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Abstract

Cooperation in joint enterprises poses a social dilemma. How can al-
truistic behaviour be sustained if selfish alternatives provide a higher
payoff? This social dilemma can be overcome by the threat of sanctions.
But a sanctioning system is itself a public good and poses a second-order
social dilemma. In this paper, we show by means of deterministic and
stochastic evolutionary game theory that imitation-driven evolution can
lead to the emergence of cooperation based on punishment, provided the
participation in the joint enterprise is not compulsory. This surprising
result – cooperation can be enforced if participation is voluntary – holds
even in the case of ’strong altruism’, when the benefits of a player’s con-
tribution are reaped by the other participants only.

Keywords: evolutionary game theory; public goods games; cooperation; costly
punishment; social dilemma; strong altruism; voluntary interactions;
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1 Introduction
Team efforts and other instances of ’public good games’ display a social dilemma,
since each participant is better off by not contributing to the public good. If players
maximise their utility in a rational way, or if they simply imitate their successful
co-players, they will all end up by not contributing, and hence by failing to obtain
a collective benefit (Samuelson 1954, Hardin 1968). It is only through positive
or negative incentives directed selectively toward specific individuals in the team
(e.g. by imposing sanctions on cheaters or dispensing rewards to contributors)
that the joint effort can be maintained in the long run (Olson 1965, Ostrom 1990).

But how can the sanctioning system be sustained? It is itself a public good
(Yamagishi 1986). This creates a ’second order social dilemma’. by appealing to
localised interactions (Brandt et al 2003, Nakamaru and Iwasa 2005), group se-
lection (Boyd et al 2003), or the effects of reputation (Sigmund et al 2001, Hauert
et al 2004) and conformism (Henrich and Boyd 2001), the stability of a well-
established system of incentives can be explained under appropriate conditions.
However, the emergence of such a system has long been considered an open prob-
lem (Hammerstein 2003, Gardner and West 2004, Colman 2006, see also Fowler
2005a).

A series of papers (Fowler 2005b, Brandt et al 2006, Hauert et al 2007, Boyd
and Mathew 2007, Hauert et al 2008) has recently attempted to provide a solu-
tion by considering team efforts which are non-compulsory. If players can decide
whether to participate in a joint enterprise or abstain from it, then costly pun-
ishment can emerge and prevail for most of the time, even if the population is
well-mixed. If the same public good game is compulsory, punishers fail to invade
and defection dominates.

Roughly speaking, the joint enterprise is a venture. It succeeds if most players
contribute, but not if most players cheat. The availability of punishment turns this
venture into a game of cops and robbers. If the game is compulsory, robbers win.
But if the game is voluntary, cops win.

This effect is due to a rock-paper-scissors type of cycle between contributing,
defecting and abstaining. Players who do not participate in the joint enterprise
can rely on some autarkic income instead. We shall assume that their income is
lower than the payoff obtained from a joint effort if all contribute, but higher than
if no one contributes. (Only with this assumption does the joint effort turn into
a venture.) In a finite population, cooperation evolves time and again, although
it will then be quickly subverted by defection, which in turn gives way to non-
participation (Hauert et al 2002a,b, Semmann et al 2004). If costly punishment
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of defectors is included in the game, then one of the upsurges of cooperation
will lead to a population dominated by punishers, and such a regime will last
considerably longer before defectors invade again. Cooperation safeguarded by
the costly punishment of defectors dominates most of the time.

This model has been based on the classical ’public good game’ used in many
theoretical and experimental investigations (Boyd and Richerson 1992, Camerer
2003, Fehr and Gächter 2000, 2002, Hauert et al 2005, Brandt et al 2003, Naka-
maru and Iwasa 2004). It suffers from a weakness which makes it less convincing
than it could be. Indeed, whenever the interacting groups are very small (as hap-
pens if most players tend not to participate in the joint effort), the social dilemma
disappears; it only re-appears when the game attracts sufficiently many partici-
pants. In a frequently used terminology, cooperation in such a public good game
is ’weakly altruistic’, because cooperators receive a return from their own contri-
bution (Kerr and Godfrey-Smith 2002, Fletcher and Zwick 2004, 2007, see also
Wilson 1990 for a related notion).

In this note, we show that the same result – in compulsory games, robbers
win; in optional games cops do – holds also for ’strong altruism’, and more pre-
cisely even in the ’others-only’ case, i.e. when no part of the benefit returns to
the contributor. It is always better, in that case, not to contribute. Nevertheless,
cooperation based on costly punishment emerges, if players can choose not to
participate. If the game is compulsory, defectors will win.

According to the ’weak altruism’ model, players have to decide whether or not
to contribute an amount c, knowing that the joint contributions will be multiplied
by a factor r > 1 and then divided equally among all S participants. Rational
players understand that if they invest an amount c, their personal return is rc/S.
If the group size S is larger than r, their return is smaller than their investment,
and hence they are better off by not contributing. In that case, we encounter the
usual social dilemma: a group of selfish income maximisers will forego a benefit,
by failing to earn (r − 1)c each. The proverbial ’invisible hand’ fails to work.
However, if the group size S is smaller than r, selfish players will contribute,
since the return from their personal investment c is larger than their investment.
In that case, the social dilemma has disappeared.

In all the models of voluntary public good games mentioned so far, it has been
assumed that a random sample of the population of size N is faced with the deci-
sion whether or not to participate in a public good game of the ’weakly altruistic’
type described above. If most players tend not to participate, the resulting teams
will mostly have a small size S, and therefore the social dilemma will not hold.
(This effect of population size is well-known, see eg. Pepper 2000). Small won-
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der, then, that cooperation emerges in such a situation. A well-meaning colleague
even called it a ’sleight of hand’.

In the ’strong altruism’ variant considered here, players have to decide whether
or not to contribute an amount c, knowing that it will be multiplied by a factor
r > 1 and then divided equally among all the other members of the group. A
player’s contribution benefits the others only. The social dilemma always holds,
in this case, no matter whether the group is large or small. We shall show that
nevertheless, a rock-paper-scissor cycle leading to cooperation still emerges, and
that the population will be dominated by players who punish defectors. This is a
striking instance of the general phenomenon that complex dynamics can play an
important role even in very simple types of economic models (see eg Kirman et al
2004).

The idea of considering a public good game of ’others only’ type is not new.
It was used in Yamagishi 1986, a brilliant forerunner to Fehr and Gächter 2000.
Yamagishi’s motivation was interesting: he made ’public good game’ experiments
using small groups (the small size is almost a necessity, due to practical reasons),
but he wanted to address the issue of public goods in very large groups. Since in
large groups, the effect of an individual decision is almost negligible, Yamagishi
opted for a treatment which excludes any return from the own contribution.

In this paper, we investigate the evolutionary dynamics of voluntary public
good games with punishment, using for the public good the ’others-only’ variant
OO rather than the ’self-returning’ (or ’self-beneficial’) variant SR. We consider
the evolutionary dynamics in well mixed populations which can either be infinite
(in which case we analyse the replicator dynamics, see Hofbauer-Sigmund 1998),
or of a finite size M (in which we case we use the Moran process, see Nowak
2005, Nowak et al. 2004, Imhof et al. 2005). We will show that for finite popula-
tions, voluntary participation is just as efficient for ’strong altruism’ as for ’weak
altruism’. Thus even if the social dilemma holds consistently, cooperation based
on costly punishment emerges.

In the usual scenarios, it is well-known that while weakly altruistic traits
can increase, strongly altruistic traits cannot. Our paper shows, in contrast, that
strongly altruistic traits can spread if players can inflict costly punishment on de-
fectors and if they can choose not to participate in the team effort. In a sense to
be explained later, the mechanism works even better than for weak altruism.
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2 The model
We consider a well-mixed population, which is either infinite or of finite size M .
From time to time, a random sample of size N is presented with the opportunity
to participate in a ’public good game’. Those who decline (the non-participants)
receive a fixed payoff σ which corresponds to an autarkic income. Those who
participate have to decide whether to contribute a fixed amount c. In the ’self-
returning’ case SR, the contribution will be multiplied by a factor r and the re-
sulting ’public good’ will be shared equally among all participants of the game;
in the ’others-only’ case OO, it will be shared among all the other participants of
the game. (We note that in this case, if there are only two participants, we obtain
a classical Prisonners’ Dilemma scenario, which can be interpreted as a donation
game: namely whether or not to provide a benefit b = rc to the co-player at a cost
c to oneself, with r > 1).

In both types of public good games, the participants obtain their share irre-
spective of whether they contributed or not (the public good, in this sense, is non-
excludable). If only one player in the sample decides to participate, we shall as-
sume that the public good game cannot take place. Such a player obtains the same
payoff σ as a non-participant. In addition, participants in the game can also punish
the cheaters in their group. Thus we consider four strategies: (1) non-participants;
(2) cooperators, who participate and contribute, but do not punish; (3) defectors,
who participate, but neither contribute nor punish; and (4) punishers, who partic-
ipate, contribute, and punish the defectors in their group. We denote the relative
frequencies of cooperators, defectors, non-participants and punishers in the infi-
nite population by x, y, z and w, and their numbers in the finite population by
X, Y, Z and W , respectively (with X +Y +Z +W = M , and x+y+z+w = 1).
Their frequencies in a given random sample of size N are denoted by Nx, Ny, Nz

and Nw respectively (with Nx + Ny + Nz + Nw = N , and Nx + Ny + Nw = S
the number of participants in the public good game).

Following the usual models, we shall assume that each punisher imposes a fine
on each defector; such punishment costs γ to the punisher and β to the punished
player, so that punishers have to pay γNy and defectors βNw. The total payoff is
the sum of a public good term and a punishment term.

6



3 The infinite population case
Let us assume first that the population size is infinite. Each players’ payoff is the
sum of a public good term (which is σ if the player does not participate in the joint
effort) and a punishment term (which is 0 for non-participants and cooperators).
The expected punishment terms are easily seen to be−βw(N−1) for the defectors
and −γy(N − 1) for the punishers.

As shown in Brandt et al 2006, the payoff stemming from the public good is
given in the SR case by

σzN−1 + rc(x + w)FN(z)

for the defectors, and

σzN−1 + c(r − 1)(1− zN−1)− rcyFN(z)

for the cooperators and the punishers, with

FN(z) =
1

1− z
(1− 1− zN

N(1− z)
).

The payoff for non-participants is σ. As shown in the appendix, the payoff
stemming from the public good in the OO case is

σzN−1 + (1− zN−1)
rc(x + w)

1− z

for a defector. Cooperators and punishers obtain from the public good the same
term, reduced by c(1 − zN−1) (this is the cost of contributing, given that there is
at least one co-player).

Let us now consider the replicator dynamics for the OO-case. After remov-
ing the common term σzN−1 from all payoffs, we obtain for the expected payoff
values of non-participants, defectors, cooperators and punishers

Pz = (1− zN−1)σ

Py = (1− zN−1)(rc
x + w

1− z
)− βw(N − 1)

Px = (1− zN−1)(rc
x + w

1− z
− c)
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Pw = (1− zN−1)(rc
x + w

1− z
− c)− γy(N − 1)

In the interior of the simplex S4 there is no fixed point since Pw < Px. hence
all orbits converge to the boundary (see Hofbauer and Sigmund 1998). On the face
w = 0, we find a rock-paper-scissors game, as in the SR case: non-participants are
dominated by cooperators who are dominated by defectors who are dominated by
non-participants. In the interior of this face there is no fixed point, since Px < Py;
all orbits are homoclinic orbits, converging to the non-participant state z = 1 if
time converges to ±∞ (see Fig.1). This contrasts with the SR case, where the
face w = 0 is filled with periodic orbits for r > 2 (see also the corresponding
phase portraits in Brandt et al 2006).

It is easy to see that punishers dominate non-participants, and that punishers
and defectors form a bistable system if c+γ < β(N−1). The edge of cooperators
and punishers (y = z = 0) consists of fixed points, those with

w >
c

β(N − 1)

are saturated and hence Nash-equilibria. Depending on the initial condition, orbits
in the interior of the simplex converge either to the segment of Nash-equilibria or
to the state consisting only of non-participants.

Altogether, this system has a remarkable similarity which the replicator system
for SR originally proposed by Fowler 2005b (and criticised by Brandt et al 2006),
provided Fowler’s second-order punishment term is neglected.

4 Finite populations
We now turn to finite populations of size M . As learning rule, we shall use the
familiar Moran process: we assume that occasionally, players can update their
strategy by copying the strategy of a ’model’, namely a player chosen at random
with a probability which is proportional to that player’s fitness. This fitness in turn
is assumed to be a convex combination (1 − s)B + sP , where B is a ’baseline
fitness’ (the same for all players), P is the payoff (which depends on the strategy,
and the state of the population), and 0 ≤ s ≤ 1 measures the ’strenght of selec-
tion’, i.e. the importance of the game for overall fitness.(We shall always assume s
small enough to avoid negative fitness values.) This learning rule corresponds to a
Markov process. The process has four absorbing states, namely the homogeneous
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states: if all players use the same strategy, imitation leads to nothing new. Hence
we assume that with a small ’mutation probability’ µ, players chose a strategy
at random, rather than imitate another player. This yields an irreducible Markov
chain with a unique stationary distribution. (We emphasize that the terms ’selec-
tion’ and ’mutation’ are used for convenience only, and do not imply a genetic
transmission of strategies.)

In the limiting case of small mutation rates µ << M−2, we can assume that
the population consists, most of the time, of one type only. Mutants occur rarely,
and will be eliminated, or have reached fixation, before the next mutation occurs.
Hence we can study this limiting case by an embedded Markov chain with four
states only. These are the four homogenous states, with the population consisting
of only cooperators, only defectors, only non-participants or only punishers, re-
spectively. It is now easy to compute the transition probabilities. For instance, ρxy

denotes the probability that a mutant defector can invade a population of coopera-
tors and reach fixation. The corresponding stationary distribution (πx, πy, πz, πw)
describes how often (on average) the population is dominated by cooperators, de-
fectors etc.

The transition probabilities are given by formulas of the type

ρxy = [1 +
M−1∑

k=1

k∏
X=1

1− s + sPXY

1− s + sPY X

]−1

where PXY denotes the payoff obtained by a cooperator in a population consist-
ing of X cooperators and Y = M − X defectors (see Nowak 2005). Hence all
that remains is to compute these expressions. Again, these payoffs consist of two
terms: the contribution from the public good round, and those from the punish-
ment round.

Clearly, if there are W punishers and Y defectors (with W + Y = M ), the
former must pay γY (N − 1)/(M − 1) and the latter βW (N − 1)/(M − 1) on
average.

The payoff obtained from the public good term has been computed in (Hauert
at al 2007) for the SR-case. We now compute it for the OO-case. In a population
consisting of X cooperators and Y = M −X defectors, a co-operator obtains

cr(X − 1)

M − 1
− c.

Defectors in a population of Y defectors and X = M − Y cooperators (or pun-
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ishers) obtain from the public good

cr(M − Y )

M − 1
.

The probability to be the only participant in the sample is
(

Z
N−1

)
(

M−1
N−1

) =
ZN−1

(M − 1)N−1

where Zk := Z(Z − 1)...(Z − k + 1). Hence in a population with Z non-
participants, if the rest is composed only of punishers (or of cooperators), the
participants obtain from the public good

σ
ZN−1

(M − 1)N−1

+ c(r − 1)(1− ZN−1

(M − 1)N−1

)

In a population consisting only of punishers and cooperators, the public good term
of the payoff is

rc(N − 1)

N − 1
− c = c(r − 1).

We can now compute the stationary distributions. As shown in Figs 2 and 3,
the outcome is clear: in the compulsory case, defectors take over; in the optional
case, punishers dominate. The result are derived for the limiting case of very small
mutation rates (µ << M−2), but computer simulations show that they are valid
for larger mutation rates too. In interactive computer simulations
(see for instance http://homepage.univie.ac.at/hannelore.brandt/simulations/ and
http://www.people.fas.harvard.edu/ hauert/), it is possible to experiment with dif-
ferent parameter values (for M,N, σ, r, c, β and γ) and with other learning pro-
cesses, which provide convincing evidence that the outcome is robust. We note in
particular that punishers are even more frequent for the strongly altruistic ’others-
only’ scenario than for the weakly altruistic ’self-returning’ variant. The reason
behind this seems to be that the cooperators are less frequent in the OO-case (and
each percent they lose is gained by the punishers). Why are they less frequent?
In the SR case, cooperators can invade non-participants more easily, since they
do get a return for their contribution. However, such an invasion has no lasting
effect, because the cheaters can quickly replace the cooperators. All that these
short episodes of cooperation without punishment achieve is that they stand in the
way of the cooperation with punishment.
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5 Discussion
Punishment of free riders is widespread in human societies (Henrich et al 2006,
Sigmund 2007). The main result of our paper is that a public good game with
punishment is much more likely to lead to a cooperative outcome if participation
is voluntary, rather than compulsory. For the ’weakly altruistic’ SR case, this is
well established, see Hauert et al 2007 and 2008. But here, we show that it also
holds in the ’strongly altruistic’ OO-case, i.e. if the benefit of a contribution is
exclusively directed at others.

The mechanism thus operates without a ’sleight of hand’. The fact that in
sufficiently small groups playing the SR public goods game, it is in the selfish
interest of a player to contribute, is not essential. Even if the social dilemma
is unmitigated, as in the OO case, voluntary participation allows cooperators to
emerge again and again from a population of non-participants. Indeed, if non-
participants are frequent, the random samples of N players will provide only small
groups willing to participate in the public goods game. In such small groups, it
can happen by chance that most members contribute. These groups will have a
high payoff and its members will be quickly imitated.

This is an instance of the well-known Simpson’s paradox (see Sober and Wil-
son 1998): although within each group, free-riders do better than contributors,
in can happen that on average, across the whole population, contributors do bet-
ter than free-riders. A similar effect also holds in a model of Killingback et al
(2006): in that scenario, the population is structured in groups of variable size,
with dispersal between groups, whereas our model considers individual selection
in a well-mixed population. For other investigations of the effect of finite popula-
tion size and stochastic shocks, see e.g. (Peyton Young and Foster, 1995).

If the contributors are cooperators, imitation will lead to a regime dominated
by cooperators. This will quickly be invaded by defectors, who in turn foster non-
participation. But the resulting rock-paper-scissors cycle, which can be viewed as
an extremely simple model of an endogenous business cycle (cf Dosi et al 2006),
will eventually lead from non-participants to punishers (rather than non-punishing
cooperators). In that case defectors will have a much harder time to come back.

In their lucid discussion of strong vs. weak altruism, Fletcher and Zwick 2007
argue that what counts for selection are fitness differences, i.e. relative fitnesses
rather than absolute fitnesses (cf Hamilton 1975 and Wilson 1975). Although with
weak altruism (which has been called ’benevolence’ by Nunney 2000), a contribu-
tion directly benefits the contributor, it benefits the co-players just as well. Even
if the return to the contributor exceeds the cost of the contribution, defectors in
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the public goods group are still better off. In this sense, the difference between
weak and strong altruism is less than may appear, despite the ’conventional wis-
dom’ (Fletcher and Zwick 2007) stating that under the usual assumptions, weak
altruism evolves and strong altruism does not.

In particular, while most models leading to cooperation assume weak altruism,
Fletcher and Zwick 2004 have shown that strong altruism can prevail in public
goods games of ’others-only’ type if groups are randomly reassembled, not every
generation, but every few generations. Our scenario emphasises a different, but
related point. In voluntary public goods games with punishment, for strong and
weak altruism alike, cooperation can emerge through individual selection.
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7 Figures
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Figure 1: The replicator equation for the OO-case. Part a) shows the phase
portrait on the boundary faces of the state space simplex S4. Part b) shows what
happens in the interior of the simplex. Yellow orbits converge to the state z of
only non-participants, blue orbits converge to a cooperative mixture of punishers
w and cooperators x. The startpoints of the orbits are depicted in gray. Parameter
values are N = 5, r = 3, c = 1, β = 1.2, γ = 1 and σ = 1.
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Figure 2: Time evolution of the frequencies in a finite population (a) if all four
strategies are allowed and (b) if the game is compulsory, i.e. if there are no
non-participants. We see that in the latter case, defectors quickly come to near-
fixation; in the former case, a rock-paper-scissors type of cycle leads eventually to
a cooperative regime dominated by punishers, which lasts for a long time. (It will
eventually by subverted through random drift, in which case the oscillations start
again). (Parameter values as in Fig.1 with M = 100, µ = 0.001, B = 1, s = 0.1).
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Cooperators Defectors Non-participants Punishers

Figure 3: The frequencies of strategies in the stationary distribution, as a func-
tion of the selection strength s. (a) In the case of weak altruism, the punisher’s
strategy is the most frequent; (b) this also holds for strong altruism, with the ad-
ditional feature that non-punishing cooperators are even less frequent; (c) if the
game is compulsory (i.e. non-participants are excluded from the simulations), the
defectors emerge as clear winners. This is shown here for the case of strong
altruism, the weak-altruism case is similar. The lines describe the frequencies as
computed in the limiting case µ → 0. The dots describe the results of numeri-
cal simulations averaged over 107 periods for µ = 0.001. Parameter values are
N = 5, r = 3, c = 1, β = 1, γ = 0.3, σ = 1 and B = 1.
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8 Appendix
In the OO case, the payoff from the public good can be computed as follows: The
probability that a focal player has h co-players who participate is

(
N − 1

h

)
(1− z)hzN−1−h

for h = 0, ..., N − 1. The probability that m of these are contributing is
(

h

m

)
(
x + w

1− z
)m(

y

1− z
)h−m

for m = 0, ..., h (if h > 0).
The focal player’s expected gain stemming from his h co-participants is

h∑
m=0

rcm

h

(
h

m

)
(
x + w

1− z
)m(

y

1− z
)h−m =

rc(x + w)

1− z

which is independent of h (for h = 1, ..., N − 1).
Hence the payoff obtained from the public good is given by

σzN−1 +
rc(x + w)(1− zN−1)

1− z

for a defector. Cooperators and punishers obtain from the public good the same
term, reduced by c(1− zN−1).

We now compute the public good terms for the finite OO-case. In a population
consisting of X cooperators and Y = M −X defectors, a co-operator obtains (if
k is the number of other cooperators)

N−1∑

k=0

H(k, N − 1, X − 1,M − 1)(
rck

N − 1
− c)

=
rc

N − 1

N−1∑

k=0

kH(k, N − 1, X − 1,M − 1)− c

N−1∑

k=0

H(k, N − 1, X − 1,M − 1)

Since the first sum is (X − 1) N−1
M−1

and the second is 1, this yields

cr(X − 1)

M − 1
− 1
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Defectors in a population of Y defectors and X = M − Y cooperators or
punishers obtain from the public good

N−1∑

k=0

H(k, N − 1, X, M − 1)(
rkc

N − 1
) =

cr(M − Y )

M − 1

The probability to be the only participant in the sample is
(

Z
N−1

)
(

M−1
N−1

) =
ZN−1

(M − 1)N−1

Hence in a population with Z non-participants, if the rest is composed only of
punishers (or of cooperators), the participants obtain from the public good

σ
ZN−1

(M − 1)N−1

+ c(r − 1)(1− ZN−1

(M − 1)N−1

)

In a population consisting only of punishers and cooperators, the public good
term of the payoff is

rc(N − 1)

N − 1
− c = c(r − 1)
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