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Abstract1

The analysis of a simple model shows that exploitation of fish stocks can entrain in the long run the sub-2

stantial decline or even the collapse of the stock, as well as difficulties in stock recovery, loss of fishery3

resilience, and reduction of the mean fish size. The results are in agreement with numerous observations,4

even though they are obtained with a simple model in which the harvesting fleet and the fish stock are con-5

sidered as unstructured predator and prey. The study is carried out for the typical case of fleet dimension6

not too sensitive to the year-to-year fluctuations of the stock and assuming that the sole cause of evolution7

is technological innovation. The analysis is performed by means of Adaptive Dynamics, an approach born8

in theoretical biology which is used here in the context of technological change. Although the results are9

qualitatively consistent with those obtained long ago through the principles of bioeconomics, it is fair to10

stress that the underlying assumptions are different. In fact, in the bioeconomic approach fleet technology11

does not evolve and fishing effort varies to produce economic optimization, while in the Adaptive Dynamics12

approach technological innovation is the key driver. The paper is purely theoretical and the proposed model13

can hardly be tuned on any real fishery. No practical guidelines for managers can therefore be drawn, if not14

the general conclusion that long-term sustainability of exploited fish stocks can only be achieved if strategic15

parameters influencing technological change are kept under strict control.16

17

Key words: Adaptive Dynamics, bifurcation analysis, collapse of fish stocks, fish body size, fishery re-18

silience, technological innovation.19
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1 Introduction1

The history of commercial fisheries reveals that many, if not all, exploited fish stocks enter, sooner or2

later, a phase of deep crisis. In particular, the available data (see, for example, the Ransom Myers’ Stock3

Recruitment Database) point out the following five general facts.4

(i) Stock abundances decline over time. Perhaps the best known example is the case of Atlantic cod,5

a species that supported one of the largest and economically most important fisheries throughout6

the North Atlantic for centuries, and declined more than 90%. But the problem is very general, as7

ascertained by Hutchings and Reynolds (2004), who have studied 230 populations and found a median8

reduction of 83% in breeding populations size from known historic levels.9

(ii) Stocks can collapse. The continuous decline of stock abundances is often exacerbated during short10

periods of time (years, decades) and leads to very low abundances or to extinction. This has obvious11

social and economic implications, but also profound indirect ecosystem effects involving the entire12

food chain (Jackson et al., 2001; Bellwood et al., 2004; Hutchings and Reynolds, 2004; Scheffer et al.,13

2005).14

(iii) Recovery after depletion is slow. Historical data indicate that the recovery of a stock after severe15

depletion is often very slow and not always guaranteed. The analysis suggests that recovery is re-16

lated to fishing, taxonomic affiliation, habitat, and life history, with fishing being the dominant factor17

(Hutchings and Reynolds, 2004).18

(iv) Fisheries become fragile. The dynamics of harvested stocks depend upon available resources and19

fishing pressure that both evolve over time. Limited though significant evidence (Anderson et al.,20

2008) indicates that stocks gradually become less resilient when fishing pressure increases. This21

means that small demographic fluctuations and/or small accidental environmental perturbations can22

easily trigger a temporary depletion of the stock, followed by a slow recovery.23

(v) Body size decreases. The best example is again that of Atlantic cod (see, however, Jørgensen et al.,24

2007, Table S1, and Hutchings and Reynolds, 2008, Table 1, for other species), for which archaeo-25

logical records and recent fishery data in the coastal Gulf of Maine show an impressive reduction of26

body length (from 100 to 20 cm today, see Fig. 2 in Jackson et al., 2001). More precisely, a limited27
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decay, over 5000 years, certainly associated with the long-term adaptation to harvesting and other se-28

lective pressures driven by genetic mutations, is followed by a more relevant decay occurred in the last29

decades, i.e., at demographic timescale, and most likely due to a strong harvesting pressure reshaping30

the size distribution of the stock.31

Moreover, specifically organized field surveys and data analysis (Hilborn and Walters, 1992; Barot et al.,32

2004a,b; Olsen et al., 2004) focused on the age, stage, and size structures of exploited fish stocks, and33

showed remarkable trends of related life-history traits (in particular, the so-called maturation reaction norm).34

Here, however, we show that facts (i)–(v) can be derived without making explicit reference to the structural35

properties describing the life course of individuals. We therefore consider a simple model with unstructured36

fish populations, i.e., composed of identical (adult) individuals, and do not discuss structurally-specific37

empirical observations.38

Properties (i)–(v) may result from various mechanisms. Long-term response of ecosystems to climatic39

variations is the first that comes to mind. However, this mechanism would not explain why stocks have40

a systematic and perverse tendency to deteriorate over time. It is therefore obvious to conjecture that the41

selective pressure induced by harvesting is the real key factor. Selective pressures control the long-term42

phenotypic evolution of the stock driven by genetic mutations, as well as the technological change of the43

fleet driven by innovation processes. This naturally calls for studies in which the two compartments of44

the fishery (the stock and the fleet) are characterized by coevolving (biological and technological) traits.45

Of course, the analysis of the two extreme cases with models in which either technological innovations or46

genetic mutations are inhibited is more simple. This is why the studies carried out so far (see, e.g., Ernande47

et al., 2004; de Roos et al., 2006) refer to models in which the technological level of the fleet is assumed48

constant (see Heino, 1998, for a naive exception, where the fishing strategy is updated only after biological49

traits halt at evolutionary equilibria). Here we follow the opposite option, by focusing on a timescale (years,50

decades) on which genetic mutations can be neglected, while technological innovations play a significant51

role. This is justified by the impressive improvement of the fishing technology that occurred in the last52

decades (Salthaug, 2001; Hannesson, 2002; Walters and Martell, 2004).53

The model of the fishery we consider is a so-called minimal model: it is fully deterministic (i.e., there54

are no sources of uncertainty) and both the stock and the fleet have no explicit structure describing the life55

course of individuals (fish and boats). Moreover, the model is not specific on a number of significant details56
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characterizing real fisheries, such as the species under exploitation, the geographic location, the fishing57

gears, and the management policy. The model is therefore not very tight to reality and cannot be used to58

draw quantitative predictions. Nevertheless, it is interesting because, being abstract, it confirms that the five59

facts listed above are indeed general.60

The analysis is performed through the Adaptive Dynamics (AD) approach (Metz et al., 1996; Geritz61

et al., 1997, 1998) and, more precisely, through the so-called AD canonical equation (Dieckmann and Law,62

1996, see also the recent book by Dercole and Rinaldi, 2008) that describes the long-term evolution of an63

adaptive trait by means of an ordinary differential equation (ODE). The approach finds its origin in the study64

of mutation and selection processes in biology and considers rare mutations of small effects. The novelty,65

here, is that the AD approach is used to describe the evolution of the technological level of the fleet. In other66

words, existing boats in the fleet compete with innovative ones, resulting in a continuous evolution of the67

underlying technological characteristics of successful boats.68

2 Outline of the approach69

Technological change is the result of innovation and competition processes (Ziman, 2000). In all context70

(biological, social, economic,. . . ) an innovation is a change, in one or more of the features characterizing71

the interacting agents of the evolving system, with respect to the current composition of the system. In the72

technological context, innovations are associated with changes in the technological level of the involved73

products. If the technological level of a product is identified with, e.g., the number of its technological com-74

ponents (or, more in general, with the sum of suitable weights associated to each component), all innovations75

corresponding to the simple addition of an extra component (the most common case in practice) are asso-76

ciated with an increase of technological level. However, the addition of an extra component which entrains77

the elimination of other components can also lead to innovative products with lower technological content.78

Moreover, new products obtained from the present ones by simply eliminating one or more components are79

also innovative (by definition), though such kind of innovations are not associated with any technological80

novelty and can give rise to technological solutions already adopted in the past.81

We imagine that, in the absence of technological change, boats are all identical and that technological82

innovations appears from time to time, so that just after an innovation the fleet has two components: B83

so-called resident boats with a technological level x and B ′ innovative boats with the technological level84
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x′. By contrast, no phenotypic mutations occur in the fish stock. Under these assumptions, the short-term85

interactions between the stock F and the two components of the fleet B and B ′ are described by three ODEs86

of the form87

Ḟ = f(F,B,B ′, x, x′), (1a)

Ḃ = B g(F,B,B ′, x, x′), (1b)

Ḃ′ = B′g(F,B′, B, x′, x) (1c)

(see next section for details), where F is a scalar if the stock is monomorphic or a vector if the stock is88

polymorphic (Fi, i = 1, . . . , N are the abundances of each morph). Model (1) is a prey-predator model89

with one prey (F ) and two predators (B and B ′) competing for the same resource. If x′ = x, all boats are90

identical, so that the fleet is homogeneous and its short-term interactions with the stock are described by91

Ḟ = f(F,B, 0, x, x), (2a)

Ḃ = B g(F,B, 0, x, x), (2b)

where B is the total number of boats of the fleet. We assume that in large regions of parameter space, model92

(2) has a unique stable equilibrium (F̄ (x), B̄(x)), as is the case for the models described in Sects. 3 and 4.93

If two slightly different technologies x and x′ are both associated with stable equilibria, the principle94

of competitive exclusion predicts that one of the two technologies prevails on the other, so that the final95

outcome is a fleet with a unique technological level. That is to say, x remains unchanged if the innovative96

trait looses the competition, while in the opposite case x is substituted by x ′. If innovations are sufficiently97

rare to guarantee that the substitutions x → x′ are fully realized, the technological level varies through a98

series of small steps. Under suitable hypothesis on the innovation process, the dynamics of the (expected)99

technological level are described, on a longer, say evolutionary, timescale, by the following ODE:100

ẋ =
1

2
µσ2B̄(x)

∂

∂x′
g(F̄ (x), 0, B̄(x), x′, x)

∣

∣

∣

∣

x′=x

, (3)

where µ and σ2 measure the frequency and variance of the innovations and g(F̄ (x), 0, B̄(x), x′, x) is the101

initial growth rate (per boat) of the innovative component of the fleet. Equation (3) is the so-called AD102
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canonical equation (Dieckmann and Law, 1996; Dercole and Rinaldi, 2008). It is derived from the short-term103

model (1) and from the statistics µ and σ2 of the innovation process, and predicts the long-term dynamics104

of the technological level x.105

By contrast, in the case of a radical innovation (a significant novelty, or a relevant dismission of technolo-106

gies considered ineffective and/or too costly), namely when x and x′ are remarkably different, the outcome107

of the competition must be established by means of model (1). Once the new equilibrium has been deter-108

mined, the AD canonical equation describes the next smooth phase driven by innovations of small effects.109

In other words, AD describes technological change as a continuous process driven by marginal innovations110

punctuated, from time to time, by major breakthroughs. Note that radical innovations can penetrate without111

substituting the resident technology: the innovation can be only temporary but imply the switch of the res-112

ident technology to a new equilibrium; or the two technologies, x and x′ can coexist, with the consequent113

diversification of the fleet; or both technologies can disappear, marking the end of the fishery. The outcome114

of the competition depends on the global structure of model (1) and cannot be a priori predicted.115

Interestingly, AD shows that the above phenomena can be triggered also by marginal innovations. In116

fact, when the evolution of x slows down while approaching a value x̄ annihilating the right-hand side of117

(3), a deeper investigation (Geritz et al., 1997, 1998; Dercole and Rinaldi, 2008) shows that a branching118

phenomenon can occur: a small innovation gives rise to a new component of the fleet which does not have119

the power of outcompeting the old one but at the same time is not outcompeted. Moreover, subsequent in-120

novations in the two coexisting components lead to their technological diversification. This means that once121

the technological level x̄ is reached (or almost reached), it is possible that the fleet splits into two different122

fleets, that are initially very similar but then diversify. In particular, one should expect that branching could123

more easily occur when the stock is polymorphic, because in such a case the existence of different fleets124

exploiting the characteristics of different components of the stock would not be in contrast with the principle125

of competitive exclusion. The branching conditions are not reported here, because they are not used in the126

discussion that follows.127

While if x varies in accordance with (3) and reaches in finite time a value x∗ at which the equilibrium128

(F̄ (x), B̄(x)) looses stability, i.e., a bifurcation of the resident model (2), a totally different phenomenon129

occurs. In fact, when the technological level x approaches x∗ the fishery becomes less resilient, in the130

sense that small demographic fluctuations around the equilibrium and/or small environmental perturbations131

can have relevant consequences for a very long time. Moreover, as shown in the next section, the low132
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sensitivity of the fleet dimension (B + B ′) to the high-frequency (year-to-year) fluctuations of the fish stock133

(due to many socio-economic factors, like the public or private support to fisheries and the typical inertia of134

fishermen in giving up with their job when stocks are scarce) can easily produce very long periods of low135

abundance which can hardly be distinguished from stock collapses.136

3 The case of monomorphic stocks137

Although fish stocks are always characterized by a certain degree of genetic diversity, we analyze in this138

section the extreme case of monomorphic stocks. This simplifies the model and minimizes the computational139

effort needed to derive the first four properties discussed in the Introduction.140

The specific model (1) on which we focus from now on is a variant of the most standard prey-predator141

model (Rosenzweig and MacArthur, 1963), which is here adapted to the case of managed fisheries. The142

equations are143

Ḟ = (b − d)F − γ0F
2 − E(F )H(F,B,B ′, x)B − E(F )H(F,B ′, B, x′)B′, (4a)

Ḃ =
r

v(x)

[

pw E(F )H(F,B,B ′, x) − c0

(

1 −
δe(B + B′)

Be + B + B′

)]

B − DB, (4b)

Ḃ′ =
r

v(x′)

[

pw E(F )H(F,B ′, B, x′) − c0

(

1 −
δe(B

′ + B)

Be + B′ + B

)]

B′− DB′, (4c)

where144

H(F,B,B′, x) =
a(x)F 2

1 + a(x)h(x)F 2 − δc(B + B′)/(Bc + B + B′)

is the so-called functional response, namely the harvest rate per boat, while all other new symbols represent145

positive demographic, environmental, and economic parameters, some of which are assumed to depend146

upon the technological levels x and x′ of the resident and innovative boats. In order of appearance: b and147

d are basal birth and death rate of the fish population and γ0 measures intraspecific competition, so that148

K = (b − d)/γ0 is the carrying capacity of the unexploited stock; E(F ) describes the exploitation policy,149

which aims at preventing fishing if the stock is below a threshold abundance F0 (see the first equation below150

and the related comment); r is the fraction of the net income (the term within brackets in eqs. (4b) and (4c))151

which is reinvested into new resident and innovative boats of value v(x) and v(x ′); p is the price (per unit152

weight) at which all catches are sold and w is the fish body weight; c0 is the maintenance cost of a single boat153
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in the absence of economies of scale, that are taken into account by a discount δe realized (with sensitivity154

measured by 1/Be) when the fleet dimension (B + B ′) is large; 1/D is the (average) life time of a boat;155

a(x) is the harvest attack rate in the absence of cooperation and coordination among the boats of the fleet,156

namely a(x)F 2 is the harvest rate realized when both the stock and the fleet are scarce; if no distinction157

is made between resident and innovative boats, and the major effect of cooperation is to reduce the time158

needed to locate the stock by a factor at most equal to δc when the fleet is large, then the realized attack159

rate is a(x)
/(

1 − δc(B + B′)/(Bc + B + B′)
)

, where 1/Bc controls the sensitivity of the searching time160

with respect to the fleet dimension; h(x) is the handling time per fish, responsible of the saturation of the161

functional response.162

As for the dependence upon the resident and innovative technological levels x and x ′, many are the163

possible choices. Here we like to make general assumptions, without referring to a particular species and/or164

fishery, and limit both the number of parameters influenced by the technology and the number of (second165

level) parameters which control such influences. Our assumptions are listed below.166

– The value of the boat v(x) increases with x more than linearly, starting from a reference value v0167

corresponding to the technology x = 0 in use at the beginning of the exploitation. This sets a price to168

be paid to be technologically more advanced and technically avoids unrealistically unbounded results.169

– The attack rate a(x) increases with x, capturing the higher harvesting power of a more technologically170

advanced boat, but saturates for large x, describing the fact that no technology can realize extremely171

aggressive harvesting rates.172

– In line with the last choice, the handling time h(x) is decreasing (and saturating) with x, capturing173

the technological improvements in the handling and/or transportation of the catch.174

– The specific functions we use in the numerical analysis are the following:175

E(F ) =
F e

F e
0 + F e , e > 1,

v(x) = v0 (1 + (x/xv)
v1) , v1 > 1,

a(x) = a0

(

1 +
δa x/xa

1 + x/xa

)

,

h(x) = h0

(

1 −
δh x/xh

1 + x/xh

)

.
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Note that, strictly speaking, function E(F ) does not prevent fishing when F < F0, but well-approximates176

the discontinuous function E(F ) = 0 for F < F0, E(F ) = 1 for F ≥ F0, if e is sufficiently large177

(e = 4 in all our computations). The choice of a smooth (though sharp) E(F ) is obligate if one wants178

to rely on the standard methods for bifurcation analysis.179

In principle, all parameters should be fixed at different values for tuning the model on different fleets and180

stocks. Here we do not constrain the parameters since, as shown below, our results are definitely robust with181

respect to parameter variations. There is, however, one exception, namely that the two parameters r/v0 and182

D entering the fleet equation must be small. This constraint is introduced in order to guarantee that the fleet183

dimension varies slowly in time in comparison with the stock abundance, as a consequence of the frequent184

non existence of alternative jobs for fishermen and the use of subsidies in economically stressed fisheries.185

The constraint takes also into account that depleted species continue to be caught as bycatch in other fisheries186

(Alverson et al., 1994) and that closed fisheries tend to be reopened at the first sign of population increase187

(Hutchings and Reynolds, 2004).188

Model (4) contains four major differences with respect to the standard Rosenzweig-MacArthur model:189

the exploitation policy E(F ) (equal to 1 in the standard model) that can be varied by a fishing agency, the190

type of the functional response (III instead of II) that takes into account that fish have safe niches where the191

boats cannot operate, the cooperation that is particularly important in those fisheries where fishing efficiency192

is enhanced when properly coordinated, and the economies of scale that are relevant in fisheries where193

boat maintenance, catch handling, and transportation of the terminal products are globally shared. In the194

following we present the results obtained with model (4) because the phenomena justifying the four variants195

are often present in commercial fisheries. However, the results remain qualitatively the same even if some196

or all of the variants are ignored.197

We are now at the point of writing the AD canonical equation (3) but, unfortunately, the equilibrium198

(F̄ (x), B̄(x)) cannot be computed explicitly. This is not a serious obstacle, because, as shown in Ap-199

pendix A, it is possible to associate to the differential equation (3) a set of two algebraic relationships defin-200

ing the equilibrium and then solve the differential-algebraic system of equations to compute the evolution201

of the technological level x.202

As described in the previous section, it is also necessary to perform a bifurcation analysis of the resident203

model (2), at least with respect to parameter x. This can be effectively done by using continuation methods204
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(see, e.g., Allgower and Georg, 1990, or Kuznetsov, 2004) and software oriented to the bifurcation analysis205

of dynamical systems (here we have used MATCONT, see Dhooge et al., 2002). This has already been done206

for prey-predator models similar to model (4) (Muratori and Rinaldi, 1989; Kuznetsov et al., 1995; Rinaldi207

and Gragnani, 2004) and is therefore not reported here. Figure 1 shows the state portraits of model (2)208

for two slightly different values of x, one smaller and one greater than a bifurcation value x∗. Before the209

bifurcation (Fig. 1a) there is a unique stable equilibrium (F̄ , B̄) and perturbed trajectories (see the trajectory210

starting from point 1) can go very far from the equilibrium before returning to it. This feature is not due to211

the particular parameter setting used to produce Fig. 1 but is rather generic, since it is a consequence of the212

slow-fast nature of the system (see Rinaldi and Scheffer, 2000). In fact, since the fleet dimension can vary213

only very slowly, the stock can decrease quite consistently in a relatively short time while the boats remain214

practically constant (segment 1–2 of the trajectory); then the stock can remain scarce for a very long time215

during which the boats slowly abandon the fishery (segment 2–3). Thus, before the bifurcation, the fishery216

has low resilience, since even small perturbations from the equilibrium (from (F̄ , B̄) to point 1) can give217

rise to very long transients perceived as collapses of the stock. After the bifurcation (Fig. 1b) the equilibrium218

(F̄ , B̄) is unstable and trajectories tend toward a limit cycle which, in the case of slow-fast systems, is very219

large and characterized by a fast collapse of the stock (segment 1–2) followed by a long phase of slow decay220

of the fleet (segment 2–3).221

The bifurcation described in Fig. 1 is known as Hopf bifurcation and describes the birth of a limit cycle222

associated with the change of stability of an equilibrium (see, e.g., Strogatz, 1994, or Kuznetsov, 2004).223

Model (2) has many other bifurcations (see Kuznetsov et al., 1995, for a similar case). In particular, the224

so-called transcritical bifurcation characterizes the collision of the equilibrium (F̄ , B̄) with the equilibrium225

(K, 0). The two equilibria exchange stability through the bifurcation, so that after the bifurcation the trajec-226

tories of model (2) tend toward (K, 0), i.e., the fleet goes extinct because economically unsustainable and227

the stock remains unexploited.228

Other bifurcations involve the limit cycle, but they are of no practical interest. The reason is that the229

dynamics predicted by model (2) after the collapse of the stock and the consequent decay of the fleet (i.e.,230

after point 3 in both cases of Fig. 1) cannot be interpreted in terms of the real fishery. The model simply231

predicts the end of the fishery. Whether the fish stock will recover and the same or a new fishery will start232

in the future is beyond the scope of the model predictions. In particular, Fig. 1b should not be interpreted233

as a cyclic predator-prey chase between the harvesting fleet and the exploited stock. For this reason, in the234
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following we consider only technological levels x for which the equilibrium (F̄ , B̄) is stable, and we focus235

only on its relevant bifurcations, namely the Hopf and the transcritical.236

We have systematically performed a two-dimensional bifurcation analysis with respect to x and any237

other parameter, say qi, of model (2), thus obtaining a Hopf and a transcritical bifurcation curve in each238

plane (qi, x). In the region between the two curves, the equilibrium (F̄ , B̄) is positive and stable, so that239

technological change takes place. In this region we have also drawn the constant solution x̄(q i) of the240

canonical equation (3). The typical result is shown in Fig. 2 for two strategic parameters qi, namely the241

attack rate a0 and the protectionism threshold F0. The figure points out a number of general and interesting242

properties. First, the sign of ẋ in (3) is positive at low values of the technological level x and negative243

at high values. This means that fisheries starting with poor primitive technologies can only improve their244

technological level, as indeed it occurred historically. Of course, the negative trend of technological change245

represents fisheries starting from too high technological levels. Second, if the attack rate is sufficiently246

low or the protectionism is sufficiently high, the technological level of the fleet tends toward the equilibrium247

x̄(qi), which, however, is associated to an equilibrium (F̄ , B̄) with low resilience if point x̄(qi) is close to the248

Hopf bifurcation curve. By contrast, if the attack rate is high or protectionism is low, the technological level249

x evolves toward the value x∗ at which stock and fleet in principle start oscillating with large amplitudes250

and, in practice, collapse. Thus, the final message is that it is rather difficult to guarantee the sustainability251

of a commercial fishery unless strategic control parameters, like attack rate and protectionism, are kept at252

very safe levels.253

Two other properties also emerge from our analysis. The first is that technological change can easily254

force a fishery to approach the edge of its most complex dynamic behavior (see Fig. 2). This fact seems255

to complement earlier findings about the possibility that mutation and selection processes force ecosystems256

to evolve toward the edge of chaos (Ferrière and Gatto, 1993; Ellner and Turchin, 1995; Dercole and Ri-257

naldi, 2008). The second is essentially a mathematical curiosity, namely the fact that the curve x̄(q i) of the258

equilibria of the canonical equation (see Fig. 2) starts from the extreme point of the Hopf bifurcation curve259

and depends only very weakly upon the parameter qi. Although this has only been observed numerically, it260

implies that technological change always erodes the fishery resilience, possibly up to its collapse, by driving261

model (2) close to the Hopf bifurcation.262

Up to now, we have shown properties (ii), (iii), and (iv) mentioned in the Introduction (property (v)263

makes no sense in the case of monomorphic stocks) so that it only remains to check that technological264
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change implies the decline of the stock abundance. This has been done by systematically drawing in any265

two-dimensional space (qi, x) the curves F̄ (qi, x) = const. The result, reported in Fig. 3 for the two cases266

already described in Fig. 2, shows indeed that the technological change predicted by the AD canonical267

equation (3) (see vertical trajectories in Fig. 2) is associated with a decline of the stock abundance F̄ .268

It is interesting to note that the yield Ȳ of the fishery at equilibrium is given by (see eq. 4a)269

Ȳ = (b − d)F̄ − γ0F̄
2,

so that the curves at constant abundance in the space (qi, x) are also curves at constant yield. Moreover,270

∂Ȳ

∂x
= (b − d − 2γ0F̄ )

∂F̄

∂x
,

and the term in parenthesis is negative, unless the equilibrium (F̄ , B̄) is very close to the Hopf bifurcation271

(easy to show geometrically by using the so-called isoclines of model (2)). Thus, technological change is272

associated with an increase of the yield, suddenly interrupted by the collapse of the stock, as already argued273

long ago (Clark, 1976, 1990) through bioeconomic principles.274

4 The case of polymorphic stocks275

We now consider the case of a single species stock composed of fish with diversified genetic components276

and focus our attention on the adult body weight as a particular phenotypic trait. Conceptually, we should277

use a polymorphic model with an extremely high number of morphs (i.e., components of the vector F each278

associated with different body weights) or, more precisely, study the dynamics of a continuous phenotypic279

distribution. Since this would be very difficult, we limit our analysis to the case in which the vector F280

has a limited number of components F1, . . . , FN corresponding to different body weights w1, . . . , wN . Of281

course, we must avoid that sexual reproduction introduces new morphs. This is possible through a simple282

artifact, namely by assuming that newborns from a mother of type j and a father of type k can only be of283

type i = 1, . . . , N , with a bigger fraction φi
jk when the weight wi is close to the mean of the weights of the284

parents. The geometric mean √
wjwk is conceptually more appropriate than the algebraic one (wj + wk)/2285

since the weight is a positive variable, but the results obtained with the two alternative assumptions are286
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almost equivalent. Technically, the fraction φi
jk is log-normally distributed as287

φi
jk =

exp
(

−
(

log
(

wi/
√

wjwk

))2
/

σ2
)

N
∑

l=1

exp
(

−
(

log
(

wl/
√

wjwk

))2
/

σ2
)

,

where σ2 plays the role of heritability in quantitative genetics (Bulmer, 1980; Falconer, 1989).288

The model we use is a simple extension of model (4) where we take into account that reproduction289

requires the encounter of two mates and that newborns are distributed among the stock components as290

explained above:291

Ḟi =
N

∑

j,k=1

φi
jk

mbFjFk

1 + mS
− dFi −

N
∑

j=1

γ(wi, wj)FiFj

− E(S)Hi(F,w,B,B ′, x)B − E(S)Hi(F,w,B′, B, x′)B′, (5a)

Ḃ =
r

v(x)



pE(S)

N
∑

j=1

wjHj(F,w,B,B ′, x) − c0

(

1 −
δe(B + B′)

Be + B + B′

)



B − DB, (5b)

Ḃ′ =
r

v(x′)



pE(S)

N
∑

j=1

wjHj(F,w,B′, B, x′) − c0

(

1 −
δe(B

′ + B)

Be + B′ + B

)



B′− DB′. (5c)

Here S = F1 + · · · + FN is the total stock abundance,292

Hi(F,w,B,B ′, x) =
a(wi, x)FiS

1 +

N
∑

k=1

a(wk, x)h(wk, x)FkS − δc(B + B′)/(Bc + B + B′)

is the functional response specifying the harvest rate (per boat) of fish of type i, the new parameter m takes293

into account the searching and handling of mates, so that the birth rate of (j, k)-matings is quadratic at low294

abundances, while all other parameters are as in model (4).295

As for the dependence upon fish size, our assumptions are listed below.296

– The intraspecific competition within the stock is best described by the nondimensional competition297

function γ(wi, wj)/γ(wi, wi) (MacArthur, 1969, 1970) that we fix at 1 in order to describe the sim-298

plest case of symmetric competition. We therefore have γ(wi, wj) = γ(wi, wi), i.e., γ only depends299

on its first argument. Moreover, we assume γ(wi, wi) to be U-shaped with a minimum γ0 at wi = w0.300
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– The attack rate a(w, x) increases with w and is relatively low up to a threshold size s and relatively301

high above the threshold. This describes the selectivity of the fishing gears.302

– The handling time h(w, x) is increasing with the size w of the fish to be handled, but less than linearly.303

This takes into account that handling two fishes of equal size requires more effort than handling one304

fish of double size.305

– The specific functions we use are the following:306

γ(wi, wj) =
γ0

2

[

(

wi

w0

)2

+

(

w0

wi

)2
]

,

a(w, x) = a0
wα

sα + wα

(

1 +
δa x/xa

1 + x/xa

)

, α > 1,

h(w, x) = h0

(

w

w0

)h1
(

1 −
δh x/xh

1 + x/xh

)

, h1 < 1.

Note that in the absence of harvesting, intraspecific competition is the only selective pressure acting307

on the stock, so that w0 represents the fish size to which an unexploited stock would have evolved. In308

particular, we center our polymorphic distribution around w0, by considering a morph in w0 itself, plus309

pairs of morphs in ρw0 and w0/ρ for various values of the size ratio ρ (results are presented for N = 3, but310

remain qualitatively similar for N = 5, 7,. . . ).311

As done in the previous section, one can extract from model (5) the corresponding resident model (2),312

characterize its equilibrium (F̄ (x), B̄(x)), and derive the corresponding AD canonical equation (3) (see313

Appendix B). Also the bifurcation analysis of model (2) is quite similar to the one performed in the case of314

monomorphic stocks. In particular, the first bifurcation one encounters while increasing the technological315

level x is still a Hopf bifurcation at which the stable equilibrium (F̄ , B̄) is substituted by a stable cycle316

characterized by very long periods of low stock abundance during which the fleet dimension slowly decays.317

The results of the analysis are not presented because qualitatively very similar to those discussed in the318

previous section.319

The analysis of model (5) and its associated canonical equation allows one to see how the mean weight320

of the fish321

w =

N
∑

i=1

F̄i(x)wi

/

S̄(x), S̄(x) = F̄1(x) + · · · + F̄N (x),
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varies with technological change. In fact, the curves at constant mean weight w can be drawn in any two-322

dimensional space (qi, x), as shown in Fig. 4 for the same parameter settings used in Figs. 2 and 3, and the323

result is fully consistent with property (v) in the Introduction, since for any value of the parameter q i the324

mean weight is minimum for x = x̄(qi).325

5 Conclusions and extensions326

We have shown in this paper that the exploitation of fish stocks can entrain in the long run the substantial327

decline or even the collapse of the stock, difficulties in stock recovery, loss of fishery resilience, and re-328

duction of the mean fish size. The study is carried out for the common case in which the dimension of the329

harvesting fleet is almost insensitive to the year-to-year fluctuations of the stock. This is a consequence of330

the typical inertia of fishermen, due to lack of alternatives and/or public or private subsidies, and technically331

allowed us to use the simple geometric arguments available for the study of slow-fast processes (Rinaldi and332

Scheffer, 2000). The results are interesting, not only because in agreement with numerous observations, but333

also because they have been obtained with a simple model of a managed fishery, in which fleet and stock334

are considered as (slow) predator and (fast) prey, and because the sole cause of evolution is technological335

innovation. From a formal point of view, the analysis has been performed by means of Adaptive Dynamics336

(Dieckmann and Law, 1996; Metz et al., 1996; Geritz et al., 1997, 1998; Dercole and Rinaldi, 2008), an337

approach born in theoretical biology which, however, is used here in the context of technological change.338

Although the results are known to all scientists as well as practitioners in the field (Hannesson, 2002;339

Walters and Martell, 2004), and are qualitatively consistent with those obtained long ago through the prin-340

ciples of bioeconomics (Clark, 1976, 1990), it is fair to stress that the underlying assumptions are different.341

In fact, in the bioeconomic approach fleet technology either does not evolve or is assumed to increase as342

an exogenously established fact, while the fishing effort is adjusted to produce economic optimization. By343

contrast, in the AD approach, technological change is the endogenous result of innovation and competition344

processes.345

The analysis shows that the long-term sustainability of exploited fish stocks can be achieved only if346

strategic parameters influencing technological change are kept under strict control. This emphasizes the role347

that fishing agencies can have in protecting exploited fish stocks (Jørgensen et al., 2007). However, it is348

fair to repeat that the value of the paper is purely conceptual, since our model can hardly be tuned on any349
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real fishery. From one side this is a virtue of our study, because being abstract, it shows that the drawn350

conclusions hold in general. But from the practical side, no directly applicable guidelines for managers can351

be suggested.352

The present study can be extended in various directions but two of them are particularly worth mention-353

ing. The first consists in repeating the analysis with more detailed models in order to derive the most likely354

consequences of technological change on the age and size structures of the stock, and in particular on its355

maturation reaction norm (Barot et al., 2004a,b; Ernande and Dieckmann, 2004; Ernande et al., 2004; Olsen356

et al., 2004; de Roos et al., 2006). The second extension is concerned with the possibility of fleet branching,357

which, intuitively speaking, could be conceived when fish are polymorphic or have different stages of rele-358

vant economic value requiring different fishing technologies. Quite interesting could be, in this context, the359

study of coevolution (biological and technological) to see if a fishery initially monomorphic (in the fish and360

in the fleet) can have a first branching in the fish stock entraining a branching in the fleet, and if this process361

can be repeated, so that through an avalanche of branching pairs the fishery might become highly diversified,362

both biologically and technologically. A study like this could undoubtedly cast fisheries diversity in a nice363

theoretical frame.364
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Appendix A1

The AD canonical equation (3) corresponding to model (4) reads2

ẋ = B̄
∂

∂x′

(

r

v(x′)

[

pw E(F̄ )H(F̄ , 0, B̄, x′) − c0

(

1 −
δeB̄

Be + B̄

)]

− D

)∣

∣

∣

∣

x′=x

= B̄
r

v(x)

[

pw E(F̄ )

(

Hx(F̄ , 0, B̄, x) −
H(F̄ , 0, B̄, x)vx(x)

v(x)

)

+ c0

(

1 −
δeB̄

Be + B̄

)

vx(x)

v(x)

]

,

(A1a)

where3

Hx(F̄ , 0, B̄, x) =
ax(x)F̄ 2

(

1 − δcB̄/(Bc + B̄)
)

− a(x)2hx(x)F̄ 4

(

1 + a(x)h(x)F̄ 2 − δcB̄/(Bc + B̄)
)2 ,

the x-subscript denotes differentiation with respect to x, the term 1/2µσ2 in (3) is set to 1, and the equilib-4

rium (F̄ , B̄) is defined by the positive solution of the following two algebraic equations:5

0 = (b − d) − γ0F̄ − E(F̄ )
a(x)F̄

1 + a(x)h(x)F̄ 2 − δcB̄/(Bc + B̄)
B̄, (A1b)

0 =
r

v(x)

[

pw E(F̄ )H(F̄ , B̄, 0, x) − c0

(

1 −
δeB̄

Be + B̄

)]

− D. (A1c)

Equations (A1) form the differential-algebraic system whose equilibrium (x̄, F̄ , B̄) has been continued with6

respect to all model parameters in order to produce results like those reported in Figs. 2 and 3.7
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Appendix B1

The AD canonical equation (3) corresponding to model (5) reads2

ẋ = B̄
∂

∂x′

(

r

v(x′)

[

pE(S̄)

N
∑

j=1

wjHj(F̄ , w, 0, B̄, x′) − c0

(

1 −
δeB̄

Be + B̄

)]

− D

)
∣

∣

∣

∣

x′=x

= B̄
r

v(x)

[

pE(S̄)
N

∑

j=1

wj

(

Hj x(F̄ , w, 0, B̄, x) −
Hj(F̄ , w, 0, B̄, x)vx(x)

v(x)

)

+c0

(

1−
δeB̄

Be + B̄

)

vx(x)

v(x)

]

,

(B1a)

where3

Hi x(F̄ , w, 0, B̄, x) =

(

ax(wi, x)F̄iS̄
(

1 − δcB̄/(Bc + B̄)
)

+ F̄iS̄
2

N
∑

k=1

(ax(wi, x)a(wk, x) − a(wi, x)ax(wk, x)) h(wk, x)F̄k

− a(wi, x)F̄iS̄
2

N
∑

k=1

a(wk, x)hx(wk, x)F̄k

)

/

(

1 +

N
∑

k=1

a(wk, x)h(wk, x)F̄kS̄ − δcB̄/(Bc + B̄)

)2

,

S̄ = F̄1 + · · ·+ F̄N , the x-subscript denotes differentiation with respect to x, the term 1/2µσ2 in (3) is set to4

1, and the equilibrium (F̄i, B̄), i = 1, . . . , N , is defined by the positive solution of the following algebraic5

equations:6

0 =

N
∑

j,k=1

φi
jk

mb F̄jF̄k

1 + m S̄
− d F̄i −

N
∑

j=1

γ(wi, wj)F̄iF̄j − E(S̄)Hi(F̄ , w, B̄, 0, x)B̄, (B1b)

0 =
r

v(x)



pE(S̄)

N
∑

j=1

wjHj(F̄ , w, B̄, 0, x) − c0

(

1 −
δeB̄

Be + B̄

)



 − D. (B1c)

Equations (B1) form the differential-algebraic system whose equilibrium (x̄, F̄i, B̄), i = 1, . . . , N , has been7

continued with respect to all model parameters in order to produce results like those reported in Fig. 4.8
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Figure captions1

2

Figure 13

Trajectories of system (2) for the following parameter values: b = 2, d = 1, γ0 = 1, r = 0.1, p = 1,4

w = 1, c0 = 0.2, δe = 0.2, Be = 10, D = 0.00799, δc = 0.2, Bc = 10, F0 = 0.01, e = 4, v0 = 10,5

v1 = 2, xv = 10, a0 = 1000, δa = 0.5, xa = 10, h0 = 1, δh = 0.5, xh = 10. Double arrows indicate fast6

motion. (a) 0.02 = x < x∗ ' 0.0408, the equilibrium (F̄ , B̄) (filled circle) is stable. (b) 0.05 = x > x∗,7

the equilibrium (F̄ , B̄) (empty circle) is unstable and surrounded by a stable limit cycle (thick trajectory).8

9

Figure 210

Hopf and transcritical bifurcation curves H and T of model (2) and equilibrium solution x̄ of the AD11

canonical equation (3) as a function of attack rate a0 (log-scale) (panel a) and protectionism F0 (panel b) (in12

both cases the parameter dependence of x̄ is very weak). Arrows indicate direction of technological change.13

Technological levels between the two branches of the Hopf bifurcation curve (dotted segments) give rise to14

limit cycles in model (2). Other parameter values as in Fig. 1.15

16

Figure 317

Stock abundance F̄ (low=white, large=black) for the two cases examined in Fig. 2.18

19

Figure 420

Mean weight w of the fish (low=white, large=black) in the same spaces considered in Figs. 2 and 3.21

24



0 1

0

0.3

0 1

0

0.3

12

3

(F̄ , B̄)

(b)

fish, F

12

3

(F̄ , B̄)

(a)

fish, F

bo
at

s,
B

Figure 1

25



10 100 1000

0

5.1

0 0.5

0

5.1

te
ch

no
lo

gi
ca

ll
ev

el
,x

protectionism, F0attack rate, a0

x̄

x
∗

x
∗

x̄

(a) (b)
T TH H

Figure 2

26



10 100 1000

0

5.1

 

 

0.4

1

0 0.5

0

5.1

 

 

0.4

1

attack rate, a0

te
ch

no
lo

gi
ca

ll
ev

el
,x

protectionism, F0

st
oc

k
ab

un
da

nc
e,

F̄

T H H T

x̄x̄

Figure 3

27



10 100 1000

0

5.7

 

 

0.8

1.1

0 0.5

0

5.7

 

 

0.8

1.1

attack rate, a0

te
ch

no
lo

gi
ca

ll
ev

el
,x

protectionism, F0

T

HH

T

x̄ x̄

m
ea

n
we

ig
ht

,w

Figure 4

28


	IRfront.pdf
	Fisheries sustainability-Dercole_et_al_ECOMOD.pdf

