A CUTTING PLANE ALGORITHM FOR SOLVING BILINEAR PROGRAMS

Hiroshi Konno

December 1974

WP - 74 - 75

Working Papers are not intended for distribution outside of IIASA, and are solely for discussion and information purposes. The views expressed are those of the author, and do not necessarily reflect those of IIASA.

1. Introduction

Nonconvex programs which have either nonconvex minimand and/or nonconvex feasible region have been considered by most mathematical programmers as a hopelessly difficult area of research. There are, however, two exceptions where considerable effort to obtain a global optimum is under way. One is integer linear programming and the other is nonconvex quadratic programming. This paper addresses itself to a special class of nonconvex quadratic program referred to as a 'bilinear program' in the lieterature. We will propose here a cutting plane algorithm to solve this class of problems. The algorithm is along the lines of [17] and [19] but the major difference is in its exploitation of special structure. Though the algorithm is not guaranteed at this stage to converge to a global optimum, the preliminary results are quite encouraging.

In Section 2, we analyze the structure of the problem and develop an algorithm to obtain an ε -locally maximum pair of basic feasible solutions. In Section 3, we will generate a cutting plane to eliminate current pair of ε -locally maximum basic feasible solutions. We use, for these purposes, simplex algorithm intensively. Section 4 gives an illustrative example and the results of numerical experimentations.

2. Definitions and a Locally Maximum Pair

of Basic Feasible Solutions

The bilinear program is a class of quadratic programs with the following structure:

$$\max \phi(x_1, x_2) = c_1^t x_1 + c_2^t x_2 + x_1^t C x_2$$

s.t.
$$A_1 x_1 = b_1$$
, $x_1 \ge 0$
 $A_2 x_2 = b_2$, $x_2 \ge 0$ (2.1)

where c_i , $x_i \in R^i$, $b_i \in R^i$, $A_i \in R^i$ and $a_i \in R^i$, $a_i \in R^i$ where $a_i \in R^i$ where $a_i \in R^i$ and $a_i \in R^i$ and $a_i \in R^i$ where $a_i \in R^i$ and $a_$

Note that a bilinear program is a direct extension of the standard linear program: $\max\{c^t x \mid Ax = b, x \ge 0\}$ in which we consider c to be linearly constrained variables and maximize $c^t x$ with respect to c and x simultaneously. Let us denote

$$X_{i} = \{x_{i} \in \mathbb{R}^{n_{i}} \mid A_{i}x_{i} = b_{i}, x_{i} \ge 0\}, i = 1, 2.$$
 (2.2)

Theorem 2.1. If X_i , i = 1, 2 are non-empty and bounded, then (2.1) has an optimal solution (x_1^*, x_2^*) where x_i^* is a basic feasible solution of the constraint equations defining X_i , i = 1, 2.

<u>Proof.</u> Let $(\hat{\mathbf{x}}_1, \hat{\mathbf{x}}_2)$ be an optimal solution, which clearly exists by assumption. Consider a <u>linear</u> program: $\max\{\phi(\mathbf{x}_1, \hat{\mathbf{x}}_2) \mid \mathbf{x}_1 \in \mathbf{X}_1\}$ and let \mathbf{x}_1^* be its optimal basic solution. Then $\phi(\mathbf{x}_1^*, \hat{\mathbf{x}}_2) \geq \phi(\hat{\mathbf{x}}_1, \hat{\mathbf{x}}_2)$ since $\hat{\mathbf{x}}_1$ is a feasible solution to the linear program considered above. Next, consider another linear program: $\max\{\phi(\mathbf{x}_1^*, \mathbf{x}_2) \mid \mathbf{x}_2 \in \mathbf{X}_2\}$ and let \mathbf{x}_2^* be its optimal basic solution. Then by the similar arguments as before, we have $\phi(\mathbf{x}_1^*, \mathbf{x}_2^*) \geq \phi(\mathbf{x}_1^*, \hat{\mathbf{x}}_2)$. Thus we conclude that $\phi(\mathbf{x}_1^*, \mathbf{x}_2^*) \geq \phi(\hat{\mathbf{x}}_1, \hat{\mathbf{x}}_2)$, which implies that $(\mathbf{x}_1^*, \mathbf{x}_2^*)$ is a <u>basic</u> optimal solution of (2.1).

Given a feasible basis B_i of A_i , we will partition it as (B_i, N_i) assuming, without loss of generality, that the first m_i columns of A_i are

basic. Position x_i correspondingly: $x_i = (x_{iB}, x_{iN})$. Let us introduce here a 'canonical' representation of (2.1) relative to a pair of feasible bases (B_1, B_2) . Premultiplying B_i^{-1} to the constraint equation $B_i x_{iB} + N_i x_{iN} = b_i$ and suppressing the basic variables x_{iB} , we get the following system which is totally equivalent to (2.1):

$$\max \overline{\phi}(x_{1N}, x_{2N}) = \overline{c}_{1N}^{t} x_{1N} + \overline{c}_{2N}^{t} x_{2N} + x_{1N}^{t} \overline{c} x_{2N} + \phi(x_{1}^{o}, x_{2}^{o})$$

$$s.t. \quad B_{1}^{-1} N_{1} x_{1N} \leq B_{1}^{-1} b_{1} , \quad x_{1N} \geq 0$$

$$B_{2}^{-1} N_{2} x_{2N} \leq B_{2}^{-1} b_{2} , \quad x_{2N} \geq 0$$

$$(2.3)$$

where $x_{i}^{o} \equiv (x_{iB}^{o}, x_{iN}^{o}) = (B_{i}^{-1}b_{i}, 0)$.

For future reference, we will introduce the notations,

$$\ell_{i} = n_{i} - m_{i}, \quad d_{i} = \overline{c}_{iN} \in \mathbb{R}^{\ell_{i}}, \quad y_{i} = x_{iN} \in \mathbb{R}^{\ell_{i}},$$

$$F_{i} = B_{i}^{-1} N_{i} \in \mathbb{R}^{m_{i} \times \ell_{i}}, \quad f_{i} = B_{i}^{-1} b_{i} \in \mathbb{R}^{m_{i}}, \quad i = 1, 2$$

$$D = \overline{C} \in \mathbb{R}^{\ell_{1} \times \ell_{2}}, \quad \phi_{0} = \phi(x_{1}^{0}, x_{2}^{0})$$

and rewrite (2.3) as follows:

$$\max \psi(y_1, y_2) = d_1^t y_1 + d_2^t y_2 + y_1^t Q y_2$$
s.t. $F_1 y_1 \le f_1$, $y_1 \ge 0$

$$F_2 y_2 \le f_2$$
, $y_2 \ge 0$ (2.4)

We will call (2.4) a canonical representation of (2.1) relative to (B_1, B_2) and use standard form (2.1) and canonical form (2.4) interchangeably whichever is the more convenient for our presentation. To express the

dependence of vectors in (2.4) on the pair of feasible bases (B_1 , B_2), we will occasionally use the notation $d_1(B_1, B_2)$, etc.

Theorem 2.2. The origin $(y_1, y_2) = (0, 0)$ of the canonical system (2.4) is

- (i) a Kuhn-Tucker point if $d_i \leq 0$, i = 1, 2.
- (ii) a local maximum if (a) and (b) hold
 - (a) $d_i \leq 0$, i = 1, 2
 - (b) either $d_{1i} < 0 \text{ or } d_{2i} < 0 \text{ if } q_{ii} > 0$
- (iii) a global optimum if $d_i \leq 0$, i = 1, 2 and $Q \leq 0$.

Proof.

- (i) It is straightforward to see that $y_1 = 0$, $y_2 = 0$ together with dual variables $u_1 = 0$, $u_2 = 0$ satisfy the Kuhn-Tucker condition for (2.2).
- (ii) Let $y_i \in R^i$, i = 1, 2 be arbitrary nonnegative vectors. Let $J_i = \{j \mid q_{ij} < 0\}$ and let ϵ be positive scalar. Then

because $q_{ij} \leq 0$ when $i \notin J_1$ and $j \notin J_2$. Obviously, the last expression is equal to ϕ_o if $J_1 = \phi$ and $J_2 = \phi$. It is less than ϕ_o for small enough ε if $J_1 \neq \phi$ or $J_2 \neq \phi$ since the linear term in ε dominates the quadratic term. This implies that $\psi(\varepsilon y_1, \varepsilon y_2) \leq \phi_o = \psi(0, 0)$ for all $y_1 \geq 0$, $y_2 \geq 0$ and small enough $\varepsilon > 0$.

(iii) Obviously true since $\psi(y_1, y_2) \le \phi_0 = \psi(0, 0)$ for all $y_1 \ge 0$, $y_2 \ge 0.$

The proof of Theorem 1 suggests to us a vertex following algorithm to be described below:

Algorithm 1 (Mountain Climbing)

Step 1. Obtain a pair of basic feasible solutions, $x_1^0 \in X_1$, $x_2^0 \in X_2$. Let k = 0.

Step 2. Given (x_1^k, x_2^k) , a pair of basic feasible solutions of X_1 and X_2 , solve a subproblem: $\max\{\phi(x_1, x_2^k) \mid x_1 \in X_1\}$. Let x_1^{k+1} and x_1^{k+1} be its optimal basic solution and corresponding basis.

Setp 3. Solve a subproblem: $\max\{\phi(x_1^{k+1}, x_2) \mid x_2 \in X_2\}$ and let x_2^{k+1} and B_2^{k+1} be its optimal basic solution and corresponding basis.

Step 4. Compute $d_1(B_1^{k+1}, B_2^{k+1})$, the coefficients of y_1 in the canonical representation (2.4) relative to bases B_1^{k+1}, B_2^{k+1} . If $d_1(B_1^{k+1}, B_2^{k+1}) \leq 0$, then let $B_1^* = B_1^{k+1}$ and x_1^* be the basic feasible solutions associated with B_1^* , i = 1, 2 and HALT. Otherwise increase k by 1 and go to Step 2.

Note that the subproblems to be solved in Steps 2 and 3 are linear programs.

<u>Proposition 2.3.</u> If X_1 and X_2 are bounded, then Algorithm 1 halts in finitely many steps generating a Kuhn-Tucker point.

<u>Proof.</u> If every basis of X_1 is nondegenerate, then the value of objective function ϕ can be increased in Step 2 as long as there is a

positive component in d_1 . Since the number of basis of X_1 is finite and no pair of bases can be visited twice because the objective function is strictly increasing in each passage of Step 2, the algorithm will eventually terminate with the condition $d_1(B_1^{k+1}, B_2^{k+1}) \leq 0$ being satisfied. When X_1 is degenerate, then there could be a chance of infinite cycling among certain pairs of basic solutions. We will show however, that this cannot happen in the above process if we employ an appropriate tie breaking device in linear programming. Suppose

where $x^{k+\ell} = x^{k+1}$, for the first time in the cycle. Since the value of objective function ϕ is nondecreasing and

$$\phi(\mathbf{x}_{1}^{k+\ell},\ \mathbf{x}_{2}^{k+\ell})\ \equiv\ \phi(\mathbf{x}_{1}^{k+1},\ \mathbf{x}_{2}^{k+\ell})\ \leq\ \phi(\mathbf{x}_{1}^{k+1},\ \mathbf{x}_{2}^{k+1})$$

we have that

$$\phi(\mathbf{x}_1^{k+1},\ \mathbf{x}_2^{k+1}) \ = \ \phi(\mathbf{x}_1^{k+2},\ \mathbf{x}_2^{k+1}) \ = \ \dots \ = \ \phi(\mathbf{x}_1^{k+\ell},\ \mathbf{x}_2^{k+\ell}) \quad .$$

It is obvious that $d_2(B_1^{k+1}, B_2^{k+1}) \leq 0$ by the definition of optimality of B_2^{k+1} . Suppose that the jth component of $d_1(B_1^{k+1}, B_2^{k+1})$ is positive. Then

we could have introduced y_{ij} into the basis. However, since the objective function should not increase, y_{ij} comes into the basis at zero level. Hence the vector y_1 remains zero. We can eliminate the positive element of d_1 , one by one, (using tie breaking device for the degenerate LP if necessary) with no actual change in the value of y_1 . Eventually, we have $d_2 \leq 0$ with $y_1 = 0$ and the corresponding basis \widetilde{B}_1^{k+1} . Referring to the standard form, the corresponding x_1 value remains unchanged i.e., stays at x_1^{k+1} and hence $d_2(\widetilde{B}_1^{k+1}, B_2^{k+1}) \leq 0$, because B_2^{k+1} is the optimal basis for $x_1 = x_1^{k+1}$ and that $\widetilde{x}_1^{k+1} = x_1^{k+1}$. By Theorem 2 (i), the solution obtained is a Kuhn-Tucker point.

Let us assume in the following that a Kuhn-Tucker point has been obtained and that a canonical representation (2.4) relative to associated pair of bases has been given.

By Theorem 2 (iii), that pair of basic feasible solutions is optimal if $Q \le 0$. We will assume that this is not the case and let

$$K = \{(i, j) \mid q_{ij} > 0\}$$

Let us define for (i, j) ϵ K, a function $\psi_{ij}: R_+^2 \rightarrow R$

$$\psi_{ij}(\xi, \eta) = d_{1i}\xi + d_{2i}\eta + q_{ij}\xi\eta$$

Proposition 2.4. If
$$\psi_{ij}(\xi_o, \eta_o) > 0$$
 for some $\xi_o \ge 0$, $\eta_o \ge 0$, then
$$\psi_{ij}(\xi, \eta) > \psi(\xi_o, \eta_o) \text{ for all } \xi > \xi_o, \eta > \eta_o .$$

Proof.

$$\begin{split} \psi_{ij}(\xi,\,\eta) - \psi_{ij}(\xi_o,\,\eta_o) &= (\xi - \xi_o)(d_{1i} + q_{ij}\eta_o) \\ &+ (\eta - \eta_o)(d_{2i} + q_{ij}\xi_o) + q_{ij}(\xi - \xi_o)(\eta - \eta_o) \end{split}$$

$$\geq (\xi - \xi_{o}) \left(-d_{2j} \frac{\eta_{o}}{\xi_{o}}\right) + (\eta - \eta_{o}) \left(-d_{1i} \frac{\xi_{o}}{\eta_{o}}\right)$$

$$+ q_{ij} (\xi - \xi_{o}) (\eta - \eta_{o})$$

$$> 0 .$$

This proposition states that if the objective function increases in the directions of y_{1j} and y_{2j} , then we can increase more if we go further into this direction.

Definition 2.1. Given a basic feasible solution $x_i \in X_i$, let $N_i(x_i)$ be the set of adjacent basic feasible solution which can be reached from x_i in one pivot step.

Definition 2.2. A pair of basic feasible solutions (x_1^*, x_2^*) , $x_i^* \in X_i$, i = 1, 2 is called an ε -locally maximum pair of basic feasible solution if

(i)
$$d_i \leq 0$$
, $i = 1, 2$

(ii)
$$\phi(x_1^*, x_2^*) \ge \phi(x_1, x_2) - \varepsilon$$
 for all $x_i \in N_i(x_i^*)$, $i = 1, 2$.

In particular this pair is called a locally maximum pair of basic feasible solutions if ϵ = 0.

Given a Kuhn-Tucker point (x_1^*, x_2^*) , we will compute $\phi(x_1, x_2)$ for all $x_i \in N_i(x_i^*)$, i = 1, 2 for which a potential increase of objective function ϕ is possible. Given a canonical representation, it is sufficient for this purpose to calculate $\psi_{ij}(\overline{\xi}_i, \overline{\eta}_j)$ for $(i, j) \in K$ where $\overline{\xi}_i$ and $\overline{\eta}_j$ represent the maximum level of nonbasic variables x_{1j} and x_{2j} when they are introduced into the bases without violating feasibility.

Algorithm 2. (Augmented Mountain Climbing)

Step 1. Apply Algorithm 1 and let $x_i^* \in X_i$, i = 1, 2, be the resulting pair of basic feasible solutions.

Step 2. If (x_1^*, x_2^*) is an ε -locally maximum pair of basic feasible solutions, then HALT. Otherwise, move to the adjacent pair of basic feasible solutions (\hat{x}_1, \hat{x}_2) where

$$\phi(\hat{x}_1, \hat{x}_2) = \max\{\phi(x_1, x_2) \mid x_i \in N_i(x_i^*), i = 1, 2\}$$

and go to Step 1.

3. Cutting Planes

We will assume in this section that an ε -locally maximum pair of basic feasible solutions has been obtained and that a canonical representation relative to this pair of basic feasible solution (x_1^*, x_2^*) has been given. Since we will refer here exclusively to a canonical representation, we will reproduce it for future convenience:

$$\max \psi(y_1, y_2) = d_1^t y_1 + d_2^t y_2 + y_1^t Q y_2 + \phi(x_1^*, x_2^*)$$

$$\text{s.t.} \quad F_1 y_1 \leq f_1 \quad , \quad y_1 \geq 0$$

$$F_2 y_2 \leq f_2 \quad , \quad y_2 \geq 0$$
(3.1)

where $d_i \leq 0$, $f_i \geq 0$, i = 1, 2. Let

$$Y_{i} = \{y_{i} \in \mathbb{R}^{l_{i}} \mid F_{i}y_{i} \leq f_{i}, y_{i} \geq 0\}, i = 1, 2$$
 (3.2)

$$Y_{i}^{(l)} = \{ y_{i} \in R^{li} \mid y_{il} \geq 0, y_{ij} = 0, j \neq l \}$$

$$l = 1, ..., l_{i}, i = 1, 2 \quad (3.3)$$

i.e. $Y_i^{(l)}$ is the ray emanating from $y_i = 0$ in the direction y_{il} .

Lemma 3.1. Let

$$\Psi_1(\bullet) = \max\{\psi(\bullet, y_2) \mid y_2 \in Y_2\}$$
 (3.4)

If $\Psi_1(u) > 0$ for some $u \in Y_1^{(\ell)}$, then $\Psi_1(v) > \Psi_1(u)$ for all $v \in Y_1^{(\ell)}$ such that v > u.

<u>Proof.</u> Let $u = (0, ..., 0, u_{\ell}, 0, ..., 0)$. First note that $u_{\ell} > 0$ since if $u_{\ell} = 0$, then $\Psi_1(u) = \max\{d_2^t y \mid y_2 \in Y_2\} = 0$.

Let v = (0, ..., 0, v_{ℓ}, 0, ..., 0) where v_{ℓ} \geq u_{ℓ}. Then for all $y_2 \in Y_2$, we have

$$\psi(v, y_{2}) = \psi(u, y_{2}) + (v_{\ell} - u_{\ell}) \left\{ d_{1\ell} + \sum_{j=1}^{\ell} q_{\ell j} y_{2j} \right\}$$

$$\geq \psi(u, y_{2}) + \frac{v_{\ell} - u_{\ell}}{u_{\ell}} \left\{ d_{1\ell} u_{\ell} + \sum_{j=1}^{\ell} (d_{2j} + q_{\ell j} u_{\ell}) y_{2j} \right\}$$

$$= \frac{v_{\ell}}{u_{\ell}} \psi(u, y_{2}) .$$

The inequality follows from $d_2 \leq 0$. Thus

$$\max\{\psi(\mathbf{v}, \mathbf{y}_{2}) \mid \mathbf{y}_{2} \in \mathbf{Y}_{2}\} \geq \frac{\mathbf{v}_{\mathcal{L}}}{\mathbf{u}_{\mathcal{L}}} \max\{\psi(\mathbf{u}, \mathbf{y}_{2}) \mid \mathbf{y}_{2} \in \mathbf{Y}_{2}\}$$

$$\geq \max\{\psi(\mathbf{u}, \mathbf{y}_{2}) \mid \mathbf{y}_{2} \in \mathbf{Y}_{2}\} . \qquad ||$$

This lemma shows that the function Ψ_1 is a strictly increasing function of y_1 on $Y_1^{(k)}$ beyond the point where Ψ_1 first becomes positive.

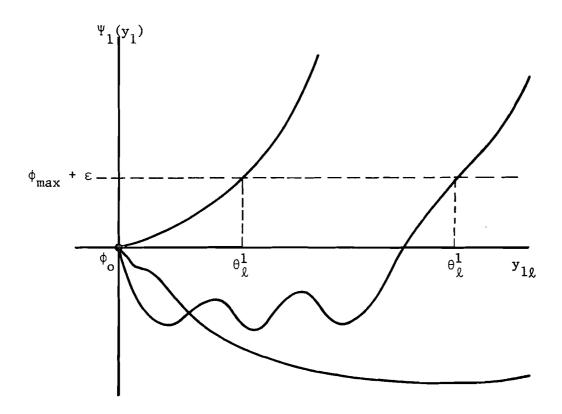


Figure 3.1 Shape of the Function Ψ_1

Let ϕ_{\max} be the value of the objective function associated with the best feasible solution obtained so far by one method or another and let us define θ^1_{ℓ} , ℓ = 1, ..., ℓ as follows:

$$\theta_{\ell}^{1} = \max \theta \text{ for which}$$

$$\max\{\Psi_{1}(y_{1}) \mid y_{1} \in Y_{1}^{(\ell)}, \quad 0 \leq y_{1\ell} \leq \theta\} \leq \phi_{\max} + \epsilon \quad . \tag{3.5}$$

<u>Lemma 3.2</u>. $\theta_{\ell}^1 > 0$, $\ell = 1, \ldots, \ell_1$.

<u>Proof.</u> Let $y_1 = (0, ..., 0, y_{1\ell}, 0, ..., 0)$. Since $d_1 \le 0, d_2 \le 0$, we

have

$$\psi(y_{1}, y_{2}) = d_{1\ell}y_{1\ell} + \sum d_{2j}y_{2j} + y_{1\ell}\sum q_{\ell j}y_{2j} + \phi_{0}$$

$$\leq y_{1\ell}\sum q_{\ell j}y_{2j} + \phi_{0} .$$

Letting $\alpha = \max\{\sum q_{ij}y_{2j} \mid y_{2} \in Y_{2}\} \ge 0$, we know from the above inequality that

$$\theta_{\ell}^{1} \begin{cases} \geq (\phi_{\max} - \phi_{0} + \epsilon)/\alpha > 0 & \alpha > 0 \\ = + \infty & \alpha = 0 \end{cases}$$

Theorem 3.3. Let

$$\Delta_{1}(\theta^{1}) = \{y_{1} \in \mathbb{R}^{\ell_{1}} \mid \sum_{j=1}^{\ell_{1}} y_{1j}/\theta_{j}^{1} \leq 1, y_{1} \geq 0\}$$
 (3.6)

Then

$$\max\{\psi(y_1, y_2) \mid y_1 \in \Delta_1(\theta^1), y_2 \in Y_2\} \leq \phi_{\max} + \epsilon$$
.

Proof. Let

$$\tilde{\theta}_{j}^{1} = \begin{cases} \theta_{j}^{1} & \text{if } \theta_{j}^{1} \text{ is finite} \\ \theta_{o} & \text{if } \theta_{j}^{1} = \infty \end{cases}$$
(3.7)

where $\theta > 0$ is constant.

Then

$$\max\{\psi(y_{1}, y_{2}) \mid y_{1} \in \Delta_{1}(\theta^{1}), y_{2} \in Y_{2}\}$$

$$= \lim_{\substack{\theta \to \infty \\ 0 \to \infty}} \max\{\psi(y_{1}, y_{2}) \mid y_{1} \in \Delta_{1}(\tilde{\theta}^{1}), y_{2} \in Y_{2}\}$$

The right hand side term inside the limit is a bilinear program with bounded feasible region and hence by Theorem 2.1, there exists an optimal solution

among basic feasible solutions. Since the basic feasible solution for the systems of inequalities defining $\Delta(\tilde{\theta})$ are $(0, \ldots, 0)$ and $y_1^{\ell} = (0, \ldots, 0, \tilde{\theta}_{\ell}^1, 0, \ldots, 0), \ell = 1, \ldots, \ell_1$, we have

$$\max\{\psi(y_1, y_2) \mid y_1 \in \Delta_1(\tilde{\theta}_1), y_2 \in Y_2\}$$

=
$$\max \left[\max\{\psi(0, y_2) \mid y_2 \in Y_2\}, \max_{\ell} \max\{\psi(y_1^{\ell}, y_2) \mid y_2 \in Y_2\} \right]$$

However, since $d_2 \leq 0$,

$$\max\{\psi(0, y_2) \mid y_2 \in Y_2\} = \max\{d_2^t y_2 \mid y_2 \in Y_2\} + \phi_0 \le \phi_0 \le \phi_{\max} + \varepsilon .$$

Also,

$$\max_{y_2} \{ \psi(y_1, y_2) \mid y_2 \in Y_2 \} \le \phi_{\max} + \epsilon$$

by the definition of $\tilde{\theta}_{\ell}^{1}$ (See (3.5) and (3.7)). Hence

$$\lim_{\theta_{0}\to\infty} \max\{\psi(y_{1}^{\ell}, y_{2}) \mid y_{2} \in Y_{2}\} \leq \phi_{\max} + \epsilon . \qquad \qquad ||$$

This theorem shows that the value of the objective function $\psi(y_1, y_2)$ associated with the points y_1 in the region $Y_1 \cap \Delta_1(\theta^1)$ is not greater than ϕ_{\max} + ϵ regardless of the choice of $y_2 \in Y_2$ and hence this region $Y_1 \cap \Delta_1(\theta^1)$ can be ignored in the succeeding process to obtain an ϵ -optimal solution. The cut

$$H_1(\theta^1): \sum_{j=1}^{\ell_1} y_{1j}/\theta_j^1 \ge 1$$

is, therefore, a 'valid' cut in the sense:

 does not contain the current ε-locally maximum pair of basic feasible solutions; (ii) contains all the candidates $\mathbf{y}_1 \in \mathbf{Y}_1$ for which

$$\max\{\psi(y_1, y_2) \mid y_2 \in Y_2\} > \phi_{\max} + \epsilon$$
.

Since θ^1 is dependent on the feasible region Y_2 , we will occasionally use the notation $\theta^1(Y_2)$.

Since the problem is symmetric with respect to Y_1 and Y_2 , we can, if we like, interchange the role of Y_1 and Y_2 to obtain another valid cutting plane relative to Y_2 :

$$H_2(\theta^2): \sum_{j=1}^{\ell_2} y_{2j}/\theta_j^2 = 1$$
.

Cutting Plane Algorithm

Step 0. Set
$$\ell = 0$$
. Let $X_{i}^{0} = X_{i}$, $i = 1, 2$.

Step 1. Apply Algorithm 2 (Augmented Mountain Climbing Algorithm) with a pair of feasible regions X_1^{ℓ} , X_2^{ℓ} .

Step 2. Compute $\theta^1(Y_2^{\ell})$. Let $Y_1^{\ell+1} = Y_1^{\ell} \setminus \Delta_1(\theta^1(Y_2^{\ell}))$. If $Y_1^{\ell+1} = \phi$, stop. Otherwise proceed to the next step.

Step 2'. (Optional). Compute $\theta^2(Y_1^{l+1})$. Let $Y_2^{l+1} = Y_2 \setminus \Delta_2(\theta^2(Y_1^{l+1}))$. If $Y_2^{l+1} = \phi$, stop. Otherwise proceed to the next step.

Step 3. Add 1 to &. Go to Step 1.

It is now easy to prove the following theorem.

Theorem 3.4. If the cutting plane algorithm defined above stops in Step 2 or 2', with either $Y_1^{\ell+1}$ or $Y_2^{\ell+1}$ becoming empty, then ϕ_{\max} and

associated pair of basic feasible solutions are an E-optimal solution of the bilinear program.

<u>Proof.</u> Each cutting plane added does not eliminate any point for which the objective function is greater than $\phi_{\max} + \epsilon$. Hence if either $Y_1^{\ell+1}$ or $Y_2^{\ell+2}$ becomes empty, we can conclude that $\max\{\psi(y_1, y_2) \mid y_1 \in Y_1, y_2 \in Y_2\}$ $\leq \phi_{\max} + \epsilon$.

According to this algorithm, the number of constraints increases by 1 whenever we pass step 2 or 2' and the size of subproblem becomes bigger and the constraints are also more prone to degeneracy. From this viewpoint, we want to add fewer number of cutting planes, particularly when the original constraints have a good structure (e.g. transporation). In such case, we might as well omit step 2' taking Y₂ as the constraints having special structure.

Another requirement for the cut is that it should be as deep as possible, in the following sense:

Definition 3.1. Let $\theta = (\theta_j) > 0$, $\tau = (\tau_j) > 0$. Then the cut $\Sigma y_{1j}/\theta_j \ge 1$ is deeper than $\Sigma y_{1j}/\tau_j \ge 1$ if $\theta \ge \tau$, with at least one component with strict inequality.

Looking back into the definition (3.5) of θ^1 , it is clear that $\theta^1(U) \geq \theta^1(V)$ when $U \subset V \subset \mathbb{R}^{2}$ and that the cut associated with $\theta^1(U)$ is deeper than $\theta^1(V)$. Thus, given a pair of valid cuts $H_1(\theta^1(Y_2))$ and $H_2(\theta^2(Y_1))$, we can use $Y_2' = Y_2 \setminus \Delta_2(\theta^2(Y_1)) \subset Y_2$ and $Y_1' = Y_1 \setminus \Delta_1(\theta^1(Y_2))$ $\subset Y_1$ to generate $H_1(\theta^1(Y_2))$ and $H_2(\theta^2(Y_1'))$ which are deeper than the cuts associated with Y_2 and Y_1 . This iterative improvement scheme is very powerful especially when the problem is symmetric with respect to Y_1

and y2. This aspect will be discussed in full detail elsewhere [11].

The following theorem gives us a method to compute $\boldsymbol{\theta}^1$ using the dual simplex method.

Theorem 3.5.

$$\theta_{\ell}^{1} = \min\{-d^{t}z + (\phi_{\text{max}} - \phi_{0} + \varepsilon)z_{0}\}$$
s.t. $F_{2}z - f_{2}z_{0} \le 0$

$$\begin{cases} \chi_{2} \\ \sum_{j=1}^{c} q_{\ell j}z_{j}^{j} + d_{1}\ell z_{0}^{j} = 1 \end{cases}$$

$$z_{j} \ge 0, j = 1, ..., \ell_{2}, z_{0} \ge 0 .$$
(3.8)

Proof. Let

$$g(\theta) = \max\{d_1^t y_1 + d_2^t y_2 + y_1^t Q y_2 \mid F_2 y_2 \le f_2, y_2 \ge 0,$$

$$0 \le y_{1\ell} \le \theta, y_{1j} = 0, j \ne \ell\} .$$

 θ_{l} is then given as the maximum of θ for which $g(\theta) \leq \phi_{\text{max}} - \phi_{\text{o}} + \epsilon$. It is not difficult to observe that

$$g(\theta) = \max \left[0, \max\{d_{1\ell}\theta + (d_2 + \theta q_{\ell})^t y_2 \mid F_2 y_2 \le f_2, y_2 \ge 0\}\right]$$

where $q_{\ell} = (q_{\ell 1}, \ldots, q_{\ell \ell 2})^{t}$. Therefore, θ_{ℓ}^{1} is the maximum of θ for which

$$g_1(\theta) \equiv \max\{d_{1k}\theta + (d_2 + \theta q_{k*})^t y_2 \mid F_2 y_2 \le f_2, y_2 \ge 0\}$$

 $\le \phi_{\max} - \phi_0 + \varepsilon$.

The feasible region defining $g_1(\theta)$ is, by assumption, bounded and non-empty and by duality theorem

$$g_1(\theta) = \min\{f_2^t u + d_{10}\theta \mid F_2^t u \ge d_2 + \theta q_{00}, u \ge 0\}$$
.

Hence θ_{ϱ} is the maximum of θ for which the system

$$\{f_{2}^{t}u + d_{10}\theta \le \phi_{max} - \phi_{0} + \epsilon, -F_{2}^{t}u - q_{0}\theta \le -d_{2}, u \ge 0\}$$

is feasible, i.e.,

$$\theta_{\ell} = \max \left\{ \theta \mid f_{2}^{t}u + d_{1\ell}\theta \leq \phi_{\max} - \phi_{0} + \epsilon \right\}$$

$$-F_{2}^{t}u - q_{\ell}\theta \leq - d_{2}$$

$$u \geq 0.$$

This problem is always feasible and again using duality theorem,

$$\theta_{\ell} = \min \left\{ -d_{2}^{t}z + (\phi_{\max} - \phi_{o} + \varepsilon)z_{o} \middle| \begin{array}{l} q_{\ell}^{t}z + d_{1\ell}z_{o} = 1 \\ f_{2}z_{o} - Fz \ge 0 \\ z \ge 0, z_{o} \ge 0 \end{array} \right\}$$

with the usual understanding that θ_{χ} = + ∞ if the constraint set above is empty.

Note that $d_2 \leq 0$ and $\phi_{\max} - \phi_0 + \epsilon \geq 0$ and hence $(z, z_0) = (0, 0)$ is a dual feasible solution. Also the linear program defining θ_{ℓ}^1 is only one row different for different ℓ , so that they are expected to be solved without exceeding amount of computation.

Though it usually takes only several pivotal steps to solve (3.8), it may be necessary, however, to pivot more for large scale problems. However, since the value objective function of (3.8) approaches to its minimal value monotonically from below, we can stop pivoting if we like when the value of objective function becomes greater than some specified value. Important thing to note is that if we pivot more, we tend to get a deeper cut, in general.

4. Numerical Examples

The figure below shows a simple 2 dimensional example:

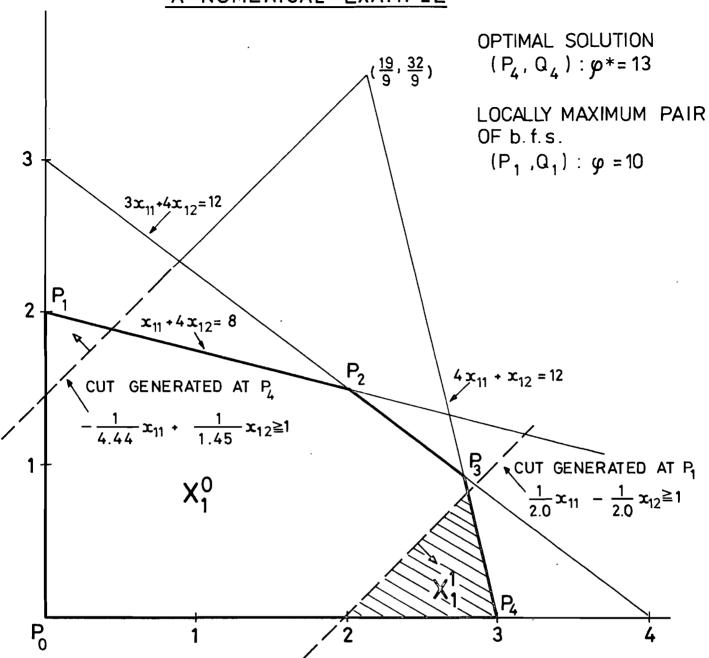
maximize
$$\phi(\mathbf{x}_{1}, \mathbf{x}_{2}) = (-1, 1) \begin{pmatrix} \mathbf{x}_{11} \\ \mathbf{x}_{12} \end{pmatrix} + (1, 0) \begin{pmatrix} \mathbf{x}_{21} \\ \mathbf{x}_{22} \end{pmatrix}$$

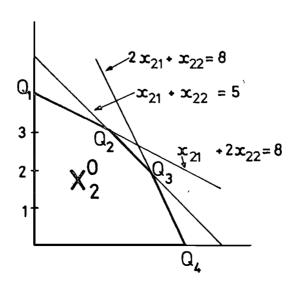
$$+ (\mathbf{x}_{11}, \mathbf{x}_{12}) \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x}_{21} \\ \mathbf{x}_{22} \end{pmatrix}$$
s. t. $\begin{pmatrix} 1 & 4 \\ 4 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} \mathbf{x}_{11} \\ \mathbf{x}_{12} \end{pmatrix} \leq \begin{pmatrix} 8 \\ 12 \\ 12 \end{pmatrix}, \quad \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x}_{21} \\ \mathbf{x}_{22} \end{pmatrix} \leq \begin{pmatrix} 8 \\ 8 \\ 5 \end{pmatrix}$

$$(\mathbf{x}_{11}, \mathbf{x}_{12}) \geq 0, \qquad (\mathbf{x}_{21}, \mathbf{x}_{22}) \geq 0 .$$

There are two locally maximum pairs of basic feasible solutions i.e., (P_1, Q_1) and (P_4, Q_4) for which the value of objective function is 10 and 13, respectively. We applied the algorithm omitting step 2'. Two cuts generated at P_1 and P_4 are shown on the graph. In two steps, $X_1^2 = \phi$ and the global optimum (P_4, Q_4) has been identified.

A NUMERICAL EXAMPLE





We have coded the algorithm in FORTRAN IV for CYBER 74 at Technische Hochschule, Wien, and tested it for various problems of size up to 10×22 , 13×24 , all of them were solved successfully.

Problem No.	Size of the Problem		ε/φ _{max}	No. of Local Maxima Identified	CPU time
riobiem No.	<u> </u>	<u></u>	шах	Identified	(sec)
1	2 x 4	2 x 4	0.0	1)
2	3 x 6	3 x 6	0.0	1	≥ 0.5
3	2 x 5	2 x 5	0.0	1)
4	6 x 11	6 x 11	0.0	1	
5	3 x 5	3 x 5	0.0	2	< 0.5 ≤ 0.5
6	5 x 8	5 x 8	0.0	1	
7	3 x 6	3 x 6	0.0	1 .	0.998
8	7 x 11	7 x 11	0.0	1)
9	5 x 8	5 x 8	0.0	2	0.57
10	9 x 19	9 x 19	0.0	2)
11	6 x 12	6 x 12	0.05	5	8.069
12	6 x 12	6 x 12	0.01	6]
13	6 x 12	6 x 12	0.0	6	
14	10 x 22	13 x 24	0.05	3	20.74

Problem 2 is taken from [20] and problem 9 from [2]. $11 \sim 13$ are the same problems having six global maxima with equal value. These are in fact global optima. The data for this problem is given below:

$$c_1 = 0$$
, $c_2 = 0$, $b_1 = b_2 = (21, 21, 21, 21, 21, 21)^t$

$$C = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 2 \end{bmatrix} \quad A_1 = A_2 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 1 & 0 & 0 & 0 & 0 \\ 2 & 3 & 4 & 5 & 6 & 1 & 2 & 0 & 0 & 1 & 0 & 0 & 0 \\ 3 & 4 & 5 & 6 & 1 & 2 & 10 & 0 & 1 & 0 & 0 & 0 \\ 4 & 5 & 6 & 1 & 2 & 3 & 0 & 0 & 0 & 1 & 0 & 0 \\ 5 & 6 & 1 & 2 & 3 & 4 & 5 & 6 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_1 = A_2 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 4 & 5 & 6 & 1 & 2 & 3 & 0 & 0 & 0 & 1 & 0 & 0 \\ 4 & 5 & 6 & 1 & 2 & 3 & 4 & 10 & 0 & 0 & 0 & 0 & 1 & 0 \\ 5 & 6 & 1 & 2 & 3 & 4 & 5 & 6 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

This is the problem associated with convex maximization problem

$$\max\{\frac{1}{2}x^{t}Cx \mid A_{o}x \leq b, x \leq 0\}$$

Data for problem 14 was generated randomly.

REFERENCES

- [1] Altman, M. "Bilinear Programming," Bulletin d'Academie Polonaise des Sciences, Serie des Sciences Math. Astr. et Phys., 19
 No. 9 (1968), 741-746.
- [2] Balas, E. and Burdet, C-A. "Maximizing a Convex Quadratic Function Subject to Linear Constraints," Management Science Research Report No. 299, GSIA, Carnegie-Mellon University, July 1973.
- [3] Cabot, A.V. and Francis, R.L. "Solving Certain Nonconvex Quadratic Minimization Problems by Ranking Extreme Points," J. ORSA 18 No. 1 (1970), 82-86.
- [4] Charnes, A. and Cooper, W.W. "Nonlinear Power of Adjacent Extreme Point Methods in Linear Programming," Econometrica, 25 (1957), 132-153.
- [5] Candler, W. and Townsley, R.J. "The Maximization of a Quadratic Function of Variables Subject to Linear Inequalities," Management Science, 10 No. 3 (1964), 515-523.
- [6] Cottle, R.W. and Mylander, W.C. "Ritter's Cutting Plane Method for Nonconvex Quadratic Programming," in Integer and Nonlinear Programming (J. Abadie, ed.) North Holland, Amsterdam, 1970.
- [7] Dantzig, G.B. "Solving Two-Move Games with Perfect Information," RNAD Report P-1459, Santa Monica, California, 1958.
- [8] Dantzig, G.B. "Reduction of a O-1 Integer Program to a Bilinear Separable Program and to a Standard Complementary Problem," Unpublished Note, July 27, 1971.
- [9] Falk, J. "A Linear Max-Min Problem," Serial T-251, The George Washington University, June 1971.
- [10] Gallo, G. and Ülkücü, A. "Bilinear, Programming: An Exact Algorithm," Paper presented at the 8th International Symposium on Mathematical Programming, August 1973.
- [11] Konno, H. "Maximization of Convex Quadratic Function under Linear Constraints," will be submitted as an IIASA working paper, November 1974.
- [12] Konno, H. "Bilinear Programming Part II: Applications of Bilinear Programming," Technical Report No. 71-10, Department of Operations Research, Stanford University, August 1971.

- [13] Mangasarian, O.L. "Equilibrium Points of Bimatrix Games," J. Soc. Indust. Appl. Math, 12 No. 4 (1964), 778-780.
- [14] Mangasarian, O.L. and Stone, H. "Two-Person Nonzero-Sum Games and Quadratic Programming," J. Math. Anal. and Appl., 9 (1964), 348-355.
- [15] Mills, H. "Equilibrium Points in Finite Games," J. Soc. Indust.
 Appl. Math., 8 No. 2 (1960), 397-402.
- [16] Mylander, W.C. "Nonconvex Quadratic Programming by a Modification of Lemke's Method," RAC-TP-414, Research Analysis Corporation, McLean, Virginia, 1971.
- [17] Ritter, K. "A Method for Solving Maximum Problems with a Nonconcave Quadratic Objective Function," Z. Wahrscheinlichkeitstheorie, verw. Geb., 4 (1966), 340-351.
- [18] Raghavachari, M. "On Connections between Zero-one Integer Programming and Concave Programming under Linear Constraints," J. ORSA, 17
 No. 4 (1969), 680-684.
- [19] Tui, H. "Concave Programming under Linear Constraints," Soviet Math., (1964), 1437-1440.
- [20] Zwart, P. "Nonlinear Programming: Counterexamples to Two Global Optimization Algorithms," J. ORSA, 21 No. 6 (1973), 1260-12.
- [21] Zwart, P. "Computational Aspects of the Use of Cutting Planes in Global Optimization," Proc. 1971 Annual Conference of the ACM (1971), 457-465.