels, to be a simple task. 
 Things turn really bad if one attempts to develop stability and bifurcation theorems 
and tools. The chief difficulty is a severe lack of smoothness if the i-growth rate is 
affected by, for instance, competition for food. (Smoothness is here meant in a very 
abstract sense: the map from food availability as a function of time to future population 
states is in general not even differentiable thanks to the untoward geometry of the space 
of measures.) Even if one can derive a characteristic equation by formally linearising 
around a steady state and then looking for exponential solutions (e.g. de Roos et al. 
1990), a rigorous proof that the positions of the roots of this characteristic equation do 
indeed govern the (in)stability of the steady state could not be found. 
 Sometimes one can work around a problem that one cannot solve (perhaps because 
it IS unsolvable). The aim of this paper is to demonstrate that, fortunately, such is the 
case for PSPM. The key point is to reflect on the notion of ´state´ and to see whether it 
can, possibly after a suitable and justified restriction, be represented in a different way. 
 The ´state´ of a system is, by definition, the information about the past that is 
relevant for predicting the future. A population ´experiment´ is started by specifying the 
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states of the individuals in the ´inoculum´. If food supply and predation pressure (and 
possibly other characteristics of the world in which these individuals live) are given 
functions of time, maturation, survival and reproduction can be ´computed´. Once they 
are born, the same can be done for the individuals that arise from reproduction. In fact, 
however, quantities like food supply and predation pressure are not given functions of 
time, as they are influenced by the focal population. This we call feedback by way of 
environmental interaction variables. The prediction of the future hence involves the 
solution of a coupled system of equations for the p-birth rate (taking values in the space 
of conceivable states-at-birth, which usually is much smaller than the full i-state space), 
and the environmental interaction variables, all as functions of time. Once these are 
known, one can compute how the measure describing the population size and 
composition depends on time (Thieme 1988, Diekmann et al. 2001). 
 It follows that, at the p-level, the information about the past that is relevant for 
predicting the future, is the HISTORY of the p-birth rate and the environmental 
interaction variables. In this formulation we deliberately ignore the individuals from the 
inoculum that are still alive. ´Deliberately´, since their contribution fades with time. So 
we make the restriction that we only consider those measures that can be constructed 
from the history of the p-birth rate and the history of the environmental interaction 
variables. This restriction is justified, in the sense that these measures constitute a 
forward invariant subset of the p-state space that attracts all orbits (if individuals have a 
uniform, in state-at-birth and feasible environmental conditions, upper bound to their age 
amax then the dynamical system actually maps any initial condition into the invariant set 
for time bigger than amax). This restriction is suitable, in the sense that the lack of 
smoothness is eliminated and therefore a rich stability and bifurcation theory can be 
developed with some, but not too much, effort (c.f. Diekmann et al. 1995, 2007; 
Diekmann & Gyllenberg submitted). (There is some wishful thinking in this formulation: 
if the behaviour of individuals changes abruptly upon passing a certain size, one needs 
the more involved theory concerning state-dependent-delay equations, c.f. Hartung et al. 
2006.) 
 Once we adopt the aforementioned restriction, we may actually shift the measures 
to the background and put, at the p-level, the spotlight on the p-birth rate and the 
interaction variables. This we call the delay equation formulation of PSPM. 
 The plan of this paper is as follows. In Section 2 we illustrate the delay equation 
formulation by presenting the example of a population structured according to a one-
dimensional i-state, for definiteness to be called size, feeding on an unstructured resource, 
while referring to Diekmann et al. (in press) for details and results.  In Section 3 we 
briefly sketch how to build numerical bifurcation tools for the analysis of p-models 
formulated as delay equations, this time referring to de Roos et al. (submitted) for a full 
exposition. In Section 4 we discuss the potential for applying the ideas sketched in the 
previous section to the DEB model, and in the final section we discuss how the new 
framework relates to earlier ones, as well as our expectations for the future. 
 
2. The delay equation formulation 
 
In this section we formulate a model of the interaction between an unstructured resource 
and a consumer population structured according to a one-dimensional physiological 
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variable that we shall refer to as ‘size’. We assume that all consumers are born with the 
same size ξb and that their growth is deterministic according to the differential equation 
 

      d!
da
(a) = g(!(a);X(t(a))),     (2.1) 

 

where ξ denotes size, a age, X resource concentration and t(a) the time at which the focal 
individual has age a. We assume that the survival probability F of an individual 
decreases according to 
 

 

dF

da
(a) = !µ("(a);X(t(a)))F (a)     (2.2) 

 
and that newborns are produced clonally at a rate 
 

           !("(a);X(t(a))) .     (2.3) 
 
The energy and materials needed for maintenance, growth and reproduction is derived 
from the ingestion of the resource, which proceeds at a rate 
 

! ("(a);X(t(a))) ,     (2.4) 
 
but for the time being we leave the relationship between, on the one hand g respectively  
β and, on the other γ, unspecified. Finally we assume that in the absence of consumers the 
resource evolves according to the differential equation 
 

     dX
dt

= h(X) .    (2.5) 
 
Essentially, the model is now specified, the rest is bookkeeping. To do the bookkeeping 
in an efficient way, we need to introduce some notation. As in the theory of delay 
equations, we use the symbol Xt to denote the history of the food concentration relative to 
t, i.e., the function 

! !+! ( )X t ,  ! " 0 .     (2.6) 
 
(In case of a maximal age amax we can restrict to ! " #amax , but otherwise we need to 
allow σ to take any value less than or equal to zero.)  

Now consider an individual that has age a at the current time t. Denote the size of 
this individual at age τ, with 0 ≤ τ ≤ a by   !(" ) = !(" ;a,Xt )  (the last two variables are 
suppressed in the notation whenever that helps to keep formulas readable). It can be 
computed from 
 

 d!
d"
(" ) = g(!(" );Xt (#a + " )) ,       !(0) = !b .    (2.7) 

 
(Age is counted here from the moment of birth, most often in the form of an egg being 
laid; what matters mathematically is that the link between mother and young is severed.) 
The size at the current time is then given by 
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    !(a;Xt ) := "(a;a,Xt ) .    (2.8) 
 
The fraction of individuals born at time t-a that are still alive at time t, is given by the 
survival probability    F (a; Xt ) . Let    G(! ) = G(! ;a, Xt )  be the survival probability up till 
time t–a + τ. Then, by definition, 
 

      F (a;Xt ) = G(a;a,Xt ) ,      (2.9) 
 
with G computed from 
 

 

dG
d!
(! ) = "µ(#(!;a,Xt );Xt ("a + ! ))G(! ) ,  G (0) = 1 . (2.10) 

 
Let b(t) denote the consumer population birth rate at time t. Then the assumptions above 
imply that 
 

 

 

b(t) = b(t ! a)"(#(a;Xt );X(t))F (a;Xt )da0

$

% ,

dX
dt
(t) = h(X(t)) ! b(t ! a)& (#(a;Xt );X(t))F (a;Xt )da.0

$

%
  (2.11) 

 
The upper equation is the time dependent analogue of Lotka’s equation, with the pro 
capite birth rate and survival continuously updated in dependence on the experienced 
environmental history. The integral in the lower equation adds up the rates of resource 
consumption by individuals of different ages.  

As written, (2.11) refers to consumers and a resource that have been interacting 
since the dawn of time. When looking for steady states, periodic solutions etc., this is 
indeed the right perspective. But alternatively one can require the system of equations 
(2.11) to hold only for positive time and provide initial data in the form of the history of 
both b and X at time zero, the first as a nonnegative locally integrable function and the 
second as a nonnegative continuous function. In the mathematical theory concerning 
(2.11), for which we refer to [Diekmann et al. 2007, in particular Section 3], both points 
of view play a role. 

Note that the right hand side of (2.11) is linear in b, reflecting that the 
environmental interaction variables are chosen such that all dependence is by way of 
feedback via these variables (i.e., if one considers X as prescribed, then the consumers are 
independent of one another). 

We now consider constant solutions of (2.11), i.e., steady population states. If 
food is kept at the constant concentration X , then the basic reproduction number R0 of 
the consumers is well defined and given by 
 

 
R0 (X) = !("(a;X);X)F (a;X)da

0

#

$    (2.12) 
 
(where we use the same symbol to denote the value and the constant function taking that 
value). The equation 

         R0 (X) = 1       (2.13) 
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determines the constant concentrations that lead to a steady consumer population. As a 
rule, any solution of (2.13) is unique, simply since R0(0)<1, R0(∞)>1 and R0 is a 
monotone function of  X . (Of course other scenarios are possible, for example food that 
is toxic at high concentrations.) 

Once X  is determined, we have explicitly 
 

 
b = h(X) ! ("(a;X);X)F (a;X)da

0

#

$    (2.14) 

 

for the consumer population birth rate that keeps the resource at the steady level X . (The 
steady states of more general physiologically structured population models can be 
determined by following essentially the same steps, see Diekmann et al. (2003).) 
 To linearise (2.11) around the steady state is, in principle, straightforward, but very 
laborious, so we chose not to give the details; for these see Diekmann et al. (in press). 
One obtains a system of the form 
 

    
y(t) = c1z(t) + k11(a)y(t ! a) + k12z(t ! a)( )da

0

"

#
dz
dt
(t) = c2z(t) + k21(a)y(t ! a) + k22z(t ! a)( )da

0

"

#
  (2.15) 

 
The corresponding characteristic equation is 
 

    det
k̂11(!) "1 c1 + k̂12 (!)

k̂21(!) c2 + k̂22 (!) " !

#

$
%

&

'
( = 0     (2.16) 

or 

    1! k̂11(")( ) " ! c2 ! k̂22 (")( ) = k̂21(") c1 + k̂12 (")( )   (2.17) 
 

where the hat denotes Laplace transform, that is, 
 

           k̂ij (!) = e"!akij (a)da0

#

$ .     (2.18) 
 
(2.18) is obtained by looking for exponential solutions of (2.15). 
 The hard work consists of 
• computing the ingredients c and k(a) of (2.15) from g, µ, β, γ  and h, 
• analysing (2.17) in order to determine conditions on g, µ, β, γ  and h  that guarantee 

that all roots are in the left half of the complex plane and complementary conditions 
that guarantee that at least one pair of roots lies in the right half of the complex 
plane. 

 
 The results derived in Diekmann et al. (2007) imply that one can draw conclusions 
about the dynamical behaviour of solutions of (2.11) from this kind of information about 
the position in the complex plane of the roots of the characteristic equation. In Diekmann 
et al. (in press) the first point is elaborated in quite some detail and analytical as well as 
numerical results concerning the second point are presented. In general, however, one 
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needs computer assistance when doing the hard work. So in the next section we focus on 
some computational tools that have been developed in order to carry out an analysis of 
(2.11) and its linearisation (2.15). 
 
 
3. The Existence and Stability Boundaries 
 

In order for (2.14) to be biologically meaningful, we need that h(X) > 0 , where X  is 
such that (2.13) holds. The borderline is determined by the system of two equations 
 

          R0 (X) = 1 ,    h(X) = 0       (3.1) 
 

in the single unknown X . Of course, as already expressed by the word 'borderline', there 
is generically no solution. But when we 'free' one parameter (i.e., consider this parameter 
as unknown as X ; its choice to be determined by a suitable combination of convenience 
and biological relevance) we might be able to solve (3.1). Yet we recommend to free 
TWO parameters and to consider (3.1) as two equations in three unknowns such that, 
generically, there is a curve of solutions. (We have two arguments for this 
recommendation: i) curves can numerically be efficiently computed by means of 
continuation methods; ii) humans are very well equipped to absorb information that 
comes in the form of a two-dimensional picture.) The projection of this curve on the two-
dimensional parameter space is called the existence boundary, since it separates the 
region for which (2.13) has a biologically meaningful solution from the region where it 
has not (and where the consumer is doomed to go extinct). 
 Typical examples of functions h are 
 
 chemostat resource dynamics : h(X) = D(X0 - X), 
 
 logistic resource dynamics :   h(X) = rX( 1 - X/X0). 
 

A typical choice of the two parameters is X0 and a uniform consumer death rate µ0. The 
equation h(X) = 0  then leads to X = X0  and the existence boundary is determined by the 
single equation 
         R0(µ0;X0) = 1 .     (3.2)   
 
To trace numerically the curve defined by (3.2) (for instance, by a predictor-corrector 
method), we need, first of all, to be able to evaluate R0 for given X0 and µ0. This can be 
done by solving the system of ODEs (see e.g. de Roos, 2008) 
 

               

 

d!
da

= g(!;X0 ),!!!!!!!!!!!!!!!!!!!!!!!!!!!!(0) = !b ,

dF
da

= " µ1(!;X0 ) + µ0( )F ,!!!!!!!F (0) = 1,
dB
da

= #(!;X0 )F ,!!!!!!!!!!!!!!!!!!!!!!!!B(0) = 0.

   (3.3) 

 
with R0 = B(∞). Of course we do not want to integrate (3.3) forever. A stopping criterion 
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can often be based on some variant of the following result: if we integrate only to some 
amax, then, if g(!;X0 ) , µ1(!;X0 )  and !(";X0 )  are monotone beyond   !(amax ) , g(!;X0 )  

decreasing, µ1(!;X0 )  and !(";X0 )  non-decreasing, and there exists a   ! > !(amax )  such that 

  g(! ; X0 ) = 0 , then  
 

      

 

F (amax )! "(amax );X0( )
µ1 " ;X0( ) + µ0

# R0 $ B(amax ) #
F (amax )! " ;X0( )

µ1 "(amax );X0( ) + µ0
.   (3.4)  

 

Both (3.4) and the fact that g, µ, β and γ  may have jump discontinuities at ξ= ξA, the size 
at which juveniles turn adult (meaning that they start to reproduce), imply that we need to 
incorporate in the ODE integration routine criteria that test whether a certain variable is 
still below a threshold. 
 Referring to de Roos et al. (submitted) for more details, we conclude that one can 
define the left hand side of (3.2) in terms of a procedure that solves the ODE system (3.3) 
and next compute the existence boundary in the (X0,µ0) plane by solving (3.2) 
numerically with a standard continuation method. 
 

At the existence boundary a transcritical bifurcation takes place. In the absence of 
Allee effects, the bifurcation is supercritical, which means that within the existence area 
close to the boundary a steady state exists with b as defined by (2.14) being small. 
According to the Principle of the Exchange of Stability (see Boldin 2006, and the 
references therein) this steady state is stable. The steady state may lose stability further on 
in the existence area. The curve that separates the stability area from the instability area is 
called the stability boundary. It can be computed in much the same way as the existence 
boundary, but this computation is a lot more complicated, as now the linearisation (3.1) is 
involved as well. 

In the absence of fold bifurcations (as is the case when the solution of (2.13) is a 
single valued function of the parameters), the stability boundary is characterised by the 
characteristic equation (3.3) having a purely imaginary root λ = iω, ω ≠ 0. The 
characteristic equation is a single complex equation, hence counts for two real equations. 
So, together with (2.13), this amounts to three equations in the four unknowns X , ω, X0 
and µ0. The strategy to find a solution curve is as before first to find one point on the 
curve and next use a continuation algorithm to compute the entire curve. But now we 
need to evaluate, for given X , ω, X0 and µ0, not only R0 but also the ingredients of the 
characteristic equation. This means that we have to integrate (3.3) but also 

 

        
 

d!
da

= " (#;X)F ,              Γ(0) = 0   (3.5)  
 
(to find the cumulative food consumption, which is needed to evaluate the right hand side 
of (2.14)), and the linearised versions of these ODE with forcing terms that involve 
cos(ωa) and sin(ωa). Details and pseudo code are presented in de Roos et al. (submitted). 
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4. Extensions and applications to the DEB model 
 
The mathematical theory referred to in Section 1 is in principle very general. However, 
that generality only holds good at an abstract level. The more practical the results one 
aims at, the more restrictions have to be imposed in order to get results. At the more 
down to earth end we have so far worked out the concrete details only for the small 
subset of simple cases discussed in sections 2 and 3. So we can presently do little more 
than indicate the difficulties and their potential solutions that we envision for handling 
DEB style models in the rigorous mathematical fashion that we are aiming at. In doing so 
we shall use a mix of our earlier notation and that of Sousa et al. (this volume); we only 
explain conventions when there is a clash or when we have to introduce additional 
symbols. 
 Difficulties in applying a mathematical framework can be of very different kinds. 
First there is the problem whether a concrete description of individual behaviour can be 
represented at all within an envisaged framework for population modelling. The DEB 
model no doubt fits in the very general physiologically structured population framework. 
Then there is the problem whether a model falls within a class for which at least the 
mathematical existence and uniqueness problem for the heuristically derived population 
equations can be solved. The description of DEB models certainly appears compatible 
with the existence and uniqueness results in Diekmann et al. (2001), and in principle also 
with the framework described in Sections 2 and 3. However, they clearly do not fit the 
example that formed the centrepiece of those sections. As the results for that example 
only exemplify the more general theorems in Diekmann et al. (2007) and Diekmann & 
Gyllenberg (2008, submitted) the first question then is to what extent DEB models fit 
those abstract theorems, and if not, whether they, or the theorems, can be tweaked to 
make them fit. A second question is then how far the abstract results can in principle be 
implemented in the form of manageable calculations. And a final question is for the best 
strategies to implement those calculations. We will not consider the questions in this 
order but rather use various technical specifics of DEB models as our guideline. 
 The natural strategy for answering the sort of questions indicated above starts 
with writing the DEB model presented in Sousa et al. (this volume) in a form similar to 
the one used in Section 2, in order to see if they indeed satisfy the requirements of the 
theorems that have been proven this far. Below we shall indicate how this should be 
done. It is more practical, however, first to introduce a simplification meant to remove an 
aspect of the DEB models that from a mathematician’s point of view is technically 
somewhat worrisome. The full DEB model is rigidly deterministic at the level of the 
individual. In the DEB-model proper, young are produced from the reserves set aside for 
reproduction MER  by, when MER  reaches a threshold, converting those reserves into 
young while resetting MER  to zero. Whenever the i-level model is consistently specified, 
it is, of course, always possible to do individual-based simulations. However, our goal is 
to analyse the deterministic models that result as large number limits of such stochastic 
descriptions. In general the mathematical tractability of these deterministic models to a 
large extent depends on the fact that over time too sharp bumps in the population state get 
smoothed out. Not only that, for a given course of the environment, X(t), t > 0, the 
population states over time will look more and more like each other, but for a difference 
in the total population sizes. (There are exceptions, which by this very fact are of 
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considerable mathematical but little biological interest.) Having the young produced 
deterministically tends to thwart this smoothing property to an extent that the main 
present proof techniques fail. This does not mean that there is something mathematically 
wrong with the full DEB model. Only that the techniques are not yet up to this 
complexity. Experience teaches that often such problems have to do with the existence of 
badly behaving exceptional cases that for all practical purposes can be neglected.) “In 
reality” all model ingredients tend to be subject to minor chance fluctuations that may be 
expected to remove the mathematical anomalies if incorporated in the model structure. 
However, doing so leads to models of severely increased complexity. In order to keep a 
somewhat tractable framework, we in the past fudged the effect of stochasticity in the 
individual state transitions by having the process of giving birth represented as a 
continuous rate β (c.f. Metz & Diekmann 1986 Remark I.3.2.1; see their Section III.6.3 
and Heijmans & Metz 1989 for one possible justification, in the form of a limit argument 
starting from a more realistic specification). This is also what we did in Sections 2 and 3 
and what we will do below: we shall assume that births are produced at a rate that is 
proportional to the rate at which energy is channelled towards reproductive activities.  

An additional advantage of assuming that the birth process is continuous, is that 
this way one state variable, MER , is removed, which also is the one that does not fit too 
happily in the procedure for calculating a characteristic equation outlined in Section 2 due 
to its jumping behaviour. In principle this difficulty can be overcome through calculations 
like those in Metz & van Batenburg (1985, Section 4.2) and Kooi & Kooijman (1999), 
but the characteristic equation will become rather complicated. This practical aspect 
comes on top of the mathematical problem that, due to the difficulties mentioned earlier, 
one cannot be fully sure that information from the characteristic equation indeed has the 
implications that we normally attach to it (although at least one of us dares to bet on it). 

With the assumption about the birth process that we just made, the DEB model as 
described in Sousa et al. (this volume) has a 7-dimensional i-state which we choose to 
represent by   !  = (MV ,  M E ,  M H  ,  q,  h,  MV

max ,  M H
max )T , where the state variables   MV

max  

and   M H
max  represent the maxima of VM and HM along their trajectories till the present 

age.  
The rates of change of the first 5 state variables are given by Eq (1, 8, 9, 12, 13, 

14) in Sousa et al. (this volume). The latter two variables satisfy 
 

  

dMV
max

dt
= MV ! MV

max( )dMV

dt
,  

  

dM H
max

dt
= M H ! M H

max( )dM H

dt
. (4.1) 

 
The death rate equals 
 

  
  

µ = h     if      M H !"H M H
max     and   MV #"V MV

max

  = $     otherwise,
   (4.2) 

 

H! and V!  parameters, where the inequality conditions exclude rejuvenation and 
shrinking due to starvation. 

The pro capite birth rate !  can be found in Sousa et al. (this volume) in the 
section on maturation and reproduction under the name   !R . At the birth of an egg 
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  !b  = (0, M E
0 , 0, 0, 0,0,0)T , where   M E

0  is such that E VM M at the start of the juvenile 

stage ( M H = M H
b ) equals that of the mother at egg-formation (details in Kooijman 

2009a). 
The numerical integration of the corresponding population equations, e.g. with the 

escalator boxcar train method of de Roos (1988, 1997), de Roos & Metz (1991), de Roos 
et al. (1992), see also http://staff.science.uva.nl/~aroos/, runs into a number of practical 
problems that all have to do with the determination of the birth state. The maternal effect 
from the standard DEB model can cause young born at the same time to be distributed 
over a continuum of birth states. We expect, however, that in most applications the birth 
states of those young will be sufficiently close to each other that lumping them in but a 
few classes, to be represented by their class mean, will not cause much of a discretisation 
error. An additional complication is caused by the lack of an explicit expression for  M E

0 , 
which hence has to be solved from an equation (an efficient numerical scheme may be 
found in Kooijman 2009a.) However, none of these problems is fundamental. 

The previous developments show that it is possible to express the DEB model in a 
form compatible with the ideas from Sections 2 and 3. Another matter is that the DEB 
equations are far more complicated than the simple equations to which we restricted 
ourselves in Section 2, so that one cannot immediately apply the concrete recipe given 
there. Below we shall systematically discuss any technical problems that this 
complication may give. 

The fact that in the DEB model the i-state is higher dimensional in principle does 
not greatly complicate the calculation of the kernels kij from Section 2. One only has to 
interpret the various scalar expressions from which the kij are calculated as vectors and 
matrices. (The last two state variables can be dropped from consideration since close to 
equilibrium the inequality conditions in (4.2) are never violated.) 

A greater problem is the multiplicity of birth states. These even do not come in a 
finite number but in a continuum. Rigorously extending the proofs in Diekmann et al. 
(2007) to this case brings considerable technical difficulties with it. At a more practical 
level, the local stability of systems with infinitely many birth states can in general no 
longer be determined from the analysis of a characteristic equation. For the case of 
finitely many birth states it is possible in principle to extend the calculations in Diekmann 
et al. (l.c.) by further invoking the vector-matrix formalism. All that results is that the 
matrix in (2.16) becomes correspondingly larger. Where (2.16) contains a 2 ! 2  matrix, 
with n birth states that matrix will become an (n +1) ! (n +1)one. (When, as in the DEB 
model, the attribution of birth states has to be solved from an equation one has to 
differentiate through that equation and solve the resulting linear equations for the 
required derivatives.) 

A similar extension holds if the number of environmental variables, be they 
resources, toxicants or predation pressures, is larger than one. Assuming for the time 
being that all these variables satisfy simple differential equations, with m environmental 
variables the matrix will become of size (n + m) ! (n + m) . Of course, with any increase 
of n or m the calculations will become more forbidding and will ultimately fail when 
either number becomes infinite. (An example where the number of environmental 
variables is infinite are models where a resource has a continuous size distribution, with 
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the speed of ingestion depending on the form of this distribution in a nontrivial manner, 
as is the case in various published size structured predator-prey models.)  

It may be expected that even the cases with a continuum of birth states and/or 
environmental variables may ultimately be handled by some discretisation, such as is 
anyway done in numerical calculations. However, theorems that the stability bounds 
found by such approximate calculations approximate the ones of the original model are 
still pending. 

In short, we are still a long way from tackling the full complexity of the DEB 
model in the rigorous fashion outlined in Sections 2 and 3. Given their well-specified 
mathematical structure and their great and still manageable (e.g. through individual-based 
simulation) biological realism, DEB-style models provide an interesting pointer, as well 
as set of test cases, for how to proceed. 
 
5. Discussion 
 
We have in the past (Metz & Diekmann 1986) promulgated representing structured 
population models by Partial (integro-)Differential Equations for the density of the 
population over its i-state space, like in e.g. Kooi & van der Meer (this volume). In 
hindsight, in a strict mathematical sense a lot turned out to be wrong with this 
formulation, as it can be interpreted rigorously only for a very special subset of the 
biological systems for which it was envisioned as representation. However, in the cases 
we have scrutinised so far the validity of the biological conclusions arrived at this way is 
not affected by these mathematical difficulties (see below).  
 A first problem with the PDE framework is that in theory it is possible to start with 
a cohort of equal individuals so that there is no population density to begin with. The 
same problem may occur in the probably more familiar problem of diffusive movement 
in space. However, there this initial singularity disappears immediately after t = 0. In the 
case of structured populations with deterministic i-state movement these point masses 
stay intact till the ancestral population has died out. So if we are interested in asymptotic 
calculations only, there is not much to worry about. A bigger problem is that for many 
models the mechanism itself creates distributions over the i-state space that do not admit 
a density, like when all individuals are born equal and move in exactly the same manner 
through a k-dimensional i-state space, k > 1. In that case all individuals born after t = 0 
are concentrated on a 1-dimensional curve in a k-dimensional space. Perhaps these 
technical anomalies could still be handled by using some sort of “weak solution” concept. 
However, we found it easier to start from a representation of the population state as a 
measure, which is what it ultimately is anyway!  
 On top of this then comes the problem of the dependence of the differential 
equation describing the i-state movement on the current state of the system, consisting of 
the population and, say, its food. We already discussed in the introduction how this 
biologically reasonable assumption gets us in deep waters mathematically. In Diekmann 
et al. (2001) we therefore proved existence and uniqueness by interpreting the population 
equations as an input-output operator from environment to environment and solving the 
fixed-point problem that appears when we connect input and output. (Solving here means 
constructing the solution by means of abstract mathematical operations, like integrations 
and taking limits, which is different from arriving at an explicit expression or 
constructing an efficient numerical algorithm.) However, that is as far as we got.  
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 We believe that we have now found a way to the shallows again by moving from a 
dynamics on a space of measures to one on a space of histories of the birth rate and 
environment. The latter spaces have a more amenable structure, both since they represent 
some smoothed representation of the population state and since they look only at the 
subset of the population states that remain after the effects of all too bumpy initial 
conditions have worn off. Yet this space is still sufficiently large that a meaningful 
stability theory can be built on it.  
 The fact that the PDE formalism cannot be considered mathematically fully sound 
in practice detracts but little from the papers seemingly based on that formalism, for these 
actually never use the formalism in the form in which they present it. For example, they 
use numerical techniques like the escalator box-car train for the following of population 
trajectories over time (de Roos 1988, 1997; de Roos & Metz 1991; de Roos et al. 1992), 
which is eminently compatible with the delay equation formalism (but for the 
representation of the inoculum which however enters in the main scheme in a compatible 
way, as an influence on the resource dynamics and a birth stream), or they formally 
calculate a characteristic equation, which can be seen to be the same as they would have 
gotten from the delay equation formalism, except that they move in a different order 
through the various calculation steps. (More in particular, a formal integration along 
characteristics, which one can do either in the PDE or after a few of the standard steps for 
arriving at a characteristic equation, to wit inserting exponential test solutions into the 
equation and separating terms, leads precisely to the ingredients of the delay equation 
formalism, as this integration is no more than the following of individuals over their lives 
from which the latter formalism is derived in a direct manner. However, beware: handling 
discontinuities in the coefficient functions can be rather tricky in the PDE formalism. 
Here the delay equation formalism proves its mettle also for practical calculations.) 
 This ends the exposition of the technical mathematical problems and ways to 
overcome them. For a finale let us take one last look at how the various model structures 
connect to real ecology. We seemingly failed to take account of the spatial extent of 
populations. In principle this can be remedied by taking space as extra i-state variable. In 
the delay equation formalism space would come in as an additional component of the 
birth state. So in principle not much changes. However, practically there are two 
problems. One is that in the general case it is no longer possible to derive a characteristic 
equation. Only for particular simple shapes of the spatial domain (amenable to a 
description with a separable coordinate system) it may be possible to calculate a so-called 
dispersion relation, which in essence fulfils the same role. The second difficulty is that 
movement is space is generally modelled as random. In the simplest case where we have 
only a finite number of locations each supporting a well mixed population, calculations 
for random movements, similar to those for the deterministic movements of the i-state 
that we considered so far, probably are rather painless, but at the time of writing even that 
work still has to be done.  
 A further lack of realism is that we only considered a single species in isolation, but 
for its dependency on a dynamical food source. The general existence and uniqueness 
results in Diekmann et al. (2001) immediately apply to the multi-species case. We 
already indicated how the calculation procedures extend in the case where the other 
species can be represented as scalars, similar to the resource in our “single” species 
model. For more than one structured species we may expect the calculations to go along 



 

14 

similar lines, provided the number of interaction variables can be kept finite. However, 
the work needed to get anywhere useful increases very fast with every increase in model 
complexity. 
 In summary, in principle the ideas proposed in Sections 2 and 3 allow a fair amount 
of extension. In practice, it is for the time being probably better first to simplify the 
models considerably before even asking your local mathematician to work on them, as 
also mathematicians have to learn their trade by upping the complexity of the problems 
they work on in small steps.  
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