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Abstract

Food webs represent trophic (feeding) interactions in ecosystems. Since
the late 1970s, it has been recognized that food-webs have a surprisingly
close relationship to interval graphs. One interpretation of food-web in-
tervality is that trophic niche space is low-dimensional, meaning that the
trophic character of a species can be expressed by a single or at most a
few quantitative traits. In a companion paper we demonstrated, by simu-
lating a minimal food-web model, that food webs are also expected to be
interval when niche-space is high-dimensional. Here we characterize the
fundamental mechanisms underlying this phenomenon by proving a set
of rigorous conditions for food-web intervality in high-dimensional niche
spaces. Our results apply to a large class of food-web models, including
the special case previously studied numerically.

1 Introduction

The world’s ecosystems supply a range of provisioning, regulating, supporting,
and cultural services on which humans depend (Millennium Ecosystem Assess-
ment, 2005). At the heart of an ecosystem is an intricate and multifactorial
network of species interactions. Food webs reflect the flow of energy within
these networks that emerge from predation and consumption (Pimm, 1982). In
their most abstract form, food webs can be described by unweighted directed
graphs, where vertices represent species and edges indicate energy flows between
vertices. Because of their fundamental role for ecosystems, food webs have been
studied with mounting interest since the 1950s in order to elucidate general
structural patterns and to better understand their implications for demographic
and evolutionary dynamics (Bersier, 2007).

One of the more surprising findings to date is that food webs are closely
related to interval graphs as defined by Benzer (1959), a phenomenon now known
as food-web intervality. Cohen (1977) was the first to point out this striking
regularity in empirically measured food webs. Starting with a directed graph
representing a food web, he defined an associated ‘niche overlap graph’ where
each species forms a node, and two nodes are connected if the species have
at least one resource (prey species) in common. Cohen (1977, 1978) showed
that empirical niche overlap graphs are interval much more often than would
be expected by chance. Since Cohen (1977)’s seminal discovery, many other
characterizations of food-web intervality have been proposed (Sugihara, 1984;
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Stouffer et al, 2006). Among them is the consecutive ones property (COP). A
matrix of ones and zeros is said to have the COP along the columns if there
is an ordering of its rows such that the ones appear consecutively along the
columns. For the adjacency matrix of a food webs, this corresponds to an
ordering of resources such that the diet of each consumer (predator species)
forms a contiguous block in this ordering.

A common explanation for food-web intervality assumes that vulnerability of
each species to predation can be described by a point on a line, that the trophic
(feeding) niche of each consumer is given by an interval on that line, and that
the diet of each consumer is then given by all species with vulnerability traits
in its trophic niche. This picture would not only imply that the niche overlap
graph is interval, but also that the food web has the COP. For this reason,
many authors have argued that the trophic ‘niche space’ is one-dimensional
(e.g., Cohen, 1977; Williams and Martinez, 2000; Stouffer et al, 2006; Mouillot
et al, 2008; Allesina and Pascual, 2009). This line of though is so influential
that it has become the basis of one of the most widely-used food-web models,
the niche model by Williams and Martinez (2000). In this model, vulnerability
traits are independent and identically distributed random numbers from the unit
interval [0, 1], and feeding intervals are placed randomly under the constraint
that they fit into [0, 1] and their center value is smaller than the consumer’s
vulnerability trait.

In a companion paper (Rossberg et al, 2010a), we introduced a food-web
model which draws on similar ideas, but where species are not necessarily char-
acterized by a single real value. Instead, species are characterized by ‘vulner-
ability traits’ and ‘foraging traits’ which are vectors in a D-dimensional trait
space. The main elements of the model are illustrated in Figure 1. In a natu-
ral generalization of intervals, consumers feed on all species with vulnerability
traits within a D-dimensional disc. The centre of this disc is given by the vec-
tor of foraging traits. As in the niche model, vulnerability traits are randomly
assigned, but in stark contrast they are not independently sampled. Instead,
they derive from a branching mean-reverting random walk that mimics the evo-
lutionary process from which ecological communities emerge (Felsenstein, 1988;
Blomberg et al, 2003a), where branching events correspond to speciations. This
induces phylogenetic correlations between vulnerability traits. Foraging traits
are determined in ways that model fast adaptation, with the simplest choice
being the assumption that each consumer is specialized to feed on one specific
resource, but also consumes other resources that fall within its trophic niche.
Using this model, Rossberg et al (2010a) demonstrated in simulations that food
webs do not only have the COP when the niche-space is one-dimensional, i.e.,
D = 1, but that the probability of food-webs having the COP (and therefore
being interval) also tends to 1 as the dimension D → ∞.

Moving away from simulations of specific models, the aim of this paper is
to derive mathematically rigorous conditions for food-web intervality in higher-
dimensional trophic niche spaces. In Sect. 2 we define a generic family of food
web models and required associated terms. Based on these definitions, we state
and prove a theorem in Sect. 3 characterizing conditions under which a food
webs assume the COP as D → ∞. One of the conditions is that consumers are
‘focused’, meaning that the foraging traits of a consumer are exactly equal to
the vulnerability traits of a resource. In Sect. 4 we partly relax this assumption,
requiring only that the foraging traits stay closer to the nearest vulnerability
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Figure 1: A schematic illustration of the food-web model considered in this
paper. Each species si is characterized by a vulnerability trait vector ~Vi and
a foraging trait vector ~Fj (here vectors in R

2). a) Species descend from an a
priori prescribed phylogenetic tree, with Tij being the time since separation of
the lineages i and j. b) The vulnerability trait vectors are determined by a
mean-reverting random walk (Ornstein-Uhlenbeck process) which branches at
the times given by the phylogenetic tree. c) Two species are linked as consumer
and resource if the vulnerability trait vector of the resource is closer to the
foraging trait vector of the consumer than a prescribed niche width. d) The
resultant food web. Vertices represent species and edges indicate the direction
of energy flows.

trait than a distance on the order of
√
D. We show that this bound on distance

is sharp in the sense that, at larger distances, other rules have to be followed for
the placement of foraging trait to ensure intervality as D → ∞. Two plausible
rules are discussed, with one leading to intervality and the other not. Finally,
we conclude with a discussion of our main results and the two major underlying
ecological assumptions: fast consumer adaptation and focused foraging traits.

2 Preliminaries

We first give mathematical definitions for key ecological terms. These will later
allow us to state and prove our main theorem.

Definition 1. A food web (S,L) consists of a finite set of species S and a set
of directed links L ⊂ S×S. We call a species c ∈ S a consumer if (r, c) ∈ L for
some r ∈ S. Similarly, we call a species r ∈ S a resource if (r, c) ∈ L for some
c ∈ S.

Stated plainly, a food web is a directed graph and a species is a consumer
(resource) if there is an associated incoming (outgoing) link. These links rep-
resent energy flows in the system. Note that a species can be both a consumer
and a resource. We now associate each species with trophic traits and specify
how these induce a food web, thus giving precise meaning to the concept of
niche space.

Definition 2. Let S be a finite set of species and D be a positive integer.
Associate with each species s ∈ S a trait vector (~Vs, ~Fs, ws) ∈ R

D × R
D × R+

consisting of vulnerability traits ~Vs ∈ R
D, foraging traits ~Fs ∈ R

D, and a niche
width ws > 0. By the induced food web we mean the food web (S,L) with the
set of directed links given by

L =
{

(r, c) : |~Vr − ~Fc|2 ≤ Dw2
c

}

. (1)
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We will often use the adjacency matrix A(L) of L defined by the D×D matrix
A(L) = (aij), where aij = 1 if (si, sj) ∈ L and aij = 0 otherwise.

An ecological interpretation of this definition is that species need to have
foraging traits sufficiently close to other species’ vulnerability traits in order to
be effective consumers. Later on we will take the limit of an infinite-dimensional
niche space, D → ∞, and it is for this reason that we scale the niche width in
Eq. (1) with D.

We now define the consecutive-ones property which is a strong character-
ization of describe food-web intervality in the sense that it implies all other
commonly used descriptors (see Fig. 2b of Rossberg et al, 2010a).

Definition 3. A binary matrix, i.e., a matrix with entries belonging to the
set {0,1}, is said to have the consecutive ones property (COP) if there exists
a permutation of the rows so that all 1’s along the columns are consecutive. A
food web is said to have the COP if its adjacency matrix has the COP.

A simple way to model fast consumer adaptation is to assume that each
consumer is focused on a specific resource:

Definition 4. For any finite set of species with associated trait vectors as in
Definition 2, call a consumer c ∈ S focused if there is a some focal resource
r ∈ S such that ~Fc = ~Vr.

Definition 5. A species c ∈ S is called basal if it does not consume any other
species; this implies that the entries in the column corresponding to c in the
matrix A(L) are all zero.

We consider a class of food webs where all species have vulnerability traits
given by a branching Ornstein-Uhlenbeck process, a branching random walk
with a drift towards the origin. The branching events are interpreted as specia-
tions in a phylogenetic tree. For our argument, the times since the last common
ancestor for any species pair can be chosen arbitrarily, subject to a consistency
requirement for phylogenetic distance matrices:

Definition 6. Let T be an m × m symmetric real matrix with non-negative
entries. We say that T is a phylogenetic distance matrix of order m if for all
i we have Tii = 0 and for any three distinct integers 1 ≤ i, j, k ≤ m we have
Tij ≤ max{Tik, Tjk}.

In the mathematical literature such a matrix is called an ultrametric.
From Def. 6 we derive the following two lemmas which will play a central role

in proving conditions for food-web intervality in Sect. 3 and Sect. 4. Although
the lemmas may at first sight appear technical, the idea they encapsulate is
surprisingly simple as illustrated in Fig. 2.

Lemma 1. Given any phylogenetic distance matrix T of order m we can find a
permutation τ of the integers {1, . . . ,m} such that for any integers 1 ≤ i ≤ j ≤
k ≤ m the matrix T ′ defined by T

′

ij = Tτ(i)τ(j) satisfies T
′

ij ≤ T
′

ik.

Proof. It is known that every phylogenetic distance matrix corresponds to a
rooted phylogenetic tree with equidistant edge weightings (see e.g. Semple and
Steel, 2003, Theorem 7.2.5). A pre-order traversal of the rooted phylogenetic
tree determined by T , starting from the root, induces an ordering of vertices
whose restriction to the leaves is a permutation with the desired property.
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a

T =











0 5 5 5

5 0 3 1

5 3 0 3

5 1 3 0











b

permutation

34

1

2 2

3 4

5

Time
1 2 3 4 6

1

7

c

T ′ =











0 5 5 5

5 0 1 3

5 1 0 3

5 3 3 0











Figure 2: a) A phylogenetic distance matrix as in Def. 6. As an example of how
the matrix should be interpreted, the phylogenetic distance between species 2
and 4 is 1, since T24 = T42 = 1. b) One possible associated rooted phylogenetic
tree with equidistant edge weightings. A pre-order traversal of the tree yields the
permutation {1, 2, 4, 3}. c) Relabeling the species according to the permutation
gives a new phylogenetic distance matrix T ′ where the elements in each row
increase to the left and to the right from the diagonal (c.f. Lemma 1 and
Lemma 2).

In what follows we assume without loss of generality that all phylogenetic
distance matrices have the ordering prescribed in Lemma 1. (That is, they are
in an order in which they would be when the phylogenetic tree is drawn in the
conventional form as a planar graph.)

Lemma 2. Let T be a phylogenetic distance matrix of order m. Then, for any
integer 1 ≤ c ≤ m and any triple of integers 1 ≤ i < j < k ≤ m, we have
Tcj ≤ max{Tci, Tck}.

Proof. Let c, i, j, k be as in the statement of the lemma. Since T is an ultrametric
and symmetric we have

Tcj ≤ max{Tci, Tji}. (2)

Now, from symmetry and Lemma 1,

Tji = Tij ≤ Tik ≤ max{Tic, Tkc} = max{Tci, Tck}. (3)

Combining relations (2) and (3) we have

Tcj ≤ max{Tci, Tck},

which concludes the proof.

We can now define the branching Ornstein-Uhlenbeck process from which
we will sample vulnerability traits.

Definition 7. Let T be a phylogenetic distance matrix of order m and let ~Wi,
i = 1, . . . ,m be D-dimensional Wiener processes such that ~Wi and ~Wj with i 6= j
have identical increments for t < −Tij and independent increments otherwise.
From these we form m Ornstein-Uhlenbeck processes in R

D as the solutions to
the stochastic differential equations,

d~Vi(t) = −r~Vi(t)dt+ σd ~Wi, (4)

with initial conditions chosen so that all ~Vi coincide for t < −maxi,j Ti,j. By a
sample from a D-dimensional branching Ornstein-Uhlenbeck process associated
with T we mean a sample of the random vectors ~Vi, i = 1, . . . ,m, at t = 0.
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The definition implies that the vulnerability trait vectors of two species Vi

and Vj are identical for t < −Tij . A branching event then occurs at time t = Tij ,
after which the two species vulnerability trait vectors evolve independently. This
is illustrated in Fig. 1b and is intended as a simple model of speciation.

Lemma 3. For a branching Ornstein-Uhlenbeck process as defined above and
integers 1 ≤ i, j ≤ n, the squared difference |~Vi(t) − ~Vj(t)|2 is distributed as
v(Tij)χ

2
D, where χ2

D is chi-squared distributed with D degrees of freedom and
the function v : R+ 7→ R+ is defined by

v(t) :=
σ2

r
[1− exp(−2 r t)] . (5)

Proof. Let two integers 1 ≤ i, j ≤ n be given. If i = j, the assertion is trivially
true as Tii = 0 for any i. Thus, assume that i 6= j and define ~X(t) = ~Vi(t)−~Vj(t).

For t ≤ −Tij, ~X(t) = 0. For t > −Tij , it follows from Ito’s formula and (4) that

d ~X(t) = −r ~X(t)dt+
√
2σd ~W , (6)

where ~W is a D-dimensional Wiener process. By Eq. (6), all D components

of ~X(t) are independent Ornstein-Uhlenbeck processes. From ~X(−Tij) = 0
and standard results on one-dimensional Ornstein-Uhlenbeck processes (see e.g.

Gardiner, 2009, pp. 105-106), it follows that ~X(t) is normally distributed for
t > −Tij and that the variance of each respective component is v(Tij − t)

where v(t) is defined by (5). Hence, ~X(0) is a vector of independent normally
distributed random variables, each with variance v(Tij). The assertion that

|~Vi(t) − ~Vj(t)|2 = | ~X(0)|2 = v(Tij)χ
2
D thus follows directly from the definition

of the χ2-distribution.

3 Food-web intervality with focused consumers

We now state our main result:

Theorem 1. Let S = {s1, . . . , sm} be a finite set of species and T a phylogenetic
distance matrix of order m. For each D > 0 we associate with each species si
a trait vector (~V D

i , ~FD
i , wi) where the ~V D

i are sampled from a D-dimensional
branching Ornstein-Uhlenbeck process and the niche widths wi > 0, i = 1, . . . ,m,
are independent of D and satisfy |w2

i − v(Tjk)| > ǫ for all 1 ≤ i, j, k ≤ m and
some ǫ > 0. If all consumers are focused, then the probability that the induced
food web has the COP (and therefore is interval) tends to 1 as D → ∞.

Remark 1. Alternatively, we could assume that w2
i 6= v(Tjk) for any 1 ≤

i, j, k ≤ m, as this is equivalent to the existence of an ǫ > 0 such that |w2
i −

v(Tjk)| > ǫ for all 1 ≤ i, j, k ≤ m. Even though the degenerate case where w2
i =

v(Tjk) for some i, j, k is not likely to occur in practice, food-web intervality will
be less pronounced for any finite dimension D when the squared niche widths w2

i

are close to v(Tjk). Vulnerability trait vectors will then be close to the boundary
of being included in a consumer’s diet and may fall in or out by random chance.

Remark 2. For establishing the COP property of A(L) we only need to consider
species that consume more than one resource, as otherwise there are less than
two ones in the column of consideration. (For basal species there are just zeros).
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Remark 3. In the proof of Theorem 1, and in the remainder of this manuscript,
we suppress the dependence of foraging traits, vulnerability traits, and related
quantities on the dimension D.

Theorem 1. We prove the theorem in two steps. First we show that for any
D > 0 the induced food web has the COP if for any integers 1 ≤ i, j ≤ m we
have

− ǫ

2
<

|~Vi − ~Vj |2
D

− v(Tij) <
ǫ

2
. (7)

Second, we show that the probability that (7) holds for all 1 ≤ i, j ≤ m simul-
taneously tends to 1 as D → ∞. For notational simplicity we will throughout
the proof identify a species si with its index i.

Step 1. Assume that the food web does not have the consecutive ones
property when species are ordered as in the phylogenetic distance matrix. We
will show that this leads to a contradiction. That is, we can find a consumer
1 ≤ c ≤ m and species 1 ≤ i < j < k ≤ m such that the consumer c has i and k
among its resources, but not j. Denote by r the species on which the consumer
is focused. Then ~Fc = ~Vr and,

|~Vr − ~Vi|2 ≤ Dw2
c , |~Vr − ~Vj |2 > Dw2

c , and |~Vr − ~Vk|2 ≤ Dw2
c . (8)

Let

ǫri =
|~Vr − ~Vi|2

D
− v(Tri). (9)

We can now rewrite (8) as

v(Tri) + ǫri ≤ w2
c , v(Trj) + ǫrj > w2

c , and v(Trk) + ǫrk ≤ w2
c .

From Lemma 2 and the fact that v is an increasing function we have v(Trj) ≤
max{v(Tri), v(Trk)}. Thus, v(Trj) ≤ v(Tri) or v(Trj) ≤ v(Trk). Noting that the
two cases are similar, we only show that a contradiction ensues assuming the
former inequality. If, instead the latter inequality holds, an analogous argument
applies. This gives,

− ǫ

2
< ǫri ≤ w2

c − v(Tri) ≤ w2
c − v(Trj) < ǫrj <

ǫ

2
,

where we have additionally used (7) and (9). This contradicts the assumption
in the theorem that |w2

c − v(Tri)| > ǫ.
Step 2. For the this part of the proof we first fix two integers 1 ≤ i, j ≤ m and

observe that D−1|~Vi− ~Vj |2 is a sample average of D independent and identically
distributed random variables. Thus, by the weak law of large numbers the sum
converges in probability to its expected value,

|~Vi − ~Vj |2
D

P→ v(Tij) as D → ∞. (10)

Thus, by definition, the probability that (7) holds for this particular pair of
integers tends to 1 as D → ∞. To see that the probability that (7) holds for all
pairs of integers 1 ≤ i, j ≤ m also tends to 1, we note that we can bound the
joint probability of two simultaneous but not necessarily independent events as
P(A1∧A2) ≥ P(A1)+P(A2)−1 ≥ 2 min(P(A1),P(A2))−1, and more generally
of n simultaneous events as P(

∧n
i=1 Ai) ≥ 1 − n + n minn

i=1 P(Ai). Hence, for
any finite n we have that P(

∧n
i=1 Ai) → 1 whenever P(Ai) → 1 for all i. This

completes the proof.
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Remark 4. Using Chebyshev’s inequality one can show that the rate of conver-
gence in (10) is at least

P

(∣

∣

∣

∣

∣

|~Vi − ~Vj |2
D

− v(Tij)

∣

∣

∣

∣

∣

≤ ε

2

)

≥ 1− 8

Dε2
.

To see this, consider the complementary event
∣

∣

∣|~Vi − ~Vj |2 −Dv(Tij)
∣

∣

∣ > Dε/2

and notice that, by Lemma 3, the variance of |~Vi − ~Vj |2 is 2Dv(Tij)
2 ≤ 2D.

Remark 5. A central element of the proof is the convergence in (10) of the
squared difference of vulnerability vectors to the expected value v(Tij). We based
our argument on the weak law of large numbers, as this immediately leads us to a
statement on the satisfiability of (7). It is, however, easy to prove convergence
almost surely and thus establish a strong law of large numbers. Indeed, this
follows directly from standard theorems, such as Theorem 3 p. 294 of Grimmett
and Stirzaker (1992).

We derive the following corollary:

Corollary 1. Theorem 1 also holds when the niche widths wi are independent
samples from a continuous random variable taking values in [0,∞) without any
restriction on the proximity to the points v(Tij), 1 ≤ i, j ≤ m.

Proof. Let WD = (S,LD) be the induced food web in dimension D. If we can
show that for any ǫ > 0,

lim sup
D→∞

P(WD violates COP) ≤ ǫ,

then, since ǫ > 0 is arbitrary and probabilities are non-negative, it follows that

lim
D→∞

P(WD violates COP) = 0

exists and is equal to 0, which proves the corollary. To prove the assertion
choose δ > 0 such that P

(

|w2
c − v(Tij)| < δ for all 1 ≤ c, i, j ≤ m

)

< ǫ. This
is possible since the cumulative distribution function of a continuous random
variable is continuous. Then,

P(WD violates COP)

= P
(

|w2
c − v(Tij)| < δ

)

P
(

WD violates COP
∣

∣|w2
c − v(Tij)| < δ

)

+ P
(

|w2
c − v(Tij)| ≥ δ

)

P
(

WD violates COP
∣

∣|w2
c − v(Tij)| ≥ δ

)

≤ ǫ+ P
(

WD violates COP
∣

∣|w2
c − v(Tij)| ≥ δ

)

,

and from Theorem 1 we know that the latter term tends to 0 as D → ∞.

4 Food-web intervality with weakly focused con-

sumers

In this section we study food webs in situations where the consumers are weakly
focused, i.e., have foraging trait vectors which are close to, but not identical
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with, other species’ vulnerability trait vectors. In particular, we show that
Theorem 1 is still valid in the weakly focused case under a particular restriction
on the location of the foraging trait vectors. The arguments in the proof of this
section are more intricate, because a consumer’s foraging trait vector can not
be substituted for a vulnerability trait vector it is focused on. For this reason
we have presented these results separately.

Theorem 2. Let S = {s1, . . . , sm} be a finite set of species and T a phylogenetic
distance matrix of order m. For each D > 0 we associate with each species si
a trait vector (~V D

i , ~FD
i , wi) where the ~V D

i are sampled from a D-dimensional
branching Ornstein-Uhlenbeck process and the niche widths wi > 0, i = 1, . . . ,m,
are independent of D and satisfy |w2

i − v(Tjk)| > ǫ for some ǫ > 0 and all
1 ≤ i, j, k ≤ m. If to every consumer c and every dimension D there exist a
resource rD such that

∣

∣

∣

~Fc − ~VrD

∣

∣

∣

2

D

P→ 0 as D → ∞, (11)

then the probability that the induced food web has the COP (and therefore is
interval) tends to 1 as D → ∞.

Proof. We follow the proof of Theorem 1. We first show that for any D > 0 the
induced food web has the COP if for all integers 1 ≤ i ≤ m and all consumers
c ∈ S we have that

− ǫ

2
<

|~Fc − ~Vi|2
D

− v(Tri) <
ǫ

2
, (12)

where r is defined as the first integer such that
∣

∣

∣

~Fc − ~Vr

∣

∣

∣ = min
i∈S

|~Fc − ~Vi|. (13)

Second, we show that the probability that (12) holds for all 1 ≤ i ≤ m
and all consumers c ∈ S simultaneously tends to 1 as D → ∞. For notational
simplicity we will throughout the proof identify a species si with its index i.

Step 1. Assume that the food web does not have the consecutive ones
property when species are ordered as in the phylogenetic distance matrix. We
will show that this leads to a contradiction. That is, we can find a consumer
1 ≤ c ≤ m and species 1 ≤ i < j < k ≤ m such that the consumer c has i and
k among its resources, but not j. Let r be denoted as in (13). Then,

|~Fc − ~Vi|2 ≤ Dw2
c , |~Fc − ~Vj |2 > Dw2

c , and |~Fc − ~Vk|2 ≤ Dw2
c . (14)

Let

ǫci =
|~Fc − ~Vi|2

D
− v(Tri) where 1 ≤ c, i ≤ m. (15)

We can now rewrite (14) as

v(Tci) + ǫci ≤ w2
c , v(Tcj) + ǫcj > w2

c , and v(Tck) + ǫck ≤ w2
c .

From Lemma 2 and the fact that v is an increasing function we have v(Tcj) ≤
max{v(Tci), v(Tck)} for all 1 ≤ i, j, k ≤ m. Thus, v(Tcj) ≤ v(Tci) or v(Tcj) ≤
v(Tck). Noting that the two cases are similar, we only show that a contradiction
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ensues assuming the former inequality. If, instead the latter inequality holds,
an analogous argument applies. This gives,

− ǫ

2
< ǫci ≤ w2

c − v(Tci) ≤ w2
c − v(Tcj) < ǫcj <

ǫ

2
,

where we have additionally used (12) and (15). This contradicts the assumption
in the theorem that |w2

c − v(Tci)| > ǫ.
Step 2. In this part of the proof we first fix two integers 1 ≤ c, i ≤ m. With

r defined by Eq. (13) we can write ~Fc = ~Vr + ~ηc. It follows directly from the
condition of the theorem that ~ηc is of size o(

√
D). Thus,

∣

∣

∣

~Fc − ~Vi

∣

∣

∣

2

=
∣

∣

∣

~Vr − ~Vi + ~ηc

∣

∣

∣

2

=
∣

∣

∣

~Vr − ~Vi

∣

∣

∣

2

+ 2~ηc ·
(

~Vr − ~Vi

)

+ |~ηc|2 ,

so
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

~Fc − ~Vi

∣

∣

∣

2

D
− v(Tri)

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

~Vr − ~Vi

∣

∣

∣

2

D
− v(Tri)

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

2~ηc ·
(

~Vr − ~Vi

)

D

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

|~ηc|2
D

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

~Vr − ~Vi

∣

∣

∣

2

D
− v(Tri)

∣

∣

∣

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

~ηc√
D

∣

∣

∣

∣

∣

∣

∣

∣

∣

~Vr − ~Vi√
D

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

~ηc√
D

∣

∣

∣

∣

2

,

where
|~Vi−~Vj |2

D − v(Tij)
P→ 0 as D → ∞ by the second part of the proof of

Theorem 1. Since
∣

∣

∣

~Vr−~Vi√
D

∣

∣

∣

P→ v(Tri) ≤ 1 as D → ∞ and
∣

∣

∣

~ηc√
D

∣

∣

∣

P→ 0 as D → ∞,

we have
∣

∣

∣

~Fc − ~Vi

∣

∣

∣

2

D

P→ v(Tri) as D → ∞.

The rest of the proof is now identical with the proof of Theorem 1, continuing
from Eq. (10).

As we will show in the following, the condition on the distance between
the foraging traits of consumers and the vulnerability traits of their central
resources stated in the Theorem 2 is sharp in the sense that, when foraging
traits have a distance of the order of D1/2 or larger from the vulnerability traits
of any resource item, then intervality is not guaranteed in the limit D → ∞.
On the other hand, it is not difficult to see that distances between vulnerability
traits grow as D1/2 as D → ∞. The condition of theorem 2 therefore requires
that foragers “single out” one particular resource item to which they are, up
to small deviations, specialized. It is not clear if foragers typically have such a
“preferred” resource in nature. One might therefore wonder if there are other
constraints on foraging traits that also imply intervality, which could plausibly
be satisfied in nature. One idea that comes to mind is that consumers will adapt
their foraging traits so as to lie somewhere in the midst of the vulnerability traits
of their resources. But, as the following theorem specifies, this alone is not be
sufficient to ensure the COP.
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Theorem 3. With the same assumptions otherwise as in Theorem 2, if instead

∣

∣

∣

~Fc − ~VrD

∣

∣

∣

2

D

P

6→ 0 as D → ∞

the food web does not necessarily have the consecutive ones property. This is
true even if for all q > 1,

∣

∣

∣

~Fc − ~VrD

∣

∣

∣

2

Dq

P→ 0 as D → ∞.

In fact, it is possible to construct a food web where the foraging trait vectors of
consumers are averages of their resources’s vulnerability trait vectors, but which
does not have the consecutive ones property.

Proof. See Appendix A.

Another conceivable constraint leading to food-web intervality may be that,
while consumers are not focused or nearly focused on their preferred resources
in every food web, they are focused on some conceivable resources species which
may exist somewhere else, or only hypothetically. Relevant for this situation is
the following lemma:

Lemma 4. Let S = {s1, . . . , sm} be a finite set of species. With each species si
we associate a trait vector (~Vi, ~Fi, wi). Let S′ be a subset of S. If the induced
food web L of S has the COP, then the induced food web of S′, given by L′ =
{(r, c) : r ∈ S′ and c ∈ S′} has the COP.

Proof. The adjacent matrix A(L′) of S′ can be obtained by deleting certain
rows and columns in the adjacency matrix A(L) of S. The COP is obviously
conserved under the deletion of rows and under deletion of columns. It follows
that L′ has the COP, and so the corresponding food web.

Remark 6. Lemma 4 together with Theorem 1 imply that consumers need not
necessarily be focused on their resources to guarantee intervality as D → ∞. It
suffices that consumers are focused on resource traits of “likely species”, i.e.,
species in the community in question, in some other community (Rossberg,
2008), or species that could possibly exist, as long as its phylogenetic distance to
all extant species is kept fixed as D → ∞. This situation is not directly covered
by Theorems 1 or 3, because, if such a potential species has positive phylogenetic
distance to all extant species 1 ≤ i ≤ m, then, D−1|~F − ~V |2 will not converge
to zero in probability as D → ∞.

5 Discussion

In this paper, we have derived mathematically rigorous conditions for food-web
intervality. These conditions encompass the key result obtained by Rossberg
et al (2010a) through simulations, namely that food webs from a model with
focused consumers and phylogenetic correlations tend to be interval in high-
dimensional niche spaces. However, as a result of our rigorous treatment, we
were able to go far beyond the analysis of a single model, capturing instead
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a large model class that allows considerable variations in the way (1) how
consumers (foraging traits) are distributed over their resources (vulnerability
traits), (2) how niche widths vary between consumers, and (3) how phylogenetic
trees are structured. The analysis also allowed us to determine condition for
food-web intervality with weakly focused consumers in high-dimensional niche
spaces.

In our analysis of food-web intervality, we assumed a high symmetry be-
tween the D components of the vulnerability trait vectors. In reality, some
traits will be more important for trophic interactions, thus contributing more
to the trophic “distance” between species, others less, and there may be com-
plicated interrelations. As has been argued elsewhere (Rossberg et al, 2010b),
appropriate coordinate transformations in trait space might nevertheless al-
low us to derive a diagonal trophic distance measure of the form ∆(~Vi, ~Fj) =
∑d

l=1 λl(V
(l)
i −F

(l)
j )2, with the superscript (l) denoting vector components, and

it is not difficult to see that this transformation can be done such that the
co-variance matrix of the components of ~Vi over a food web becomes the unit
matrix. When the consumer j is focused on a resource r, this corresponds to a
distance between vulnerability traits ∆(Vi, Vr). Our results could be generalized
to handle this case. Decisive for Theorem 1, for example, is the convergence
in probability, as D → ∞, of the (appropriately normalized) distance between
vulnerability traits of two species to some increasing function of their phyloge-
netic distance. For any finite D, the degree to which intervality can be expected
to be observed depends on the coefficient of variation (CV) of trophic distance
for fixed phylogenetic distance. In essence, the theorem requires this CV to go
to zero. For the Euclidean distance measure this is the case when increasing
D → ∞, but other families ∆k of distance measures will achieve the same as
k → ∞, as long as the CV at fixed phylogenetic distance goes to zero. When
vulnerability traits derive from branching Ornstein-Uhlenbeck processes of the
form considered here, the CV of the diagonal distance measure defined above
evaluates to CV = (2

∑

l λ
2
l )

1/2/
∑

l λl. For Euclidean distances this becomes
CVD = (2/D)1/2. By equating these values, we can define an effective di-
mension Deff = 2/CV2 = (

∑

l λl)
2/
∑

l λ
2
l . Large Deff generally indicate that

pronounced intervality must be expected by the phylogenetic mechanism.
There is a simple intuitive explanation for why food webs are interval in

high-dimensional trophic niche spaces. First, the resources covered by the diet
of a consumer tend to be similar. As species that share a common ancestor in
the recent past tend to be similar, the diet of a consumers will often encompass
an entire clade (branch) of the phylogenetic tree. Second, with high-dimensional
trait vectors, the chance that two species that did not descend from a common
ancestor in the recent past are similar is very small, as this would require most
components of their vulnerability trait vectors to match. This means that a con-
sumer will typically include an entire clade of the phylogenetic tree in its diet,
and no other species. Hence, the food web has the consecutive ones property
with the ordering induced by the phylogenetic tree. Stated differently, repeated
branching of the mean-reverting Ornstein-Uhlenbeck process builds up phyloge-
netic correlations in vulnerability trait vectors. With increased dimensionality,
the time since separation of two lineages becomes more informative about the
actual ecological differences, leading to stronger phylogenetic correlations and
consequently interval food webs.
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The two major ecological assumptions that underlie our results are fast evo-
lution of foraging traits relative to vulnerability traits and ‘focusedness’, i.e.
foraging traits of consumers that are located at or near the vulnerability traits
of specific resources. The assumption of fast evolution of foraging traits is
supported by empirical observations indicating that phylogenetic correlations
among foraging traits are weak (Cooper and Vitt, 2002; Blomberg et al, 2003b;
Bersier and Kehrli, 2008). In particular, taxonomically related resources tend to
be preyed upon by similar consumers, while taxonomically related consumers to
a lesser extend tend to prey on the same resources. This is the expected pattern
when foraging traits evolve faster than vulnerability traits. The conclusion is
further reinforced by a quantitative study by Rossberg et al (2006a) in which
a food-web model was fitted to empirical data, allowing the inference of the
relative rates of evolutionary change in the two trait vectors. We thus believe
that it is reasonable to assume time-scale separation between the evolution of
vulnerability and foraging traits.

While fast consumer adaptation is supported empirically, there is no corre-
sponding empirical support for the assumption that a consumer’s foraging traits
are focused on a focal resource’s vulnerability traits. In Sect. 4 we partly relaxed
this assumption by instead assuming that a similar condition holds asymptoti-
cally as the dimension D → ∞. We also considered two alternative rules for the
placement of a consumer’s foraging traits: at the position in niche space given
by the average of its resources vulnerability traits or focused on vulnerability
traits of a resource which may exist somewhere else, or only hypothetically.
Interestingly, the former does not lead to intervality while the latter does. In
Rossberg et al (2010a) we numerically explored a third rule by allowing for-
aging traits to evolve in the direction of increased fitness according to an a
priori defined fitness measure. Simulated food-webs then tended to be interval
in high-dimensional trait-spaces, too. Yet, a re-analysis of the data (not shown)
later revealed that the squared distances between foraging traits and the nearest
vulnerability traits were of the same order as the number of dimensions. The
observed intervality at high dimensions in these simulations is hence not covered
by the analytic results derived here. Further work will therefore be needed to
understand the full extent to which our analytic results can be generalized to
non-focused consumers. On the other hand, one needs to keep in mind that in-
tervality in empirical food webs is clearly not perfect. Even the model by tested
by Rossberg et al (2006a), which does not invoke consumer adaptation at all
and relies on a much simpler representation of trophic niche space than used
here, still overestimates empirical intervality more often than underestimating
it.

Another step towards increased ecological realism in food-web models is to
explicitly simulate the population dynamics of all species in evolving food webs
(e.g., Post and Pimm, 1983; Caldarelli et al, 1998). Unfortunately, intervality
is not generally studied in such models. An exception may be the Population
Dynamical Matching Model (Rossberg et al, 2008, Tab. 2), for which Ddiet,
a measure for how well the COP is satisfied (Cattin et al, 2004), has been
evaluated. Simulation values for Ddiet were in the range 0.33 ± 0.20 (mean
± SD), overlapping but slightly larger than the empirical range 0.22 ± 0.15.
The reason for under-develop intervality in these simulations might be that the
niche-space dimensionality of D = 5 used in the model was still comparatively
low.
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In order to better understand the phenomenon of consumer-resource coevo-
lution and its effects on intervality, the evolution of food webs could be studied
using, for example, techniques of adaptive dynamics (Dieckmann and Law, 1996;
Geritz et al, 1998). In the adaptive dynamics framework, invasion fitness is de-
rived from the underlying model, removing the need for an externally imposed
fitness measure or ad hoc assumptions such as that of focused consumers. This
objective appears to be within reach numerically, but, because of the intricate
feed-back loops involved, will be very hard to incorporate into a rigorous math-
ematical theory. A more promising avenue from a mathematical perspective
would to move beyond intervality and to study other aspects of food-web struc-
ture, such as degree distributions or the block structure of adjacency matrices
(Critchlow and Stearns, 1982) expected to accompany intervality in high dimen-
sions.

By developing a mathematical theory for a class of models that encompasses
the one proposed by Rossberg et al (2010a), this paper adds to a growing suite
of food-web models which are well-understood analytically, such as the cascade
model (Cohen et al, 1990), the niche model (Camacho et al, 2002; Allesina
et al, 2008), the speciation model (Rossberg et al, 2006b), or the matching
model (Rossberg, 2008). With a large number of analytically tractable food-
web models to work with, we expect that the mechanisms behind the emergence
of more aspects of food-web structure will be pinned down in the years to come.
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A Proof of Theorem 3

Before proving Theorem 3, we derive a useful formula for expectation values
of quadratic expressions in vulnerability traits. Denote the ith component of a
vector ~V by V (i) (1 ≤ i ≤ D). Choose an arbitrary species m as a reference
point. From the bi-linearity of covariances and recalling that var(x) = cov(x, x),
one gets

var(V
(i)
k − V

(i)
l ) = var

[

(V
(i)
k − V (i)

m )− (V
(i)
l − V (i)

m )
]

= var(V
(i)
k − V (i)

m )− 2 cov(V
(i)
k − V (i)

m , V
(i)
l − V (i)

m ) + var(V
(i)
l − V (i)

m ).

Using Lemma 3, we can now express variances in terms of the function v
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defined by Eq. (5). Solving for the remaining covariance gives

cov(V
(i)
k − V (i)

m , V
(i)
l − V (i)

m ) =
v(Tkm) + v(Tlm)− v(Tlm)

2
.

Because all vulnerability traits derive from the same ancestor in a random walk,
they all have the same expectation value. Thus

E
[

(V
(i)
k − V (i)

m )(V
(i)
l − V (i)

m )
]

=
v(Tkm) + v(Tlm)− v(Tlm)

2
. (16)

We are now able to prove Theorem 3. Note that the proof constructs a
food web where the foraging trait vectors of all consumers are located at the
center of mass of the vulnerability trait vectors of their resources, but which is
nonetheless not interval.

Theorem 3. We construct a minimal three-species food web such that asD → ∞
it will have the following adjacency matrix with probability 1:

A(L) =





0 1 1
1 0 1
1 1 0



 .

By inspecting all 6 possible permutations of rows, it is clear that this adjacency
matrix does not have the COP. We assume a phylogenetic tree of three species as
shown schematically in Fig. 1 a). That is, we assume that the lineage of species
1 branched off before the lineages of species 2 and 3 separated. With such a
phylogenetic tree, v(T12) = v(T13). Further, let the foraging traits be given

by the centers of mass between two vulnerability traits, i.e. ~F1 = (~V2 + ~V3)/2,
~F2 = (~V1+ ~V3)/2 and ~F3 = (~V1+ ~V2)/2. Then, as D → ∞, we get using Eq. (16):

∣

∣

∣

~F2 − ~V1

∣

∣

∣

2

D
=

∣

∣

∣

~F2 − ~V3

∣

∣

∣

2

D

P→ v(T13)

4

and
∣

∣

∣

~F2 − ~V2

∣

∣

∣

2

D

P→ 1

4
v(T12) +

1

2
v(T23) >

v(T12) + v(T23)

4
.

By symmetry we have

∣

∣

∣

~F3 − ~V1

∣

∣

∣

2

D
=

∣

∣

∣

~F3,−~V2

∣

∣

∣

2

D

P→ v(T12)

4

and
∣

∣

∣

~F3 − ~V3

∣

∣

∣

2

D

P→ 1

4
v(T13) +

1

2
v(T23) >

v(T13) + v(T23)

4
.

For the remaining consumer,

∣

∣

∣

~F1 − ~V2

∣

∣

∣

2

D
=

∣

∣

∣

~F1 − ~V3

∣

∣

∣

2

D

P→ v(T12)

4
,
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and
∣

∣

∣

~F1 − ~V1

∣

∣

∣

2

D

P→ v(T12)−
v(T23)

4
>

v(T12)

2
.

We now choose the niche width w2 =
√

1
4 (v(T12) + v(T23)), w3 =

√

1
4 (v(T13) + v(T23))

and w1 =
√

1
2v(T12). The induced food web

L =

{

(r, c) :
∣

∣

∣

~Vr − ~Fc

∣

∣

∣

2

< Dw2
c : c = 1, 2, 3 and r = 1, 2, 3

}

is equivalent to the above adjacency matrix A(L), which does not have the COP.
Finally, since

∣

∣

∣

~Fc − ~VrD

∣

∣

∣

2

Dq

converges in probability to a finite value for q = 1 as D → ∞, it follows that
the limit is 0 in probability for q > 1.
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Geritz SAH, Kisdi E, Meszéna G, Metz JAJ (1998) Evolutionary singular strate-
gies and the adaptive growth and branching of the evolutionary tree. Evolu-
tionary Ecology 12:35–57

Grimmett GR, Stirzaker DR (1992) Probability and random processes, 2nd edn.
The Clarendon Press Oxford University Press, New York

Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-being:
Synthesis. Island Press, Washington, DC

Mouillot D, Krasnov BR, Poulin R (2008) High intervality explained by phylo-
genetic constraints in host-parasite webs. Ecology 89(7):2043–2051

Pimm SL (1982) Food Webs. Chapman and Hall, New York

Post WM, Pimm SL (1983) Community assembly and food web stability. Math
Biosci 64:169–192

Rossberg A, Brännström A, Dieckmann U (2010a) Food-web structure in low-
and high-dimensional trophic niche spaces. Proceedings of the Royal Society
Interface

Rossberg AG (2008) Part-whole relations between food webs and the validity of
local food-web descriptions. Ecological Complexity 5(2):121–131,

Rossberg AG, Matsuda H, Amemiya T, Itoh K (2006a) Food webs: experts
consuming families of experts. Journal of Theoretical Biology 241(3):552–563

Rossberg AG, Matsuda H, Amemiya T, Itoh K (2006b) Some properties of the
speciation model for food-web structure — Mechanisms for degree distribu-
tions and intervality. Journal of Theoretical Biolpgu 238(2):401–415,

17



Rossberg AG, Ishii R, Amemiya T, Itoh K (2008) The top-down mechanism for
body-mass–abundance scaling. Ecology 89(2):567–580,
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