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Abstract 

Climate change mitigation and security of energy supply are important targets of Austri-

an energy policy. Bioenergy production based on resources from agriculture and forestry 

is an important option to attain these targets. In order to increase the share of bioenergy, 

supporting policy instruments are necessary. The cost-effectiveness of these instruments 

in attaining policy targets depends on the availability of bioenergy technologies. Ad-

vanced technologies such as second generation biofuels, biomass gasification for power 
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production and bioenergy with carbon capture and storage (BECCS) will likely change 

the performance of policy instruments. This article assesses the cost-effectiveness of 

energy policy instruments with respect to greenhouse gas emission (GHG) reduction and 

fossil fuel substitution under consideration of new bioenergy technologies for the year 

2030. Instruments that directly subsidize bioenergy are compared with instruments that 

aim at reducing GHG emissions. A spatially explicit modeling approach is used to ac-

count for biomass supply and energy distribution costs in Austria. Results indicate that a 

carbon tax performs cost effective with respect to both policy targets if BECCS is not 

available. However, the availability of BECCS creates a tradeoff between GHG emis-

sion reduction and fossil fuel substitution. Biofuel blending obligations are costly in at-

taining the policy targets. 

Keywords: Bioenergy Policy, Bioenergy with Carbon Capture and Storage, Spatially 
Explicit Modeling 
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Nomenclature  

Variables Unit Description 

A € Biomass supply costs 

, ,aagrar
i sc pl  - Decision variable for separable programming for agricultural biomass 

, ,bi o u  - Decision variable for separable programming for forestry biomass 

, ,bdirect
i k b  

MWhbiomass Biomass transported directly to consumers (e.g. fuel wood) 

, , , ,bplant
i j b l t  MWhbiomass Biomass transported to plants 

emtaxed  
tCO2 

CO2 emissions that may be taxed by policy (all emissions without 
agriculture) 

p € MWh-1 Price of wood supply 
q MWh Quantity of wood supply 

,q j t
bio  MWh Heat production in the plant 

, , ,qdh
j h ns t  MWh Heat transportation from plant to district heating network 

, ,qdhf
h ns t  MWh Fossil district heat production 

,qh ns
gas

 MWh Amount of gas used for heating 

totem tCO2e Total GHG emissions in tCO2 equivalents  

,u gnet
h ns  

- Binary variable for investment in gas network 

,udnet
h ns  - Binary variable for investment in district heating network 

, ,u pipe
j h ns  - Binary variable for investment in transportation pipeline 

,u plant
j l  - Binary variable for plant investment 

,zbio
j c MWh Amount of energy commodity produced in a plant 

, , ,zbio
j k c t MWh Amount of energy commodity transported to consumers in each period 

,z fossil
k f MWh Amount of fossil fuel used to satisfy demand 

Parameters   
, o  - Elasticity of biomass supply 

,
bio
c d - Efficiency of converting a bioenergy commodity to useful energy 

,
biod
b d

 
- 

Efficiency of converting biomass directly to useful energy (e.g. fuel 
wood)  

, ,
conv
j l c - Conversion efficiency in bioenergy plants 

,
dh
h t  - Efficiency of distributing heat in district heating network 

,
dhf
h t

 
- Efficiency of fossil district heating boiler 

,
fossil
f d - Efficiency of converting fossil fuel to useful energy 

gas - Efficiency of converting natural gas to heat 

,
heat
j l - Heat efficiency in bioenergy plants 

, , ,
trans
j h ns t  - Transportation efficiency of heat pipeline 

,i ob  MWh y-1 Maximum sustainable yield (MSY) in supply cell 

,

_

,j l tb MWh  Production capacity of plant 
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,fs ob  MWh y-1 MSY in federal state 

C  - Constant in wood supply function 
ccsc € tCO2

-1 Costs of carbon capture and storage 

dhf
tc  € MWhfuel

-1 Costs of fossil districting heat fuel 

,
dnet
h nsc  € y-1 Annualized costs of investment in district heating network  

emc  € tCO2
-1 CO2 price 

l
f
fossic € MWhfuel

-1 Price of fossil fuel 

foss
f

ilinvc
 

€ MWhfuel
-1 Investment costs necessary at consumer for fossil technology 

gas
tc € MWhgas

-1 Costs of natural gas 

,
gnet
h nsc

 
€ MWhgas

-1 Costs of natural gas 

inv
cc € MWhbiomass

-1 Investment cost necessary at consumer for bioenergy technology 

,
d

k b
invc

 
€ MWhbiomass

-1 
Investment cost necessary at consumer for direct biomass consump-
tion (e.g. fuel wood) 

, ,
pipe
j h nsc € y-1 Annualized costs of investment in transportation pipeline 

,
plant
j lc  € y-1 Annualized costs of plant investment 

,
prod
j lc  € MWhbiomass

-1 Variable costs of bioenergy production 

sup
ic  € MWhbiomass

-1 Costs of biomass supply 

, ,
transb
i j bc  € MWhbiomass

-1 Costs of biomass transportation from i to j 

, ,
tr
j c

c
k
ansc € MWh-1  Costs of transporting commodity from j to k 

, ,
transd
i k bc

 
€ MWhbiomass

-1 Costs of biomass transportation from i to k  

,k dd MWh y-1 Energy demand 

, ,
agrar
sc b ple

 
tCO2e MWhbiomass

-1 
GHG Emissions in tCO2 equivalents from fertilizer application in 
agricultural production 

,
ccs
l be tCO2 MWhbiomass

-1 Carbon capture rate in plant 

dhfe
 

tCO2 MWhfuel
-1 CO2 emission factor of fossil district heating fuel 

gase tCO2 MWhgas
-1 CO2 emission factor of natural gas 

fossil
fe  tCO2 MWh-1 CO2 emission factor of fossil fuels 

, ,
trans
i j be  tCO2 MWhbiomass

-1  CO2 emission factor of biomass transportation from i to j 

, ,
trans
i k be

 
tCO2 MWhbiomass

-1 CO2 emission factor of commodity transportation from i to k 

, ,
trans
j k ce  

tCO2 MWhcommodity
-

1 
CO2 emission factor of commodity transportation 

,
blend

c df
 

- Mandatory share of bioenergy commodity in final energy demand 

p € MWh-1 Price of forest wood 

, , ,
agrar
i sc b plp  € MWh-1 Price of agricultural products 

, , ,
agrar
i sc b plq  MWh Amount of agricultural products 

*q
 

MWh Supply of wood harvests 

*
uq

 
- Quantities for separable programming 

  
, ,, ,i o fs oq q q

 
MWh y-1 

Observed quantities of wood harvests total, in supply cell, in federal 
state 



5 
 

,
D
h tq MWh season-1 Heat demand in settlement 

, ,
D
h ns tq MWh season-1 Heat demand in district heating network 

,

_ pipe

ns tq  MWh season-1 Capacity of heat transportation pipeline 

,s f
ftx tx

 
- Binary parameters controlling which fossil fuels are priced  

   
Subscripts   
b  - Feedstock 
c  - Energy commodity 
d  - Energy demand for useful energy 
f  - Fossil fuels 

fs  - Federal state 

h  - Settlements supplied by heat networks 
i  - Biomass supply site 
j  - Plant location 

k  - Demand region 

l  - Technology and size of bioenergy plant 
ns  - District heating network size 
o - Forest ownership 
pl  - Price level of agricultural biomass 
sc  - Price scenario for agricultural biomass 
t  - Season 
u  - Index for separable programming 
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1. Introduction	

Climate change mitigation and security of energy supply are among the main drivers of 

current European energy policies (COM, 2010). Austria committed to a 13% reduction 

of greenhouse gas (GHG) emissions with respect to the reference year 1990 in the Kyoto 

commitment period of 2008-2012 (Council, 2002) and to an increase of renewable ener-

gy production by 11 percentage points until 2020 according to EU directive 2009/28/EC. 

Currently, Austria is far from reaching the Kyoto target (Umweltbundesamt Austria, 

2010) and significant efforts are necessary to meet the 2020 energy targets (Nakicenovic 

et al., 2008). More forestry biomass utilization (Schadauer, 2009) and agricultural bio-

mass production are still possible and necessary to reach the ambitious climate change 

mitigation and renewable energy targets in Austria. Particularly after 2020, the global 

GHG emission reductions will need to be considerably higher than the Kyoto targets to 

limit the maximum warming of the global mean temperature to 2 °C (Roeckner et al., 

2010). 

1.1. Policy	Instruments	

Several policy instruments are in place or under discussion to facilitate the achievement 

of these policy targets in Austria. This article focuses on bioenergy as climate change 

mitigation option and discusses policies that directly or indirectly support bioenergy 

production. Policies that are introduced to reduce GHG emissions and thus indirectly 

promote bioenergy, including a CO2 tax and the EU Emission Trading Scheme (ETS) 

are compared to policies that directly support bioenergy production including biofuel 

blending obligations, feed-in tariffs for biomass power production and subsidies to bio-

mass furnaces.  
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Policy instruments that are designed to directly reduce GHG emissions are expected to 

be cost-effective in reducing GHG emissions if they allow an efficient allocation of re-

duction efforts among market participants and technologies. Even in that case cost-

effectiveness with respect to fossil fuel substitution may be low because GHG emission 

reduction does not necessarily correspond with fossil fuel substitution (Schmidt et al., 

2010a). Also, long-term technological development may not be triggered by these poli-

cies because technologies that are close to being competitive on the market are chosen 

mainly (Sandén and Azar, 2005). The following GHG emission reduction policies are 

considered in our analysis: 

 A CO2 tax is currently under discussion in the European Union and is pro-

posed as one measure of financing the Union’s budget. It is applied on all 

fossil fuels before combustion according to the carbon content of the respec-

tive fuel. Denmark, Finland, Italy, Ireland and Sweden are EU members that 

have already implemented a CO2 tax. However, none of these countries apply 

a uniform tax on all fossil fuel consumers but exempt some sectors from the 

tax. Tax rates vary from 10 € tCO2
-1 to up to 150 € tCO2

-1 (Pope and Owen, 

2009). As marginal abatement costs are not known with certainty, the total 

amount of GHG emission abatement cannot be determined a-priori when in-

troducing a tax. A CO2 tax on fossil fuels only would not encourage CCS. If 

Carbon Capture and Storage (CCS) should be supported, bioenergy produc-

ers would have to receive tax exemptions. In Norway, this approach has been 

taken to make a commercial CCS project profitable (International Energy 

Agency, 2010). 
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 The EU ETS was introduced in 2005. About 250 facilities which emit around 

one third of total GHG emissions were affected in Austria. CO2 emission 

permits were allocated for free in the start-up phase by applying a grandfa-

thering principle. The CO2 emission allowances can be traded on a market to 

attain efficient allocations. The second phase of the EU ETS is from 2008 to 

2012. In Austria, the main differences to the first phase (from 2005 to 2008) 

are a slightly lower cap (reduction from 33.19 MtCO2 to 32.8 MtCO2) and 

the auctioning of 1.2% of the allowances in the initial phase of the scheme 

(Federal Ministry of Agriculture, Forestry, Environment and Water Man-

agement, 2007; Paoletta and Taschini, 2006). GHG emissions from biomass 

are assumed to be carbon neutral and therefore no ETS allowances have to be 

acquired for biomass combustion.  

Direct promotion of specific bioenergy technologies is expected to have low cost-

effectiveness because only a subset of available technologies is usually subsidized. 

However, technological development may be triggered for these technologies which will 

make them in the long-term competitive (Sandén and Azar, 2005). We include the fol-

lowing policies in our analysis: 

 Feed-in tariffs for different forms of renewable electricity production such as bi-

oenergy power plants, small water power plants and photovoltaic power are de-

fined in the Austrian renewable energy law. Facilities that are included in the 

support scheme receive feed-in tariffs for 12 years. Feed-in tariffs are chosen to 

be close to production costs of specific technologies and therefore depend on the 

respective technology. 
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 The EU directive 2003/30/EC sets an indicative target for all member states to 

blend a share of 5.75% of biofuels with gasoline until 31st December 2010. Aus-

tria ratified this law in 2003. In 2009, the EU decided on directive 2009/28/EC, 

which demands among other targets a share of 10% of renewable energies in the 

transportation sector. In contrast to directive 2003/30/EC, this regulation does 

not dictate the utilization of biofuels. Electric cars or public transportation rely-

ing on renewably produced electricity are measures that can also be applied to. 

However, biofuels are one major technological option to attain the targets in the 

short term (Sandy Thomas, 2009).  

 Subsidies are granted for wood heating systems by all federal states in Austria. 

These subsidies are granted if a heating system is installed in a new building or if 

an old heating system is replaced. Technological development is not the main 

aim of this policy, because heating furnaces are technically mature and signifi-

cant technological improvements cannot be expected. However, subsidies may 

be politically more accepted in promoting renewable energy than new taxes, e.g. 

a CO2 tax. 

While the presented policy instruments work differently, their overall targets are the 

same: they are implemented to reduce GHG emissions and shift energy production from 

fossil fuels to renewable energies. The cost-effectiveness, i.e. the costs of attaining the 

policy targets, is likely to vary between the policy instruments and strongly depends on 

the availability of bioenergy technologies in energy consuming sectors. Highly efficient 

power production with Biomass Integrated Combined Cycle Plants (BIGCC) in the 

power sector and second generation biofuel production based on woody biomass in the 
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transportation sector are technologies that are expected to increase bioenergy productivi-

ty significantly (Havlík et al., 2010; Lange, 2007; Marbe et al., 2004; Steenhof and 

McInnis, 2008). In addition, BioEnergy with Carbon Capture and Storage (BECCS), i.e. 

the application of CCS to bioenergy plants, is considered a possible major contributor to 

future climate mitigation efforts (Azar et al., 2010; Luckow et al., 2010). However, it is 

not clear by now, how much these technologies can contribute to carbon mitigation and 

renewable energy targets and how the respective policy instruments will perform in at-

taining these policy targets at least costs, if these technologies become available.  

1.2. Challenges	in	Bioenergy	Modeling	

The relative performance of the discussed policy instruments not only relies on techno-

logical development but also on the spatial variation of demand and supply. We have 

identified the following important factors. (i) Energy distribution costs, particularly for 

district heating, depend on heat demand densities and on the distance from plant to de-

mand (Grohnheit and Mortensen, 2003; Ivezic et al., 2008; Konstantin, 2007). (ii) Bio-

energy technologies rely on different types of feedstock – e.g. starchy energy crops for 

first generation biofuels versus short rotation lignocellulose or forest wood for second 

generation biofuels. The availability and the costs of different types of biomass depend 

on biophysical characteristics of land and on current agricultural production systems. 

(iii) Transportation costs have significant impact on the final cost of the bioenergy sup-

ply chain and vary with the technology, plant size, and the distance from plant to pro-

duction sites (Eriksson and Björheden, 1989; Luckow et al., 2010; Richard, 2010). Spa-

tial variation of biomass supply and heat demand is high in Austria (Schmidt et al., 

2010b). The location of plants in relation to feedstock supply and energy demand is 
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therefore relevant. Modeling efforts that spatially explicitly integrate biophysical and 

logistic constraints in the bioenergy supply chains as well as facility and infrastructure 

constraints in energy demand may increase the reliability of modeling results. Addition-

ally, feedstock production on agricultural land competes with food and feed production. 

The trade-offs between food and energy crop production should therefore be made ex-

plicit in bioenergy models (Bryan et al., 2010).  

Previous research on this topic comparatively assessed bioenergy policies. Global, con-

tinental and regional studies have been conducted using different methodologies. They 

produce different results and come to different conclusions on optimal application of 

technologies and policies (see Table 1). However, a regional spatially explicit bioenergy 

model that includes feedstock production, considers competition for land use, models  

Table 1: Studies on costs of bioenergy technologies and policy instruments. 

Article Modeling  
approach 

Biomass supply modeling Demand  
modeling 

Technologies / policies 
selected for cost-
effective GHG emis-
sion reduction 

Global and continental models    
Azar et al. 
(2003) 

Optimization Model Fixed assumptions on total 
availability of biomass 

Scenarios Biomass based heat and 
power production, 
biofuels play minor role 

Berndes et al. 
(2007) 

Optimization Model Fixed assumptions on total 
availability of biomass 

Scenarios Biofuel policy costly, 
carbon tax prefers heat 
and power production 

Gielen et al. 
(2003) 

Optimization Model Fixed assumptions on total 
availability of biomass 

Scenarios Mainly heat and fuel 
production selected, no 
power production 

Luckow et al. 
(2010) 

Partial Equilibrium 
Model 

Supply Curves, shows 
trade-off between energy 
and food production 

Demand Curves Without CCS: fuel, 
power and heat produc-
tion, with CCS: mainly 
power production 

Magné et al. 
(2010) 

Combined bottom 
up and top down 
model 

Supply Curves but does not 
show decline in food pro-
duction 

Demand Curves No detailed assessment 
of bioenergy technolo-
gies 

Regional Models    
Alfonso et al. 
(2009) 

Optimization Model Modeling of technical 
biomass potential 

Bottom – Up 
Model 

Power 

Bryan et al. 
(2010) 

Cost calculations Modeling of land productiv-
ity, shows trade-off between 
energy and food production  

Demand not 
considered 

Only biofuels assessed 

König (2011) Optimization Model Fixed assumptions on costs 
and availability of biomass 

Scenarios – 
Bottom Up 

Heat and Power, 
Biofuel Policy costly 
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energy production technologies and distribution systems in detail and is applied to ana-

lyze the cost-effectiveness of policy instruments has not been published in the scientific 

literature yet. This article presents such a model to analyze the cost-effectiveness of two 

classes of energy policy instruments with respect to GHG emission reduction and fossil 

fuel substitution: instruments that are designed to reduce CO2 emissions, including a 

CO2 tax and the ETS, and technology specific instruments for the promotion of bioener-

gy, including feed-in tariffs for biomass power plants, biofuel policies and pellets subsi-

dies. The trade-offs between the two policy goals, assuming the availability of new bio-

energy technologies, are analyzed as well. 

The article is structured as follows: section 2 introduces the model and data as well as 

the bioenergy technologies included in the assessment and describes the policy scenari-

os. Section 3 presents the results including costs, GHG emission reductions, and fossil 

fuel substitution of the policy scenarios. Section 4 discusses the article with respect to 

the results and derives major conclusions. Model details can be found in the Appendix. 

2. Data	and	Methodology	

2.1. A	techno‐economic	spatially	explicit	model	

A spatially explicit, techno-economic mixed integer program (MIP) is developed and 

applied to assess the cost-effectiveness of different policy instruments in attaining the 

policy targets of reducing GHG emissions and substituting fossil fuels in Austria. The 

model minimizes the costs of supplying Austria with transportation fuels, heat and elec-

tricity from either bioenergy or fossil fuels. It is static and simulates one year of opera-

tion. The year is split into two heating seasons to consider the differences in heat de-

mand between winter and summer. The current model version considers domestic bio-
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mass supply and energy demand and does not allow imports and exports of biomass or 

bioenergy commodities. The model determines which bioenergy plants (i.e. pellets, first 

generation ethanol or biodiesel, second generation methanol, BIGCC or BECCS, heat-

ing) of a specific size and specific location shall be built and which demand regions are 

supplied with bioenergy and/or with fossil fuels. Direct delivery of fuel wood from for-

est production sites to demand regions is possible. Each plant produces various energy 

commodities (Figure 1). They replace fossil fuels in heating, power generation, and 

transportation. By assumption, pellets and fuel wood are burnt in boilers of households 

or community heating networks, power is transmitted to the national grid, surplus heat is  

 
Figure 1: Diagram of the mixed integer programming model. 
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delivered to district heating networks and biofuels replace gasoline for transportation 

purposes. The objective function is minimized and consists of the costs of biomass sup-

ply from forestry and agriculture, biomass transportation (i.e. transportation of energy 

crops and forest biomass from biomass supply sites to plants and of fuel-wood from bi-

omass supply sites to consumers), plant investment annuities, district heating infrastruc-

ture annuities, investment annuities of heating furnaces, CCS costs, commodity transpor-

tation (i.e. transportation of pellets and transportation fuels from plants to consumers) 

and the costs of the fossil reference technologies. Biomass supply curves endogenously 

determine the price of feedstock from forestry and agriculture, while prices of fossil 

fuels are given exogenously. Energy demand is defined exogenously by scenario as-

sumptions. The modeling approach focuses on bioenergy technologies and does not ex-

plicitly consider other low-carbon or renewable technologies. Instead, their development 

is implicitly considered in the demand scenarios (see section 2.4.). Energy efficiency 

measures, particularly in the heating sector, as well as an expansion of non-bioenergy 

renewable power production is modeled by reducing the demand for final energy. The 

model is able to assess the relative cost-effectiveness of policy instruments with respect 

to attaining two policy objectives i.e. reducing GHG emissions and substituting fossil 

fuels under consideration of bioenergy technologies. We assess energy supply system 

costs associated with a shift from fossil fuels to bioenergy while transaction costs in-

duced by the policy instruments are not considered in the analysis. Taxes currently ap-

plied to both fossil and bioenergy fuels are not included in the model. A detailed de-

scription of the mixed integer program can be found in the appendix. 
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2.2. Biomass	Resources	

We consider biomass from forestry and agriculture as possible feedstock for bioenergy 

production. Biomass supply curves are used to model the amount of biomass that can be 

provided at different prices. However, data is separately available for forestry and agri-

culture. The sectors are therefore implemented with different approaches in the MIP.  

Forestry	Biomass	

An inverse biomass supply curve using a constant elasticity function is applied 

1

p Cq   
(1)

where p  is the price, q is the quantity, C  is a constant and  is the supply elasticity. The 

integral  


 


*

1 1
* *

*

0 1

q
q q

A p dq q p
q q

  


   
           
  

(2)

yields the area A  under the supply curve and thus the biomass supply costs when bio-

mass amount *q  is produced. Parameters p  and q  represent an observed price and quan-

tity. 

Schwarzbauer (1997) estimates different supply elasticities o  for different types of for-

est ownership (index o ). Supply elasticities of private owners of small forests are esti-

mated to be lower (around 0.4) than of large forests (around 0.5). The supply elasticities 

of state managed forests are even higher (around 0.7). Data on observed quantities  ,fs oq  

by ownership are available on the level of federal states (index fs ), while price p  is a 

single national value because local price variations are not reported (Federal Ministry of 
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Agriculture, Forestry, Environment and Water Management, 2009). We expect them to 

be of minor magnitude and account for transportation costs explicitly in the model. To 

further refine the spatial resolution of the biomass supply, we use spatially explicit esti-

mates on the maximum sustainable yield (MSY). Details on the modeling of MSY can 

be found in Schmidt et al. (2010b). Denoting the MSY of an ownership (index o ) in one 

supply cell (index i ) with ,i ob , the observed quantity  ,i oq  for that cell is determined by 

  ,

, ,
,

i o

i o fs o
fs o

b
q q

b
  

(3) 

The total observed value  ,s oq  is multiplied by the proportion of estimated MSY ,i ob  and 

total MSY of that state and ownership ,fs ob . The aggregated forest wood supply curve, 

with indications of the MSY and observed prices and quantities in the year 2009 can be 

found in Figure 2. 

Equation (4) shows a transformation of Equation (2) where supply by ownership and 

grid cell are included. The function is convex and can therefore be linearized by separa-

ble programming (Jensen and Bard, 2002) which is also shown in the following equa-

tion:  


    

1
* 1
, * * *

, , ,,

,
1 1

o

o
i o o o

i o u u i o ui o
uo oi o

q
q p q p q q b

q


 

 

 
  
    

  

(4) 

where parameter *
uq denotes the share of the observed amount of biomass that is pro-

duced, e.g. a value of 0.1 means that 10% of the amount of biomass observed in the ref-

erence period is supplied. Variable , ,i o ub  is a decision variable involved in the separable 

programming and u is the index of the separable steps. The amount of forestry biomass 
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in a supply cell available for bioenergy production (see model details in the Appendix) is 

limited by  

  , , , , , ,

1
* *

, ,,
,, , , ,

b b o
plant direct
i j b l t u u i oi k b

j b
ui

l
o

o ui k b

q q q b     
(5) 

The term , , , , , ,
, , , ,

b bplant direct
i j b l t i k b

j b l i k b

 
 
represents biomass transported from supply regions (i) to 

bioenergy plants (j) of different types (l) and to consumers (k) in season (t). Index b in-

dicates the type of biomass, in this case forest wood. The following convexity condition 

is necessary in separable programming: 

, , 1.i o u
u

b   (6)

Agricultural	Biomass	

Biomass growth on agricultural land for different crops under different management 

options and crop rotations is simulated with the biophysical process model EPIC (Envi-

ronmental Policy Integrated Climate) (Izaurralde et al., 2006; J. R. Williams, 1995). 

Outputs of EPIC are part of gross margin calculations, which are input in the spatially 

explicit land use optimization model PASMA (Positive Agricultural Sector Model Aus-

tria) (Schmid and Sinabell, 2007) to find optimal land use management choices by max-

imizing total gross margin subject to resource endowments at municipal level. Prices of 

crops are taken from the year 2006 (Statistik Austria, 2010) and linearly extrapolated to 

2030, based on the OECD agricultural outlook (OECD, 2009). About 40 agricultural 

crops with three intensification levels are represented in PASMA. They have been 

grouped into seven categories for the MIP including grains, oil seeds, forage crops, eth-

anol crops, oil crops, short rotation cellulose, and others. Ethanol crops are starchy  
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Figure 2: Forest wood supply curve (left) and agricultural supply curve (right).  

Note: The right picture shows the increase in short rotation cellulose (src) production and the respective decrease in 
the production of the most important food and feed crops if prices for short rotation lignocellulose are increased. Both 
supply curves are an agreggate for Austria. 

and sugar crops that can be used for first generation ethanol production while oil crops 

(e.g. sunflower and rapeseed) are used for biodiesel production. Heat, power and second 

generation biofuels may be produced from short rotation cellulose (e.g. short rotation 

poplar). Spatially explicit biomass supply curves are generated with PASMA by steadily 

increasing prices for energy crops from 0% to 300% while leaving the prices of all other 

crops constant. Thus, points on the supply curve are generated accounting for intensifi-

cation and land use changes, i.e. bioenergy crops substitute food and feed. Combinations 

of single crop price changes (e.g. ethanol crops only) and multi-crop price changes (e.g. 

ethanol and oil crops) shall depict a wide set of supply responses. An aggregated supply 

curve for short rotation lignocellulose can be found in Figure 2. The figure shows that 

price increases of 100% are necessary to trigger substantial amounts of short rotation 

cellulose production in Austria. The increases in production cause significant decreases 

in food and feed production. Parameters , , ,
agrar
i sc b plp  (price of crops) and , , ,

agrar
i sc b plq  (quantity of 

crop) represent points on the supply curve. Index i denotes the supply region, index  sc 
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indicates  the price scenario, b is the index for the crop type and pl is the price level of 

the energy crop. Costs of agricultural production are determined by  

, , , , , , , ,
, , ,

aagrar agrar agrar
i sc b pl i sc b pl i sc pl

i sc f pl

p q  (3) 

where , ,aagrar
i sc pl  is the decision variable for separable programming as outlined in the previ-

ous section. Transportation of energy crops to plants , , ,
, ,

b plant
i j b l

j b l
  is limited by 

, , , , ,,
, ,

, , ,
,

ab agrar agrar
i sc b

plant
i j b l plt

j b
i sc pl

pll cr

q   (4) 

where b is any type of biomass except of forest wood. There are two dimensions (price 

scenario sc and price level pl) over which the convexity of the curve has to be guaran-

teed in each supply cell:  

, ,
,

1.agrar
i sc pl

sc pl

a   (5) 

2.3. Biomass	conversion	technologies	

There are numerous bioenergy conversion technologies, either commercially developed 

or under research. We select a subset of these technologies based on the current deploy-

ment and availability of the technologies as well as on a literature review for technolo-

gies that are still under research. Input costs for the technologies are based on Kalt et al. 

(2010) who estimated the costs of bioenergy technologies up to 2030, applying a learn-

ing curve approach to model decreases in costs of technologies. BECCS is not modeled 

by Kalt et al. (2010). Several other sources are taken into account to estimate these costs. 

Costs and technological data for bioenergy production are listed in Table 2. Solid bio-

mass technologies are available for heating of individual buildings or small settlements  
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Table 2: Investment costs, conversion efficiencies and carbon capture and storage characteristics of bioenergy 
technologies. 

Parameter name Unit Value References 

Investments Costs Plants (Capacity 100 MWbiomass)
a   

Steam Power Million € 48 d

Steam Power with CCS Million € 50 e

BIGCC Million € 78 f

BIGCC with CCS Million € 79.5 e

Ethanol First Generation Million € 35 d

Ethanol First Generation with CCS Million € 40 g

Biodiesel First Generation Million € 9 d

Methanol Second Generation Million € 87 h

Methanol Second Generation with CCS Million € 89 i

Pellets Million € 5 d, k

Heating Plant Million € 17 d

Conversion Efficiency  
Commodity Plant Type  

Power Steam % 29 d

 Steam with CCS % 20 e

 BIGCC % 42 f

 BIGCC with CCS % 30 e

Heat Steam % 52 d

 Steam with CCS % 52 e

 BIGCC % 43 f

 BIGCC with CCS % 43 e

 Methanol Second Generation % 8 j

 Methanol Second Generation with CCS % 8 i

Fuels Ethanol First Generation (without and with CCS)  % 47 d 

 Biodiesel First Generation % 62 d

 Methanol Second Generation  % 59 h

 Methanol Second Generation with CCS % 57 i

Pellets Plantb Pellets % 100 d, k

CCS: CO2 emissions captured in production   

BIGCC with CCS tCO2 MWhbiomass
-1 0.36 e

Ethanol First Generation with CCS tCO2 MWhbiomass
-1 0.05 g

Methanol Second Generation with CCS tCO2 MWhbiomass
-1 0.22 i

Investment Costs at Consumersc  

Fuel Wood Boiler 15 kW € MWhbiomass
-1 76 d 

Fuel Wood Boiler 100 kW € MWhbiomass
-1 19 d

Pellets Boiler 15 kW € MWhbiomass
-1 82 d

Pellets Boiler 100 kW € MWhbiomass
-1 24 d

Conversion Efficiencies at Consumers   

Fuel Wood Boiler 15 kW and 100 kW % 80 d 

Pellets Boiler 15 kW and 100 kW % 89 d
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a Costs are given in the biomass capacity of the plants. Cost differences between plants with and without CCS are 
relatively low because the electric capacity of CCS plants is significantly smaller (see efficiencies).  
b Electricity consumption of pellets plants induces costs and CO2 emissions which are considered in the variable costs 
and in the emissions of the plant.  
c Investment costs per MWh are calculated by determining the annuity of total investment costs and assuming 1800 
load hours per year. 
d Kalt et al. (2010); e Azar et al. (2006); Rhodes & Ketih (2005); Uddin & Barreto (2007); f Dornburg & Faaij (2001); 
Marbet et al. (2004); Uddin & Barreto (2007); g Bonijoly et al. (2009); Lindfeldt & Westermark; h Azar et al. (2003); 
Grahn et al. (2007); Hamelinck & Faaij (2001); i Hedenus et al.(2010); Lindfeldt & Westermark (2009); Luckow et al. 
(2010); j Leduc et al. (2008); Leduc et al. (2009); k Polagye et al.(2007); Thek & Obernberger (2004); 

 (i.e. community heating networks). Fuelwood is a cheap option with respect to invest-

ment and fuel costs (Kalt et al., 2010) and is broadly used in Austria. Pellets systems are 

more efficient, comfortable to handle and need less labor from the users (Ammann et al., 

2009; Gustavsson et al., 2005). A large increase in installed capacity has been observed 

in the last years (Statistik Austria, 2009). The model considers both technologies. How-

ever, opportunity costs of fuel wood users caused by additional time requirements for 

handling fuelwood boilers are not considered. This may create a bias towards fuel wood 

boilers. This affects the competition between the two bioenergy technologies but does 

not change overall model results. 

Power is currently produced from biomass mainly with steam engines combined heat 

and power (CHP) plants (Marbe et al., 2004). BIGCC plants produce power more effi-

ciently (Dornburg and Faaij, 2001; Marbe et al., 2004), but they are more costly. Cur-

rently no commercial facilities are installed worldwide. We include both power produc-

ing technologies to explicitly address the trade-offs between them. Power production 

from biogas based on agricultural products is not considered. High feedstock and trans-

portation costs make biogas power production more costly than power production in 

BIGCC or steam engine plants based on woody biomass feedstock (König, 2011). Both, 

steam engines and BIGCC can be integrated with CCS (Azar et al., 2006; Uddin and 

Barreto, 2007).  
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A wide range of technologies is available and under development for the use of biomass 

in the transportation sector. They are commonly differentiated in first and second gener-

ation production technologies. While first generation fuels rely on starchy, sugar and oil 

crops as feedstock, second generation biofuels allow converting lignocellulosic feed-

stock, including forest products and short rotation lignocellulose from agriculture, into 

fuels. First generation biofuels are commercially available and ethanol and biodiesel 

facilities are operating around the world. Second generation biofuels are currently only 

produced in very few commercial facilities worldwide (Bacovsky et al., 2010). The most 

important first generation biofuel production technologies in Austria are ethanol and 

biodiesel production (Kranzl and Haas, 2008), which are both included in this analysis. 

Due to the early development state of second generation biofuels, various production 

technologies are still under research. Hydrolysis and subsequent fermentation competes 

with gasification of biomass. From what is known today, gasification, which allows the 

production of various fuels such as Fischer Tropsch (FT) diesel, DME or methanol 

(Demirbas, 2006) is estimated to be more competitive than hydrolysis (Bram et al., 

2009; Lange, 2007). Uncertainties in production costs and GHG emission reduction po-

tentials of DME and methanol are high. Comparative studies can be found in Wahlund et 

al. (2004) and Semelsberger et al. (2006). Due to the uncertainties, a modeling of both 

methodologies will not produce significant advantages of one technology over the other. 

We therefore chose gasification of biomass and subsequent methanol production as rep-

resentative second generation production technology. Due to lower conversion efficien-

cies, FT diesel production costs are higher and GHG emission reductions are lower than 

those of DME and methanol fuels (Sues et al., 2010). FT diesel is therefore not consid-

ered in the model. Carbon capture and storage can be applied to first generation ethanol 
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and to second generation methanol production (Azar et al., 2010; Faaij, 2006; Hedenus 

et al., 2010; Lindfeldt and Westermark, 2009). Relatively clean CO2 streams are gener-

ated in the production process that can be compressed, transported and stored directly 

without the need of cleaning processes as in power plants. However, only a limited part 

of the carbon stored in the biomass can be captured as most of the CO2 is released when 

the biofuels are combusted  in the vehicles (Hedenus et al., 2010). 

Bioenergy with carbon capture and storage (BECCS) is an emerging technology and one 

of the few options that allows achieving negative CO2 emissions (Kraxner et al., 2003), 

which may be necessary to manage climate risks effectively (Obersteiner et al., 2001). 

The carbon that is captured at the bioenergy production sites is transported by pipelines 

or ships to the final deposits which may be oil, gas or coal fields, deep saline aquifers or 

oceans. Costs for CCS after capture at the plant arise mainly from transportation and 

injection of the CO2 into the reservoir. According to Hendriks et al. (2004) costs for 

transportation over distances from 500 to 2000 km are estimated to be at 10 € tCO2
-1. 

Major oil and gas fields as well as saline aquifers can be found within this distance from 

Austria (Hendriks and Grais, 2004). The total storage capacity in Europe is estimated to 

be 86.8 GtCO2, which amounts to 18 years of total GHG emissions in the European Un-

ion in 2008. Injection costs range from 1.1 to 11.4 € tCO2
-1, depending on the type and 

depth of storage. Others estimate transportation and injection costs to be in the range of 

13 to 42 € tCO2
-1 (Azar et al., 2006; Rhodes and Ketih, 2005; Uddin and Barreto, 2007). 

We assume those costs to be at 25 € tCO2
-1. However, the technological development, 

storage capacities, storage security, and the ecological effects of carbon storage remain 

uncertain (Holloway, 1997; Thistle et al., 2006; van der Zwaan and Gerlagh, 2009). We 
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therefore run all scenarios with and without the option for CCS to account for these un-

certainties. For all plants, a scaling factor of 0.7 (Marbe et al., 2004; Hamelinck and 

Faaij, 2001) with respect to investment costs is assumed, i.e. increasing plant sizes de-

creases the specific investment costs.  

Better integration of bioenergy and CCS in industrial processes may create significant 

CO2 emission reductions (Möllersten et al., 2006; Möllersten et al., 2004; Möllersten et 

al., 2003) . However, a detailed modeling of the technologies in the relevant industries 

would be necessary for assessing the GHG emission reduction potentials. This is out of 

the context of this analysis. A rough calculation shows that the introduction of carbon 

capture and storage to the pulp and paper industry could currently save around 4 MtCO2 

if the technology is applied to all Austrian pulp and paper industries assuming a carbon 

recovery rate of 90%. The costs are estimated to be between 30 and 40€ (Möllersten et 

al., 2006). The industry had a capacity of around 6.63 Mt of biomass in 2005 (Schwarz-

bauer and Stern, 2010).  

2.4. Energy	demand	

Heating demand is estimated spatially explicitly with a bottom up model that combines 

average consumption values with private dwelling areas by age cohort and with the  

Table 3: Assumptions for demand scenario in 2030 

Sector Demand 2030 
(TWh y-1) 

Change from 2008a 
(%) 

Transportation 89 12 
Thermal power 24 25 
Single building boiler heat and  
community district heat demand 

31 -37 

Network bound heat  30 5 
aThe demand in 2008 is taken from Statistik Austria (2009b) and E-Control (2009) 
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number of employees for commercial buildings and industrial low temperature applicat-

ions. High temperature heat (industrial heat) is not considered in the model. The bottom 

up model is validated with national consumption values for heating fuels (Statistik Aus-

tria, 2009b). Heating demand is estimated in cells of 1 km2 size for Austria. Demand is 

split in three demand classes depending on the heating demand density. The first class 

(network bound heat) includes all cells that have a heating demand density of above 

10,000 MWh km-2 a-1. Gas and district heating networks compete in these cells. Between 

5,000 MWh km-2 a-1 and 10,000 MWh km-2 a-1, supply is based on community heating 

networks with a maximum boiler capacity of 100 kW (community district heat). Dem-

and of up to 5,000 MWh km-2 a-1 is exclusively supplied by boilers in single buildings 

with a capacity of up to 15 kW (single building heat). The demand classes are chosen so 

that district heating and gas supply is reproduced for the base year 2008. A detailed de-

scription of the heating demand model can be found in (Schmidt et al., 2010b). Future 

heat demand is assumed to change drastically because of demoliton of old buildings, 

construction of new buildings and retrofitting of existing buildings (Kalt et al., 2010). 

Heating demand in the year 2030 is therefore estimated by assuming demolition and 

retrofitting rates for the various age cohorts based on linear trends from 1990 to 2009 

(Statistik Austria, 2009a). The spatially explicit distribution of demolished and newly 

constructed buildings is based on spatially explicit population growth estimates (ÖROK, 

2009). Also, a growth in square meter of housing area per person is assumed, following 

a linear trend from 1991-2009 (Statistik Austria, 2009a). Combining these factors, a 

27% reduction of heating demand of private dwellings (from 65 TWh a-1 to 48 TWh a-1) 

from the base year level 2008 is estimated, which is in line with other scenarios (Kranzl 

and Haas, 2008). However, demand is shifted from low density regions to higher density 
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regions as cities are expected to grow significantly while population in rural areas is 

expected to decline (ÖROK, 2009). Demand for commercial and low temperature pro-

cess heat is assumed to stay constant as efficiency gains and production increases are 

assumed to level out. Transportation fuel demand is assumed to grow by 12% (Kranzl 

and Haas, 2008) from the 2008 level of 82 TWh a-1 (Statistik Austria, 2009b). Spatially 

explicit data on the distribution of the population is used to distribute fuel demand. Pow-

er demand is expected to grow by 25% (Kranzl and Haas, 2008). We assume that the 

share of thermal power production remains unchanged, i.e. that renewable energy pro-

duction and fossil power production have equal growth rates which leads to an increase 

of thermal power production from 19 TWhpower a-1 in 2008 (E-Control, 2009) to 24 

TWhpower a
-1 in 2030. Table 4 shows the resulting demand for power, heat and transpor-

tation. 

2.5. GHG	emissions	and	reference	technologies	

We account for GHG emissions which are produced within the modeled region. Leakage 

effects caused by national carbon policies are not considered. With respect to bioenergy, 

the most important leakage effect concerns GHG emissions which are caused by direct 

and indirect land use change in other world regions (Havlík et al., 2010; Lapola et al., 

2010; Searchinger et al., 2008). Although possible GHG emissions from indirect land 

use changes are not quantitatively assessed, the applied methodology allows showing the 

decline in domestic production of food and feed crops caused by additional production 

of energy crops. The following direct GHG emissions are considered: N2O emissions 

from fertilizer application in agriculture, CO2 emissions from biomass and commodity 

transportation, CO2 emissions in the bioenergy production process (e.g. from power con 
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Table 4: CO2 Emissions and costs of fossil fuel reference technologies in the baseline scenario 

Bioenergy  
technology 

Fossil  
reference  
technology 

CO2 emissions of 
reference technologya 
 

Costs of reference technologyb 

Pellets / Fuelwood 
boilers 

Heating oil 
boilers 

0.28 tCO2 MWhoil
-1

 
Investment costs for oil boilers: 47 € MWhfuel

-

1 for boilers of 15 kW and 32 € MWhfuel
-1 for 

boilers of 100 kW (Kalt et al., 2010). 
Heating oil price: 65 € MWhfuel 
 

Power – no CCS Fuel mix 80% 
gas, 20% coal  

0.39 tCO2 MWhpower
-1 75 € MWhpower

-1 
Investment costs and efficiencies of fossil 
power production from Tzimas et al. (2010). 
 

Power – with CCS Fuel mix of 
80% gas and 
20% coal 

0.05 tCO2 MWhpower
-1 100 € MWh-1 

Investment costs and efficiencies of fossil 
power production with CCS from Tzimas et 
al. (2010).  
 

District Heating Gas fired heat-
ing in single 
building boilers, 
gas fired district 
heating 

0.2 tCO2 MWhgas
-1 Investment costs for gas boilers 32 € MWh-1 

(Kalt et al., 2010). 
Gas Price: 42 € MWhfuel 
 
 
 

Ethanol, Methanol, 
Biodiesel 

Gasoline 0.26 tCO2 MWhgasoline
-1 Gasoline price: 65 € MWhfuel 

a Emissions are based on Emission Factors in the Austrian Emissions Inventory (Umweltbundesamt Austria, 2010) 

sumption), CO2 emissions of fossil fuel combustion and negative CO2 emissions from 

BECCS. Changes in carbon sequestration of forests due to increased fuel wood con-

sumption are not included. The carbon released in bioenergy production and consump-

tion is assumed to be neutralized by the plant growth. This assumption is consistent with 

the current version of the UNFCCC reporting guidelines for the Kyoto Protocol that as-

sumes that woody biomass use in energy applications is GHG emission neutral (UN-

FCCC, 2006). GHG emission reductions achieved by bioenergy technologies as well as 

the economic competitiveness depend on the chosen reference technologies. Wood pellet 

and fuelwood boilers most likely replace heating oil boilers in single buildings and 

community district heating. They are similar in operation and also need fuel storage 

space (Gustavsson et al., 2005). We assume that surplus heat of bioenergy plants com-

petes with gas fired district heating and gas fired single-building boilers in the network 

bound heating cells. The costs of the district heating infrastructure are determined by 
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applying an exponential cost function that depends on heat demand density (Konstantin, 

2007). Costs of competing gas networks are assumed to be half the costs of district heat-

ing networks (Torekov et al., 2007). BIGCC and BIGCC with CCS are thermal power 

plants and are therefore able to produce constant base load power unlike other renewable 

energy technologies. In the model, power production therefore competes with thermal 

fossil power production. A mix of fossil fuels consisting of gas (80%) and coal (20%) is 

modeled, assuming that coal is slowly faded out from the current production share of 

40% and that oil with a current share of 8% further looses relevance in power production 

(E-Control, 2009). A sensitivity analysis is used to determine effects of different power 

generation fuels. In the CCS scenario, fossil power production applies CCS which leads 

to decreased GHG emission factors and increased power prices. Methanol is blended 

with gasoline for utilization in the transportation sector (Leduc et al., 2008) and is there-

fore regarded as direct substitute of gasoline. Surplus heat from bioenergy plants replac-

es gas which is either used locally in boilers or as fuel in district heating networks. CO2 

emissions of the different bioenergy technologies with regard to the reference technolo-

gies and costs of reference technologies can be found in Table 3. 

2.6. Policy	Scenarios	

We assess the effect of energy policies in a scenario for the year 2030 with focus on 

GHG emission reductions and fossil fuel substitution in energy production and transpor-

tation. GHG emissions in these sectors currently account for around 49% of total Austri-

an GHG emissions in 2008 (Umweltbundesamt Austria, 2010). The base scenario (BA) 

does not contain any policy intervention. The scenario for the oil price is based on the 

IEA world energy outlook (International Energy Agency, 2009). It is assumed that  
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Table 5: Energy prices and CO2 emissions of fossil reference technologies used in the scenarios and the sensitiv-
ity analysis. 

Scenario Power costs 
 
(€ MWhpower

-1) 

CO2 emissions of 
power production 
(tCO2 MWhpower

-1) 

Costs of heating tech-
nology (single build-
ings) including fuel 
(€ MWhheat

-1) 

CO2 emissions of 
heating technology 
(tCO2 MWhheat

-1) 

Without CCS     
Base scenario 75 0.38 124 0.27 
Coal Scenario  60 0.67 124 0.27 
Gas Scenario  80 0.32 124 0.27 
Heat Pump Scenario 75 0.38 119 0.13 
With CCS     
Base Scenario 100 0.05 124 0.27 
Coal Scenario  75 0.08 124 0.27 
Gas Scenario  106 0.04 124 0.27 
Heat Pump Scenario 100 0.05 119 0.13 

the spread between gas and oil remains comparable to today and that no significant 

spread between heating oil and gasoline develops. The power price is modeled by re-

garding fossil fuel prices and investment costs of thermal power plants. The power price 

and CO2 emissions of fossil power production are varied in a sensitivity analysis. The 

assumptions for the sensitivity analysis are stated in Table 5. We assess the cost-

effectiveness of five energy policy instruments with respect to reducing GHG emissions 

and substituting fossil fuels. The  cost-effectiveness of policies is defined such that the 

attainment of energy policy targets, i.e. GHG emission reduction and fossil fuel substitu-

tion is cost minimal in the energy supply system. We model policies that focus on reduc-

ing GHG emissions and policies that directly promote bioenergy technologies. The first 

class includes the following two scenarios: 

 The TX policy scenario taxes CO2 emissions of all fossil fuels, including private 

heating and transportation fuels. It is assumed that BECCS gains tax returns for 

negative CO2 emissions.  

 The EU ETS is modeled in the TS scenario where the application of a carbon 

price is limited to power and district heat production only. Fossil fuel consump-

tion in single building boilers, community district heating and transportation is 
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not included in the trading scheme. Trading of allowances in the EU ETS is not 

modeled explicitly. Constant allowance prices are assumed instead. 

The second class includes the following three scenarios: 

 Feed-in tariffs that guarantee fixed levels of power prices are modeled in the 

FI scenario.  

 In the BF scenario, fixed shares of biofuel in transportation fuel consumption 

are imposed. 

  Investment subsidies are guaranteed to pellets and fuel wood furnaces in the 

PE scenario. 

Table 6 reports the levels of the policy instruments considered in the analysis. All sce-

narios are assessed with and without BECCS due to the uncertainty of technological 

development. In the BECCS scenarios it is assumed that fossil fuel based power produc-

tion also relies on CCS which decreases emissions but increases production costs. Costs, 

GHG emission reductions, and fossil fuel substitutions in the scenarios are compared to  

Table 6: Levels of policy instruments considered in the scenario analysis. 

Policy instrument Description Range Increment 

TX Tax on CO2 emissions of all fossil fuels  2 € tCO2
-1 to 150 € tCO2

-1 5 € tCO2
-1 

TS CO2 emission trading scheme 2 € tCO2
-1 to 150 € tCO2

-1 5 € tCO2
-1 

FI Feed-in tariffs for biomass power produc-

tion 

80 € MWh-1 to 120 € MWh-1 5 € MWh -1 

BF Biofuel shares imposed 0.20 % to 12.00 % 0.40 % 

PE Subsidies to pellet and fuel wood boilers 50 € kW-1 to 1000 € kW-1 45 € kW-1 
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the base scenario, i.e. relative changes in GHG emissions, fossil fuel substitution and 

costs in relation to the base scenario are used to measure the effect of the policy instru-

ments.  

3. Results	

3.1. GHG	emission	 reduction,	 fossil	 fuel	 substitution,	 costs	and	 technolo‐

gies	

3.1.1. Without	CCS	

In the base scenario without any policy intervention, GHG emissions are slightly higher 

than in 2008 (see Table 7). The decrease in heating demand and lower CO2 emissions  

Table 7: Model results of the base scenario with and without CCS. 

 Base 2030 without CCS Base 2030 with CCS 

  Amount in 
scenario 

Change from 
2008a 

Amount in 
scenario 

Change from 
2008a 

GHG emissions (MtCO2e) 44 +2 39 -3 

Biomass heat production (TWhheat)     

Single- and multi-dwelling buildings  4 -13 2 -15 

District heatingb 7 +6 8 +7 

Fossil fuel heat production (TWhheat)     

Heating oil, single- and multi-dwelling  
buildingsc 

30 +7 32 +9 

Gas, district heating 8 +1 7  0 

Gas, heat production in buildings 18 +4 18 +4 

Biomass power production (TWhpower) 5 +3 12 +10 

Fossil fuel power production (TWhpower) 19 0 12 -7 

Biofuel production (TWhfuel) 4 +0.3 0 -3.7 

Gasoline consumption (TWhfuel) 85 +3 89 +7 

Total biomass consumption  
(TWhbiomass) 

25 +2 29 +6 

a 2008 values taken from Statistik Austria (2009b), E-Control (2009) and Umweltbundesamt (2010), b Guesstimate for 
2008, c 2008 values include coal and electricity  
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from power generation are more than compensated by increases in power and transporta-

tion fuel demand. A shift from heat to power and transportation fuel production can be 

observed due to lower heat demand levels, higher power prices and more efficient 

BIGCC production. Biomass consumption increases slightly in comparison to 2008. 

Forestry provides the whole bioenergy feedstock. The results of the policy scenarios are 

shown in Figure 3. A carbon tax on all modeled sectors (TX) leads mainly to an increase 

of biomass utilization for heating. Up to a price of 50 € tCO2
-1, forestry provides the 

entire biomass. For higher prices, agriculture produces additional short rotation lignocel-

lulose. At a price of 75 € tCO2
-1, some limited amount of first generation ethanol produc-

tion is triggered because marginal prices of lignocellulose from agriculture are high in 

comparison to marginal prices of ethanol crops. However, the total amount of ethanol 

production remains small. About 2.5 TWh of ethanol is produced at a CO2 price of 150 € 

tCO2
-1. The scenarios TS and FI show similar results. Power production is the main mit-

igation option in TS, with minor amounts of reducing GHG emissions by district heat-

ing. FI solely subsidizes power production. GHG emission savings and fossil fuel substi-

tution are low in comparison to TX because the private heat sector is not included in the 

mitigation efforts. In the BF scenario, second generation methanol is chosen as produc-

tion technology for biofuels, relying mainly on woody biomass from forestry. GHG 

emissions are comparable to the baseline scenario while fossil fuel substitution is lower. 

The main feedstock is forest wood, if biomass heat is directly subsidized (PE). Only a 

small fraction of short rotation lignocellulose is used to produce pellets for heat produc-

tion. The relative performance of the policies is shown in Figure 5. TX is superior in 

attaining both targets cost-effectively, i.e. GHG emission reduction and fossil fuel substi-

tution. In TX, a mix of bioenergy technologies is chosen. No single technology can 
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therefore be regarded as superior with respect to cost-effective GHG emission reduction 

and fossil fuel substitution. There is less cost-effectiveness in all other policy scenarios, 

because some technologies are excluded from the mitigation efforts. In these scenarios, 

biomass utilization in highly cost-effective applications (such as heating) may be  
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 Figure 3: GHG emission savings, fossil fuel substitution and biomass utilization from forestry and agriculture 
(left) and technological mix (right) in scenarios without CCS. (1) TX, (2) TS, (3) FI, (4) BF, (5) PE 
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reduced in comparison to the baseline scenario because increasing biomass prices make 

the application in non-subsidized sectors non-competitive. There are, however, differ-

ences in the performance of these instruments. TS and FI perform comparable while 

subsidies for heating (PE) are more costly in reducing GHG emissions and increasing 

fossil fuel substitution. The investment costs for fossil and biomass based heating boilers 

are significantly higher than for oil heating boilers which explain the high costs of PE. 

The biofuel policy (BF) performs worse than any other policy instrument. Fossil fuel 

substitution is actually negative in comparison to the base scenario.  

3.1.2. With	CCS	

The existence of CCS in fossil power production leads to a significant decrease in GHG 

emissions in this sector in the base scenario (see Table 7). Overall, a decrease of 3 Mt 

CO2e in comparison to 2008 is modeled. A big shift from heat to power production from 

biomass occurs because the utilization of CCS in the power production sector increases 

power prices substantially and therefore makes power production based on biomass 

more profitable. Short rotation cellulose from agriculture provides 1 TWh as bioenergy 

feedstock in the base scenario. Figure 4 shows detailed results of the policy scenarios. At 

low CO2 prices, biomass power production without CCS and, to less extent, heat produc-

tion increases in the TX scenario. GHG emission reductions are larger for biomass heat-

ing than for biomass power production due to the low CO2 emissions of fossil CCS 

plants. At CO2 prices above 70 € tCO2
-1, BECCS becomes competitive. Methanol and 

power production with CCS have a comparable share of total production while heat pro-

duction declines. Methanol CCS is chosen although the CO2 capture rate is lower than 

for power production. However, the reference technology for methanol is fossil gasoline 
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which has higher CO2 emissions in comparison to the reference technology for power, 

i.e. fossil power production with CCS. A large amount of short rotation lignocellulose 

comes from agriculture. Forestry production is also increased in Austria. GHG emission 

savings from the transportation sector and the power sector decrease significantly due to 

the negative CO2 emissions caused by BECCS. More than half of the GHG emissions of  
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Figure 4: GHG emission savings, fossil fuel substitution and biomass utilization from forestry and agriculture 
(left) and technological mix (right) in scenarios with CCS. (1) TX, (2) TS, (3) FI, (4) BF, (5) PE 
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the observed sectors can be reduced at a CO2 price of 150 € tCO2
-1. However, fossil fuel 

substitution is low because additional fossil power production has to be in place when 

biomass power with CCS substitutes biomass power without CCS. In the TS scenario, 

there is no relevant change in the supply structure up to a price of 70 € tCO2
-1 when bio-

mass based power production with CCS becomes competitive. Biomass power with CCS 

gradually replaces biomass power production without CCS. GHG emission savings are 

significant and reach 40% of total GHG emissions. Fossil fuel substitution is low.  
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Figure 5: GHG emission reductions (left) and fossil fuels substituted (right) in relation to costs in the scenario 
without CCS (upper) and with CCS (lower). 
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Agricultural production of lignocellulose increases significantly. The promotion of bio-

energy by feed-in tariffs (FI) causes an increase in biomass power production without 

CCS. Fossil fuel substitution is therefore substantial while almost no GHG emission re-

duction effects can be observed. Biofuel production in the BF scenario mainly replaces 

existing power and heat production. GHG emission savings are low and fossil fuel sub-

stitution does not occur at all. Little amounts of agricultural feedstock are used for bio-

fuel production. Heat production in PE gradually replaces other bioenergy applications. 

Short rotation lignocellulose is used for the production of pellets to supply the heating 

demand. GHG emission savings are not comparable to TX and TS because no BECCS is 

deployed.  

There is a clear trade-off between fossil fuel substitution and GHG emission reduction 

when CCS is available, which is shown in Figure 5. The TX and TS scenarios allow a 

very significant reduction in GHG emissions, however, effects on fossil fuel substitution 

are low. FI performs very well with respect to this policy target, but GHG emission re-

ductions are comparably expensive and limited. Subsidies on heating systems and the 

biofuel policy lead to reductions in GHG emissions but fossil fuel substitution is low.  

3.1.3. Technologies	

BIGCC dominates steam engines in TS and FI. When CCS is available, only BIGCC is 

deployed. Second generation methanol production is the main biofuel production tech-

nology deployed in the biofuel scenarios. In the TX scenario without CCS, ethanol is 

chosen because the feedstock availability for methanol is constrained due to the high 

utilization of short rotation lignocellulose by the other sectors. Biodiesel is only de-
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ployed at very small scale (< 0.3 TWh in all scenarios). If CCS is available, second gen-

eration methanol with CCS clearly dominates first generation ethanol with CCS. 
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Figure 6: GHG emission reductions (left) and fossil fuel substitution (right) in relation to costs for alternative 
reference technologies without CCS. (upper) coal power, (middle) gas power, (lower) heat pumps 
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With the exemption of pellets plants, plant sizes are always chosen at the maximum ca-

pacity, i.e. 300 MWbiomass for all technologies. Although logistic costs are high for such 

plants, decreasing investment costs for the plants make up for this additional transporta-

tion costs. 

3.2. Alternative	Reference	Technologies	

Previous sensitivity analysis of the model (Schmidt et al., 2010a) have shown that fossil 

fuel prices and characteristics of fossil reference technologies have the most significant 

influence on model results. Uncertainties in the development of the costs and efficien-

cies of technologies are less important. Instead of conducting a full sensitivity analysis 

on all model parameters, we analyze the performance of policy instruments when costs 

and CO2 emissions of the fossil reference technologies are changed. We test for the sen-

sitivity of results of the scenarios with and without CCS to changes in the fossil power 

production technology and the availability of an additional heating technology. There 

are two alternative fossil power production cases: in the first case, only gas is used as 

fuel while in the other one only coal. We consider heat pumps as alternative reference 

technology for the heating of single buildings. The parameters applied in the sensitivity 

analysis are reported in Table 5. 

Without	CCS	

Figure 8 shows the relative performance of the policies in the three scenarios without 

CCS. Generally, the ordering of the policies with respect to cost-effectiveness is stable. 

The only change in this order occurs if a low carbon and low cost heating technology 

(i.e. heat pumps) is available. In that case, BF performs better than PE. However, quanti-

tative differences between policy instruments do change. The performance of PE with  
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Figure 7: GHG emission reductions (left) and fossil fuels substituted (right) in relation to costs for alternative 
reference technologies with CCS. (upper) coal power, (middle) gas power, (lower) heat pumps 

regard to fossil fuel substitution is close to the performance of TS and FI in the coal 

power scenario. Costs of fossil fuel substitution by biomass heating are similar to bio-

mass power due to the low fossil power prices. In the gas power scenario, fossil fuel  
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Figure 8: Food and energy crop production in the TX (left), TS (middle), and FI (right) scenario without CCS. 

substitution by FI and TS is comparable to the TX scenario. Higher fossil power costs 

are the reason. GHG emissions reductions with TS and FI are costly because gas fueled 

power generation has lower CO2 emissions. When heat pumps are available, TX, TS and 

FI have similar performance because mitigation efforts are mainly concentrated in the 

power sector. The PE policy instrument performs worse than BF in that scenario. 

With	CCS	

Figure 8 shows the relative performance of the policy instruments for alternative refer-

ence technologies with CCS. Again, the ordering of the policy instruments is stable with 

the exemption of the third scenario where the availability of heat pumps decreases the 

cost-effectiveness of PE in relation to BF and FI. 

3.3. Feedstock	

The TX, TS and FI policy scenarios lead to an increase of agricultural biomass, mainly 

short rotation lignocellulose. Figure 6 shows that in the TX, TS and FI scenarios without 

CCS (comparable to the ones with CCS) the production of grains, forage crops and 

oilseeds decreases significantly. Grain production is reduced to 50% of the production 

level of the baseline scenario, oilseeds to 60% and forage crops to 72% in the TX sce-

nario of 150 € tCO2
-1. Production of forest wood is increased from around 25 TWh in the 
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base scenario to 38 TWh in the TX scenario. TS and FI show comparable production 

increases.  

4. Discussion	&	Conclusions	

4.1. Discussion	

Results of our model analysis confirm to some degree results of other studies. Berndes et 

al. (2007) and König (2011) find that the European biofuel policy is costly in compari-

son to other measures while Azar et al. (2003) conclude that biofuels are not competitive 

to other mitigation options. Gielen et al. (2003) find that biofuels have to play a major 

role in a stringent GHG reduction scenario if no other mitigation options are available in 

the transportation sector. The potentials for additional supply of biomass to the transpor-

tation sector are however low in Austria if power and heat production are based on bio-

mass. Luckow et al. (2010) conclude that mainly biomass based power production with 

CCS is a major mitigation option with very stringent GHG emission targets. We con-

clude in contrast that methanol CCS can also contribute to GHG emission reductions 

because very significant reductions in the transportation sector can be achieved that are 

otherwise not possible. All results with respect to CCS depend on the development of 

that technology which remains uncertain. 

The large substitution of food crops for energy utilization, especially in the TX scenario 

(i.e. 50% reduction of grain production), will increase agricultural imports to or decrease 

exports from Austria. Additional agricultural imports or less exports may trigger direct 

and indirect land use changes in other regions that likely offset GHG emission reduc-

tions from bioenergy production in Austria (Havlík et al., 2010; Lapola et al., 2010; 

Searchinger et al., 2008). An intensive utilization of domestic agricultural resources for 
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bioenergy will likely have negative effects on the total carbon balance of the policy in-

struments therefore. Only BECCS allows very significant GHG emission reductions that 

may offset such indirect effects. Increasing the supply of domestic forest wood can part-

ly deliver additional bioenergy resources without replacing existing crop production, 

however, the total potential from sustainable forest management is limited to around 38 

TWhbiomass a
-1 (Schadauer, 2009). A strategy that relies on importing biofuels instead of 

producing them domestically could be more effective. For instance, production of Bra-

zilian ethanol is significantly less expensive than European biofuels (Cerqueira Leite et 

al., 2009; Nass et al., 2007; de Vries et al., 2010). However, serious social and ecologi-

cal concerns are connected with biofuel production in tropical countries (Delzeit and 

Holm-Müller, 2009; Martinelli and Filoso, 2008).  

We have assumed exogenous development of different new bioenergy conversion tech-

nologies. These assumptions rely on a vast literature survey but cost estimates remain 

uncertain. The influence on model results is however limited as previous sensitivity 

studies have shown (Schmidt et al., 2010a). Influences of prices and GHG emissions of 

reference technologies mainly affect the competition between CHP and heat production 

in single building boilers and community district heating boilers.  

Policy instruments that support the development of new technologies such as feed-in 

tariffs and biofuel policies may be less cost-effective than technology neutral instru-

ments like carbon taxes. However, the former ones may be dynamically more efficient 

by promoting emerging technologies that allow substantial technological advances but 

still need R&D before being competitive to well established technologies. The applied 
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methodology allows estimating the costs that have to be expected from these policy in-

struments and is able to identify a subset of technologies that may be worth to subsidize.  

4.2. Conclusions	

We presented a modeling approach to cost-effectively assess energy policy instruments 

and technologies as well as their impacts on the structure of bioenergy supply in Austria. 

The spatially explicit integration of the whole bioenergy supply chain, from biomass 

production to energy distribution, allows the integration of various important cost factors 

which are not covered by generalized energy system models. For instance, biophysical 

constraints are integrated in an economic biomass production optimization model to 

construct spatially explicit supply curves for different types of agricultural energy crops. 

The explicit assessment of the trade-off between food, feed and energy crop production 

is therefore possible and have been applied to the Austrian case. Spatially explicit esti-

mation of energy demand allows to model energy distribution in detail, including the 

competition of district heating and natural gas networks.  

The model results indicate that a carbon tax on all fossil fuels is cost-effective with re-

gard to both policy targets, i.e. GHG emission reduction and fossil fuel substitution, if 

CCS is not available. A trade-off between the two targets exists if CCS is deployed on 

large scale. The missing of some sectors, particularly the private heating sector, in the 

ETS reduces its cost-effectiveness in comparison to a carbon tax on all fossil fuels. The 

cost-effectiveness of technology specific instruments can be ordered in the following 

way if CCS is not available: feed-in tariffs before subsidies to heating boilers before 

biofuel blending obligations. This ordering is robust to a change in fossil reference tech-

nologies with the exemption of the availability of a low cost heating technology, which 
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makes the biofuel policy perform better than subsidies on heating boilers. The ordering 

of policy instruments with respect to fossil fuel substitution changes significantly if CCS 

is available. In this case, a carbon tax and ETS lead to large reductions in GHG emis-

sions, but fossil fuel substitution is low. Feed-in tariffs show contrary results such that 

low GHG emission reductions and high amounts of fossil fuel substitution are achieved. 

Subsidies on heating boilers are in between the carbon policies and feed-in tariffs while 

the biofuel policy performs worse than all other policies with regard to both, CO2 emis-

sion reductions and fossil fuel substitution.  

BECCS can deliver far higher GHG emission reductions than technologies without CCS. 

GHG emission reductions of 20% can be achieved in the case without CCS at the maxi-

mum CO2 emission price of 150 € tCO2
-1 while 67% of GHG emissions are reduced in 

the case with CCS. Attaining very stringent GHG emission targets is therefore much 

easier when CCS is available. However, 20% of the fossil fuels are substituted at the 

maximum CO2 price without CCS while only 11% are substituted when CCS is availa-

ble. Biofuel technologies do not play a significant role in policy scenarios without CCS, 

but methanol with CCS is a cost-effective mitigation option, because the fossil reference 

technology, i.e. fossil gasoline, does not allow CCS. The biofuel policy is costly and 

ineffective with regard to GHG emission reduction and fossil fuel substitution. Biofuel 

policies are often designed to attain not only energy policy targets but also foster rural 

economic development (Berndes and Hansson, 2007; Lehrer, 2009). Nevertheless, rural 

development goals can be more efficiently combined with energy policy goals if bio-

mass resources are directed to other conversion chains than transportation fuel produc-

tion, i.e. heat or power production. 
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Forestry biomass is the preferred feedstock. In agriculture, mainly short rotation cellu-

lose is chosen as feedstock while the use of other crops in ethanol and biodiesel produc-

tion is limited. Results depend on the availability of BIGCC as power production tech-

nology. If BIGCC becomes commercially available, current feed-in tariffs should be 

directed specifically to large BIGCC projects instead of promoting CHP steam technolo-

gy. Model results indicate that economics of scale of big production plants are higher 

than increasing transportation costs, i.e. big plant projects are less costly than small ones. 

This should be acknowledged in the design of future energy policies and our spatially 

explicit mixed integer program is able to account for it. 
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Appendix	

	

Optimization	model	

The MIP model builds on previous work (Leduc et al., 2010; Leduc et al., 2009; Schmidt 

et al., 2010b; Schmidt et al., 2010a) and  minimizes the costs for supplying demand 

regions (index k) with different forms of energy products (index d) from either biomass 

plants or fossil fuels. Woody biomass and agricultural feedstock (index b) are 

transported from supply regions (index i) to possible plant locations (index j) where 

different conversion technologies (index l) may be employed to produce different 

commodities (index c). Plants of different size and type (index l) are allowed to assess 

the tradeoff between increasing costs due to increasing transportation distances and 

decreasing investment costs due to economies of scale with growing plant sizes. 

Biomass can also be transported to demand regions for direct use (e.g. burning of log 

wood in local furnaces). 

Ethanol, methanol and pellets are transported to the demand regions by truck. Power is 

directly distributed to the power grid, while district heat is delivered to settlements 

(index h) using pipelines. District heating or gas networks of different sizes (index ns) 

have to be built in the settlements to allow heat or gas distribution. Bioenergy competes 

with fossil fuels (index f ). The model is static and models one year of operation. All 

investment costs are annualized assuming an interest rate of 10% and 25 years of 

economical lifetime. Heating seasons (index t ) are used to differentiate between 

seasonal heating demands. 
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The total costs in the objective function  b,z,q,uf  are minimized: 
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where 

, , , , , , , , , , , , , ,
, , , , , , , ,

, , , , , , ,
, , , , , , , ,

emtaxed b b z

q q b

s trans plant trans direct trans
i j b i j b l i k b i k b j k c j k c t

i j b l i k b j k c t

f fossil fossil gas dhf ccs
f k f h ns t h ns t l i j b

k f h ns t h ns t i j b l

gas dhf
f

tx e e e

tx e ez e e

 
     

 

 

  

    ,

, , , , , , ,
, , ,

totem emtaxed aagrar agrar

plant

agrar
sc b pl i sc b pl i sc pl

i sc b p

l

l

e q

 
  
 

  

 

 

(A2) 

 

(A3) 

 

B BThe different summands in the objective function represent: 

1. Biomass supply costs from forests as described in section 2.2.  

2. Agricultural supply costs as described in section 2.2. 

3. biomass transportation costs (parameter , ,
transb
i j bc ) from supply to plant, variable 

bioenergy production costs (parameter , ,
prod
j l bc ) and carbon capture and storage 

costs (parameter ccsc  times the amount of CO2 emissions captured by unit of 

biomass ,
ccs
l be ) times the amount of feedstock (variable , , ,bplant

i j b l ). 

4. Direct biomass transportation costs ( , ,
transd
i k bc ) from supply to demand (e.g. fuel 

wood), investment costs at demand ( ,
d

k b
invc , e.g. fuel wood boiler) times the amount 

of biomass transported directly to demand ( , ,bdirect
i k b ). 
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5. Annualized costs of plant investments (parameter ,
plant
j lc ) times the binary variable 

for plant selection ( ,u plant
j l ).  

6. Costs for transporting energy commodities to demand regions (parameter , ,
transc
j k cc ) 

plus investment costs (parameter inv
cc ) times the amount of commodities 

produced in each period (variable , , ,zbio
j k c t ). Costs for power transportation and 

investment are zero as it is assumed that the power can be sold directly to the 

power grid. For ethanol, methanol and pellets, transportation costs from plants to 

demand regions by truck are considered. Investment costs inv
cc  are zero for 

biofuels, because no additional investments are necessary to operate cars with 

ethanol or methanol. For pellets, the investment costs represent the investment 

costs for pellets boilers. 

7. Costs for fossil fuels (parameter l
f
fossic ) plus investment costs necessary at demand 

(parameter foss
f

ilinvc e.g. oil boiler) times the amount of fossil fuels used in a 

demand region (variable ,z fossil
k f ).  

8. Annualized costs of building a pipeline from the plant to the settlement 

(parameter , ,
pipe
j h psc ) times the binary variable for pipeline selection ( , ,u pipe

j h ps ). 

9. Annualized costs for installing a district heating network in the settlement 

(parameter ,
dnet
h nsc ) times the binary variable for district heating network selection 

( ,udnet
h ns ). 

10. Costs for producing fossil district heat (parameter dhf
tc ) times the amount of 

fossil district heat (variable ,qdhf
h t ) produced. 
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11. Annualized costs for installing a gas network in the settlement (parameter ,
gas
h nsc ) 

times the binary variable for gas network selection ( ,u gas
h ns ). 

12. Costs for natural gas ( s
t
gac ) times the amount of natural gas consumed ( , ,qgas

h ns t ). 

13. CO2 emissions ( emtaxed ) which consist of: (i) CO2 emissions of biomass 

transportation (CO2 emission factor , ,
trans
i j be ) from supply to plant, (ii) CO2 

emissions of biomass transportation (CO2 emission factor , ,
trans
i j be ) from supply to 

demand, (iii) CO2 emissions of commodity transportation (CO2 emission factor 

, ,
trans
j k ce ), (iv) CO2 emissions of fossil energy production (CO2 emission factor l

f
fossie ), 

(v) CO2 emissions of gas heat production (CO2 emission factor gase ), (vi) CO2 

emissions of fossil district heat production (CO2 emission factor dhfe ), and (vii) 

CO2 emission savings by BECCS in bioenergy production (CO2 emission factor 

ccs
le ). Those CO2 emissions ( empriced ) are multiplied by the CO2 price (parameter 

emc ). Binary parameters stx and f
ftx  control if all fossil fuels or only part of the 

fossil fuels are taxed by a specific policy instrument. 

14. Total greenhousegas emissions ( empriced ) are calculated as sum of CO2 

emissions and as sum of N2O emissions from fertilizer application in agricultural 

production. The emission factor , ,
agrar
sc b ple  describes the CO2 equivalent of N2O 

emissions.  

The objective function in equation A1 is minimized subject to the following constraints. 

Forest biomass utilization is restricted by  
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as described in section 2.2. The convexity condition necessary for the linearization of the 

supply curve is guaranteed by: 

, , 1i o u
u

b   (A5) 

Agricultural production is restricted by  

, , , , ,
, ,
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rar agrar
i sc b pl i sc pl

cr pl

b forestwoodq    (A6) 

as described in detail in section 2.2. 

The convexity of the supply curves is guaranteed by 

, ,
,

1.agrar
i sc pl

sc pl

a   (A7) 

The plant size constraints production by 

, ,, , , , ,
,

_

b u ,plant plant
j l ti j b l t j l

i b

b  
(A8) 

where parameter ,

_

,j l tb  is the production capacity of plant j  in period t . Index l indi-

cates the size and technology of the plant (e.g. 50 MW steam CHP, 100 MW BIGCC). 

The commodity production in each period (variable , ,zbio
j c t ) is determined by the biomass 

input and conversion efficiency (parameter , , ,
conv
j b l c ) shown in the following equation: 

, , , , , , , , ,
,

b z .conv plant bio
j b l c i j b l t j c t

i l

   (A9) 
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District heat production is modeled with variable qbio
j  because it is distributed differently 

than the other commodities:  

, , , , , , ,
, ,

b q ,heat plant bio
j b l i j b l t j t

i b l

   (A10) 

where , ,
heat
j b l  is the conversion efficiency for heat. Distribution of commodities to demand 

regions k is restricted by 

, , , ,z z ,bio bio
j k c j c t

tk

  (A11) 

where variable , ,zbio
j k c  denotes the amount of a commodity c transported from plant loca-

tion j  to demand region k . 

Energy demands (parameter ,k dd ) are satisfied by direct biomass utilization, different 

commodities from bioenergy production (variable , ,
bio
j k cz ) and by fossil fuels (variable 

,z fossil
k f ): 

, , , , , , , ,
, ,

, b z z .biod direct bio bio fossil fossil
i k b c d j k c f d k f k d

i b
b d

fj c

d        (A12) 

In the equation, parameters ,
d

b d
bio , ,

bio
c d  and ,

fossil
f d  describe the efficiency of converting 

biomass, bioenergy commodities and fossil fuels to forms of useful energy.  

Heat production limits the amount of heat available for district heating. Seasonal supply 

of heat in the plants is restricted by 

, , , ,
,

q q .dh bio
j h ps t j t

h ps

  (A13) 
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The production of heat by bioenergy plants , , ,qdh
j h ns t  plus the production of fossil district 

heating , ,qh ns t
dhf  and the production of heat in single-household gas fired boilers , ,qh ns t

gas  has to 

meet the demand (parameter ,
D
h tq ) in each period, which is guaranteed by 

, , , , , , , , , , , ,
,

q q q .dh trans dh dhf gas D
h t j h ns t j h ns t h ns t h ns t h t

n

dhf gas

sj ps

q   
  
        

  
(A14) 

where parameter , , ,
trans
j h ns t denotes the heat losses in the pipe system from the plant to the 

settlement. Losses in the heat distribution network within the settlement are modeled by 

parameter ,
dh
h t . Parameters dhf  and gas  are introduced to describe conversion efficien-

cies of fossil district heating and gas fired boilers.  

The sum of heat produced by the bioenergy plant and by the fossil district heating boiler 

has to match the district heating demand (parameter , ,
D
h ns tq ) in settlement h . This is 

modeled by 

, , , , , , , , , , , ,
,

q q u .dh trans dh dhf D dnet
h t j h ps t j h ps t h ns t h ns t h ns

n

dhf

sj ps ns

q  
  
       

   
(A15) 

 

The same is the case for gas-supplied settlements: 

, , , , ,q u .gas D
h ns t h ns t h ns
gas gasq   (A16) 

 

The existence of a transportation pipeline, in case a settlement is supplied by a bioenergy 

plant, is ensured by  
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, , , , ,,

_

q u ,
pipe

dh pipe
j h ns t j h nsns tq  

(A17) 

where parameter ,

_ pipe

ps tq  denotes the capacity of the pipeline.  

The policy instruments are implemented in the following way: the price of carbon emis-

sions is controlled by the value of emc . The binary parameters stx and f
ftx  control which 

CO2 emissions are taxed by the particular policy instrument. Feed-in tariffs are modeled 

by setting the fossil power price l
f
fossic  to the level of the tariff. The investment costs for 

pellet furnaces inv
cc are decreased in the pellet subsidy scenario. The compliance with 

biofuel blending obligations is guaranteed by 

, , ,
bio blend
j c c d k d

j k

z f d   (A18) 

where ,
blend

c df is the mandatory share of a bioenergy commodity in total useful energy de-

mand.  

The MIP is finally defined as: 

 min b, ,q, uf z    

. .s t  

  14 ( 8)A A  
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Abstract: Bioenergy is one way of achieving the indicative target of 10% renewable energy 
outlined in the EU Directive 2009/28/EC. This paper assesses the consequences for land use, 
greenhouse gas (GHG) emissions and fossil fuel substitution of increasing the use of 
bioenergy for road transportation. Different technologies, including first and second 
generation fuels and electric cars fuelled by bio-electricity are assessed in relation to existing 
bioenergy uses for heat and power production. The paper applies a spatially explicit energy 
system model that is coupled with a biomass production model to allow estimating impacts of 
increased biomass utilization for energy production on agriculture and forestry. Uncertainty is 
explicitly considered with the help of Monte-Carlo simulations of input parameters. Results 
indicate that second generation fuels perform better with respect to land use than first 
generation ethanol and that costs are lower. Biodiesel is also a cheap option, although the total 
potential is limited at a low level due to constraints in feedstock production. Electric vehicle 
mobility minimizes land use, however, costs are still high and prohibitive. First generation 
ethanol production is effective in reducing domestic GHG emissions because it does not 
induce feedstock competition with existing bioenergy uses (i.e. heat and power production). 
However, land use change is significant. 
Keywords: biofuels, electric cars, e-mobility, 2020 goals, spatially explicit optimization 

1. Introduction 

Directive 2009/28/EC requires all member states of the EU to guarantee a share of 10% of 
renewable fuels in transportation by 2020. The target may be reached by various measures, 
including an increase in the share of biofuels and an increase in the share of renewably 
produced electricity in the transportation sector. However, since the large scale introduction 
of biofuels in the US and Europe an extensive discussion has evolved because the large land 
requirements were identified as cause for direct and indirect greenhouse gas (GHG) emissions 
[1], [2] and as the driver for increasing competition between food and fuels [3], [4]. In 
Austria, bioenergy has played traditionally an important role. It provided around 8% of the 
primary energy demand in 2006, mainly for heating purposes [5]. Other uses of bioenergy 
developed in recent years, include biofuel and power production. Austria has complied with 
the 5.75% indicative EU biofuel target since late 2008 and used around 4.00 TWh of biodiesel 
and 0.60 TWh of ethanol in 2008 [6]. A further increase of the supply of biofuels will be diffi-
cult to achieve, particularly if only domestic biomass supply is considered. However, new 
technologies are emerging that aim to increase biofuel productivity and diversify feedstock 
supply. Second generation biofuels that may use ligno-cellulosic feedstock for fuel production 
are regarded as a sustainable alternative to first generation biofuels which are mainly prod-
uced from food and feed crops [2], [7]. A technological alternative is electric cars. Technical 
and economical barriers currently prevent the large scale introduction of electric cars, 
however, future potentials are considered significant [8], [9]. Electric cars will only contribute 
to renewable energy targets if the electricity for cars is produced in a renewable manner. 
Biomass is one possible source for this purpose. An existing study estimates [10] that the 
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utilization of biomass resources for electricity generation and subsequent utilization in electric 
cars is a far more effective way of using limited land resources for transportation than the 
conversion of food and feed crops to first generation ethanol. However, the assessment relied 
merely on technical details without considering economics and alternative uses of biomass in 
the energy sector – e.g. for heating. This paper contributes to research by applying a spatially 
explicit agricultural-bioenergy-system model to evaluate several technological options for the 
transportation sector, including first and second generation fuels and electric cars, with 
respect to land use, GHG emissions and fossil fuel substitution. The techno-economic charact-
eristics of future biofuel production as well as of electric cars are not well known yet. Also, 
high uncertainty is attached to future price energy scenarios. We therefore apply a Monte-
Carlo simulation of input parameters to explicitly include uncertainty in the modeling process. 
 
2. Methodology 

2.1. Model and Model Boundaries 

A spatially explicit, techno-economic mixed integer program is developed and applied to 
assess the costs, land use and GHG emissions of different bioenergy conversion routes. The 
model minimizes the costs of supplying Austria with transportation fuels, heat and electricity 
from either bioenergy or fossil fuels. It is static and simulates one year of operation. The 
current model version considers domestic biomass supply and energy demand only and does 
not allow imports and exports of biomass or bioenergy commodities. The model determines 
which bioenergy plants of a specific size and specific location shall be built and which dem-
and regions are supplied with bioenergy and/or with fossil fuels. Each plant produces various 
energy commodities, e.g. the heat produced in a combined heat and power (CHP) may be de-
livered to district heating networks (Figure 1). By-products of biofuel plants are sold as ani-
mal feed. Biomass supply curves endogenously determine the price of feedstock from forestry 
and agriculture, while prices of fossil fuels and energy demand are defined exogenously. 
Taxes currently applied to both fossil and bioenergy fuels are not included in the model.  
 
2.2. Technologies 

We assess several bioenergy technologies which are able to replace fossil fuels in the 
transportation sector along with technologies that convert biomass to heat and power. First 
generation biofuels are classified into ethanol produced from fermentation of starchy and 
sugar crops (e.g. wheat and corn) and biodiesel which is produced from vegetable oil derived 

 
Figure 1: Diagram of the mixed integer programming model. 
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from oil crops (e.g. sunflower and rapeseed). Both technologies are commercially available 
and are currently used for the production of biofuels in Austria. Ethanol is blended with 
gasoline. A blend of 5% ethanol and 95% gasoline is considered safe to be used in all cars, 
while all cars sold currently on the market are also able to handle a blend of 10% of ethanol. 
Similar limitations apply to biodiesel [11]. Second Generation biofuels are able to use 
cellulosic feedstock and even waste for the production of biofuels. There are two major 
technological options [7]. The biomass can be gasified and subsequently upgraded to liquid 
transportation fuels such as methanol or synthetic natural gas (SNG) which can also be used 
as transportation fuel. The second option is the hydrolysis of cellulose to sugars that are 
fermented to ethanol afterwards. We assess gasification only as it is estimated to be 
economically more viable than hydrolysis with fermentation [12], [7]. Second generation 
production technologies are currently under research and first pre-commercial installations are 
being built. US legislation requires 572 TWh of yearly cellulosic biofuel production until 
2022 [13], therefore a rapid increase in the construction of second generation facilities can be 
expected. Current cars cannot run solely on methanol and the amount of methanol that may be 
blended to gasoline is, similar to ethanol, limited. SNG requires significant modifications to 
the car, including the installation of a gas tank. Electric cars are currently globally under 
research, however, costs and ranges of batteries are major economic and technical obstacles to 
full implementation of the technology. Ranges of above 150 km are currently only achieved at 
very high costs [9]. Also, electric cars need the large scale deployment of charging stations. 
Metering of power and billing still has to be developed. The model considers investment costs 
for electric cars. Costs associated with additional infrastructure necessary for electric cars are 
not included. With respect to power production, the model allows two technologies: steam 
engines and biomass integrated gasification combined cycle (BIGCC) plants. While steam 
engines are well established in Austria and the installed capacity exceeded 300 MW in 2007 
[5], BIGCC is a technology that is still under research. It allows higher electrical conversion 
efficiencies than steam engines but capital costs are also significantly higher. We assume that 
power can be either used to fuel electric cars or that it is simply sold on the electricity market 
at a fixed price. Heating technologies modelled include fuel wood furnaces, pellet furnaces 
and heating plants for district heating networks. 
 
2.2.1. Total Cost of Ownership – Cars 

We use the concept of total cost of ownership (tco) to assign different costs to different cars in 
the model. Costs for fuels are endogenously determined by the model and are therefore not 
included in the calculations of tco. The tco per km is described by equations (1)-(3): 
 

 (1) 

 
 (2) 

 

 (3) 

 
The tco is determined by the annuity of capital costs C of the car, assuming an interest rate i 
and a lifetime t. For electric cars, the battery cost B is additionally considered as explained 
below. Total necessary yearly investment costs are divided by the kilometres km driven 
annualy. Additionally, operation & management costs per km of om are assumed. These costs 
are assumed to be lower for electric cars because maintenance of the electric motor is less 
complex than for an internal combustion engine (ICE) [9]. The lifetime of the car is limited to 
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ten years, however, if the car is driven a lot (i.e. more than maxKm), the lifetime is further 
reduced as indicated by equation (2). The lifetime of a battery is significantly less than that of 
the carriage. A change of the battery within the lifetime is therefore probable and is modelled 
by equation (3): the annuity of battery costs is derived by adding up the discounted battery 
costs over the whole life time, assuming that one battery costs bc. The battery is changed in 
year y when the driven kilometres since the last change exceed the lifetime of the battery. The 
tco depends significantly on the kilometres driven each year. A higher amount of kilometres 
implies lower specific capital costs per km. We therefore estimate ten classes of annual car 
utilization based on data provided by ÖAMTC. ÖAMTC, the biggest Austrian Automobile 
Association, checks approximately 10% of all cars for their technical liability each year. The 
total driven kilometers and the year of the first registration of the car are collected in the 
examination of the cars. An approximate estimate of the yearly driven kilometers can be 
derived from this data. We classified the cars by the annual driven kilometers into ten classes 
(0 km - 10,000 km, 10,001 km - 20,000 km, …, 90,000 km – 100,000 km). For each class, the 
mean of the yearly driven kilometers by car and the mean of the sum of driven kilometers by 
all cars in the class are determined. The sum of driven kilometers is linearly extrapolated from 
the ÖAMTC data with data of total Austrian car ownership from Statistik-Austria to allow an 
estimate for whole Austria as ÖAMTC data only covers around 10% of all registered cars. 
 
2.3. Demand 

We estimate current transportation demand from the ÖAMTC data and assume that the 
demand for transportation remains constant until 2020. We assume a total of 60 billion annual 
kilometres for personal transportation and total of 24 billion tonne kilometres for cargo 
transportation by truck. Although transportation fuel consumption has historically seen 
significant increases in the last years, the increase was significantly caused by “tank tourism” 
due to lower fuel taxes in Austria. We exclude demand from “tank tourism” from our analysis 
and also assume that public transportation will take a higher share of the overall transportation 
supply, thus allowing that road transportation remains constant. While the model allocates 
biomass resources to various conversion routes depending on energy prices and production 
costs, the demand for biomass heating is assumed to not fall under 17 TWh in the simulations. 
This is a possible decline of 5 TWh from current consumption levels. Setting a lower bound 
for biomass consumption for heating is reasonable because adjustment of individual heating 
devices to new economic conditions generally takes a lot of time.  
 
2.4. Uncertainty 

Most of the parameters in the study are of high uncertainty. Uncertainties on the performance 
and costs of various technologies as well as uncertainty about future energy prices are high. 
We explicitly address this issue by performing Monte-Carlo simulations of the MIP model 
and conducting an extensive sensitivity analysis. We first define plausible ranges for the 
uncertain parameters from a literature research and assume that the parameters are distributed 
uniformly within that range. For energy and CO2 prices, correlation between the prices of oil, 
gas, gasoline and CO2 are determined from historical spot prices. The input data for the 
Monte-Carlo simulation is generated by performing a Latin Hypercube Sampling procedure 
and combining it with the Iman-Conover method to guarantee correlation of correlated 
parameters in the procedure [14]. Latin Hypercube Sampling is used to guarantee that the 
whole parameter range is covered in the Monte-Carlo simulations. Results are given in form 
of probability distributions and a stepwise regression analysis is performed to examine the 
sensitivity of results to input parameters. The assumption on the distribution of the most 
important parameters is reported in Table 1. Further parameters modelled stochastically are 
biomass costs, conversion efficiencies and investment costs of bioenergy plants. 
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Table 1: Main model parameters and uncertainty ranges  
 Lower Bound Upper Bound 
Price of oil (€ MWh-1) 40 60 
Price of gas (€ MWh-1) 30 50 
Price of gasoline (€ MWh-1) 42 62 
Price of electricity (€ MWh-1) 54 74 
Price of carbon (€ MWh-1 tCO2

-1) 21 55 
Battery costs (€) 4,000 6,500 
Replacement distance battery (km) 70,000 90,000 
Investment costs electric cars (w/o battery) (€) 14,000 16,500 
Investment costs gasoline cars (€) 16,500 16,500 
Investment costs diesel cars (€) 17,000 17,000 
Investment costs gas cars (€) 17,500 17,500 
O&M costs electric car (€ km-1) 0.02 0.025 
Conversion efficiency car – Gasoline (km MWhfuel

-1) 2,000 2,200 
Conversion efficiency car – Diesel (km MWhfuel

-1) 2,250 2,450 
Conversion efficiency electric car (km MWhelec

-1) 5,600 7,000 
 
2.5. Scenarios 

We model one baseline scenario, that assumes no policy intervention at all, and 7 policy 
scenarios. Three of the scenarios assume that 5% (S5), 10% (S10) and 15% (S15) of the 
transportation sector are supplied by bioenergy, allowing all technologies to be selected by the 
model. The other four scenarios examine the impact of a 10% target of renewable 
transportation fuels, if only single technologies (i.e. ethanol (eth), methanol (met), sng (sng), 
electric mobility (emo)) are allowed. Biodiesel is not modelled in these scenarios because 
domestic feedstock production is too low to supply 10% of the transportation sector with 
biofuels. 
 
3. Results 

3.1. Technologies and fuel utilization 

The first three scenarios allow free choice of technologies. Biodiesel and methanol supply the 
biofuels in these scenarios. Biodiesel is however limited at around 0.5 TWh due to restrictions 
in feedstock supply of oil-crops. Second generation methanol is the supplement to biodiesel to 
complete the full target. E-Mobility plays a role in the first three scenarios - however, variat-
ion is very high and the contribution is significantly lower than that of methanol. Ethanol and 
SNG are not selected in the first three scenarios. These results indicate that methanol 
production can be considered superior to ethanol in terms of costs – although the variation of 
results is generally high, the dominance of methanol over ethanol is stable. Competing 
bioenergy technologies (i.e. heating and power production) are mainly reduced in S15, met 
and SNG. This is due to the high demands for woody biomass for biofuel production which 
increases prices for the feedstock and therefore makes production of power and heat partly 
unprofitable. The ethanol scenario has less influence on the woody biomass market as ethanol 
feedstock competes with food and feed crops. Biodiesel is mainly used in the freight sector 
where it substitutes diesel. Ethanol and methanol are used for personal transportation in 
driving classes with low annual distances because fixed capital costs contribute more to the 
total costs of transportation in those classes than the distance dependent fuel costs. Higher 
classes with higher annual driving distances are more likely to be supplied by electric cars 
where the influence of the high capital costs of the car and the battery decrease and the fuel 
costs become more important.  
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Fig. 2: Differences in CO2-Emissions, Fossil Fuel Substitution and Costs between the baseline and the 
biofuel scenarios.  
 
3.2. CO2 Emissions, Fossil Fuel Substitution and Costs 

Figure 2 shows CO2 emissions, fossil fuel substitution and costs calculated as the difference 
from the baseline scenario. A significant reduction in CO2 emissions and an increase in fossil 
fuel substitution are achieved by the eth and the emo scenario. These two scenarios also have 
highest costs. The variance of costs is highest in emo due to the large uncertainties in the 
development of the costs of electric vehicles. However, the model only considers domestic 
GHG emissions while effects of indirect land use change on GHG emissions are not modeled.  
 
3.3. Land use  

While the eth policy substitutes a lot of fossil fuels, the land use effects are also substantial in 
comparison to the other policy scenarios (See Figure 3). Up to 200,000 ha of agricultural land 
are converted to energy crop production while all other scenarios stay well below 50,000 ha. 
This implies that food and feed production is reduced significantly in the eth scenario while 
all other policies have rather low impacts on the production of other agricultural products. 
There are two reasons for this: first, productivity is higher for second generation fuels and for 
electric mobility due to higher total conversion efficiencies (see Figure 3). Second, these 
technologies rely on lignocellulose resources that may come from additional forest harvesting 
or that may otherwise be used for power and heat production (see Figure 3, bottom-right). 
There are also important differences between the S10, met, sng and emo scenarios.  Com-
bining biodiesel and methanol for the biofuel goals as in S10 reduces land use change in 
comparison to the methanol only scenario. Biodiesel therefore plays a small, but important  
role in the technological portfolio. Figure 3 shows that SNG is more efficient in converting 
biomass than methanol. Electric mobility has by far the lowest impact on land use change and 
on additional forest wood utilization. 
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Fig. 3: Differences in Land Use, Feedstock Utilization and Forest Wood utilization between the 
baseline and policy scenarios. 
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3.4. Sensitivity Analysis 

Table 2 show the results of the sensitivity analysis performed on the results of the S15 
scenario. We checked for the influence of parameters on the deployment of electric mobility 
to show which factors mainly influence the competition between second generation fuels and 
electric mobility by performing a regression of the input parameters on the output variables (a 
stepwise regression procedure is used). The regression coefficients are normalized. The most 
important input parameters regard the cost for the electric car (i.e. battery costs, investment 
costs, O&M). The carbon price and the kilometers until replacement of battery also prove to 
significantly influence the results while the gasoline price does not show significant influence 
on results. 
 
4. Discussion  

Results of our study are in line with other studies that estimate lower land use for bio-electric-
cars than for biofuel production [10]. They are also in line with studies that come to the 
conclusion that battery replacement costs are currently the biggest economic barrier to the 
large scale introduction of electric mobility in the transportation sector [8], [9]. However, 
there are additional barriers to electro-mobility that were not modelled within this study: the 
change from cars that are refuelled at gas stations in very short time to cars that need hours of 
recharging and that have a comparably low driving range probably plays a more important 
role than sole considerations of the tco. The model results indicate that drivers who use their 
car a lot are more likely to choose electric cars than those with low car utilization because of 
lower fuel costs. However, technical reasons may impede the utilization of electric cars for 
those drivers: the low range and the high recharging times may render electric cars 
impractical for them. With respect to economics, renewable electricity production from wind 
or small water power plants may produce electricity at much more competitive costs than 
biomass powered thermal plants. Therefore, electric cars may be more competitive than stated 
in this study due to lower fuel costs from renewables. The GHG emission effects of biofuel 
policies have to be considered in conjunction with the land use change that is caused by the 
expansion of biofuel production. The GHG emissions stated in this paper do not include 
indirect or leakage effects of the policies. However, it can be clearly stated that fuelling 
electric cars with electricity produced from biomass induces by far the least change of land 
use and can therefore be considered to also minimize leakage effects.  
 
Table 2: Results of sensitivity analysis. Confidence levels: *** 0.999, ** 0.99 and *0.95 
 Coefficient  
Amount of electric mobility (R2 0.49)   
Battery Costs -0.54 *** 
Investment costs electric car -0.28 *** 
O&M costs electric car -0.12 * 
Gasoline price 0.08  
Kilometers until replacement of battery 0.15 ** 
Carbon price 0.17 ** 
 

5. Conclusions 

Second generation biofuels have less impact on land use than first generation ethanol due to 
two reasons: yields of biofuel per hectare are higher for agricultural land and the feedstock 
may additionally come from forests. Biodiesel has high yields per hectare, but the total 
domestic potential is limited at a low level. The lowest land use is implied by the utilization of 
electric cars, which, at current technological standards, are still very costly in comparison to 
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cars fuelled by liquid fuels. With respect to policies for promoting second generation biofuel 
production, one has to consider that investments in second generation biofuel production will 
have a long-term effect on the utilization of biomass resources. The results of the study 
indicate, however, that the gains in efficiency in relation to first generation fuels are relatively 
low while significant efficiency increases can only be expected when developing a 
transportation system based on electricity. A large scale introduction of second generation 
biofuels has to be considered very carefully therefore and in the light of a possible total 
restructuring of the transportation sector within the next 20 to 30 years. 
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Abstract 

The target set by the European Union for Austria is to reach a share of 34% of energy from 

renewable resources by the year 2020. Significant efforts are then required and second 

generation biofuels may be an option. In order to be competitive to fossil fuel, second generation 

biofuel would be produced at large scale. Logistics for feedstock and biofuel transportation 

becomes then an issue, and the location of the production plant is of major importance. By 

finding out the optimal location of the biofuel production plant, this work analyses the biofuel 

potential for Austria. 

A mixed integer linear programm is used to determine the possible location of biofuel production 

plants, their capacity, and the technology. The complete forestry market of Austria is considered 

by the integration into the model of the actual location and wood demand of all the existing 

forest industries. Depending of the availability and access to the feedstock, second generation 

methanol or/and ethanol production plant can be set up. A complete road and railway network 

for Austria is also implemented into the model. The biofuel potential is then studied in regards 

with the wood availibility, a carbon cost and the price of fossil fuel for transportion. Forestry 

wood and poplar plantations are considered as feedstcock.  

The results show that methanol prodcution plants are selected over ethanol production plants 

when the availibilty of feedstock becomes scarcer. With today’s wood consumption in Austria, 

and today’s fossil fuel price, up to 14.4 PJ of biofuel could be produced. Setting a carbon cost, 

forces the production of biofuel to a limit of 40 PJ biofuel, and an increase of the wood demand 

by 25% would limit the biofuel production to 20 PJ if poplar plantations is added into the system. 

Two locations are of high interest for the methanol production plants which are in the vicinity of 
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Salzburg and Amstetten, whereas the ethanol production plants are mainly located close to areas 

of high heat demand. 

 

1. Introduction 

The European Union has set a target of 34% for the share of energy from renewable sources in 

gross final consumption of energy by the year 2020 for Austria. Thisrepresents an increase of 11 

percentage points compared to the year 2005 [1]. To meet this target, significant efforts are 

necessary [2], and the use of forestry wood appears to be an atractive pathway [3]. This study 

inquires the biofuel production potential in Austria under consideration of the competition of 

wood from other forest industries. For this analises, a spatially explicit optimization model is 

used to determine the optimal distribution of wood between the different wood industries, the 

capacity and location of possible biofuel production plants. This study is a follow up analysis 

from the work done by [4, 5]. [5] assessed the cost-effectiveness of various energy policy 

instruments with respect to greenhouse gas (GHG) emission reductions and fossil fuel 

substitution under consideration of new bioenergy technologies for the year 2030 while [4] 

compared various options of introducing renewable energy into the transportation sector. Both 

analyses show clearly that second generation biofuel production uses land more efficiently for 

biofuel production than first generation biofuels. The applied model is however rather coarse 

with respect to logistics: the road network is not considered, instead Euclidian distances between 

biomass supply sites and plant sites are assumed. Also, major suppliers of energy wood, such as 

the sawnwood industry, are not considered in a spatially explicit way. The competition for wood 

is modeled by a generic wood supply curve that does not allow drawing conclusions for specific 

competitors of forestry products, such as the pulp & paper and wood board industry. 

This study extends the results from [4] and [5] by improving the logistics of the model: a 

complete road and railway network and the locations of all the woody biomass based industries 

in Austria are spatially explicitly integrated in the analysis. The effect of the change in the wood 

demand from the competing forest industries and the cost of second generation biofuel 

production are assessed. The aim of this research is to allow insights into optimal siting of 

second generation biofuel plants and the effect of forestry wood competition on the economically 

feasible biofuel potential in Austria.  
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2. Methodology 

2.1. Model improvement 

A mixed integer linear model has been used to detemine the biofuel protential in Austria. The 

techno-economic, spatially explicit model determines the optimal location and capcity of biofuel 

production plants. A complete description of the model can be found in [6-8]. 

The actual version of the model in this study considers the complete wood market in Austria as 

described in Figure 1. The position and wood demand of the actual wood based industries are 

considered in the model, such as combined heat and power plants (CHP), pellet plants, pulp and 

paper mills, district heating plants and private fuel wood consumption. The total cost of the full 

supply chain of the system (Figure 1) is minimized. As presented in Figure 1, the plants can be 

supplied by roundwood or residuals from the sawmill industries. The wood demand from the 

actual woody based industries has to be met, and if the amount of available wood is sufficient, a 

biofuel production plant is set up in case the biofuel produced is economically interesting in 

comparison to the fossil fuel price. The model will determine the optimal number of production 

plants, their capacity and the type of biofuel that can be produced. 

 

 
Figure 1: Forest wood conversion route. The dashed lines are potential routes if the amount of biomass is 

sufficient after meeting the wood demand from the actual woody based industries. The numbers (in million 

m3) represent the amount of wood necessary from each actual woody based industry [9]. 
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This version of the model has also been upgraded with a full road and train network map for 

Austria. From the midle of each grid point, the distance to the closest road is determined. Then 

the distance from one grid point to any other grid point is determined by the shortest distance 

that can be travelled with the combination of truck and train. Both the feedstock and the biofuel 

can be transported either by truck or/and train. For a distance below 200 km, only truck is used, 

for higher distances, train can be used if the railway network allows it. 

 

2.2. Input data 

2.2.1. Feedstock 
The production of forestry wood is calculated from the G4M model [10] on a square kilometer 

grid. For each grid point, the amount of roundwood and sawnwood is determined as well as the 

cost for harvesting the wood and transporting it on the side of the closest road. The potential of 

forest yield is around 32 milion m3 for round wood at an average cost of 50 €/m3 [10]. 

Beside roundwood from forestry and sawmill residuals, agricultural poplar can be used as 

feedstock for energy purposes. Biomass growth on agricultural land under different management 

options and crop rotations is simulated with the biophysical process model EPIC (Environmental 

Policy Integrated Climate) [11, 12]. The total potential from the poplar plantation provides an 

additional 2.3 million m3 of energy wood on 156,000 ha of land. An average cost of 25 €/m3 is 

assumed for the poplar plantations. All data is then agregated to a 0.2 degree grid, which gives a 

total of 310 grid points all over Austria. 

 

2.2.2. Energy demand 
The biofuel demand is calculated regarding the national transportation fuel consumpation and the 

number of inhabitants at each grid point. The national consumption in Austria is 183 liters per 

capita in the year 2007 [13]. It is assumed that power can be produced on site and then sold to 

the electricity network grid. The heat demand has been calculated from [14, 15], and only the 

locations where the fossil fuel heat can be substituted into bio-heat are taken into consideration. 
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2.2.3. Technology 
This study is a follow up and based on the work from [5]. The same assumptions are therefore 

made. The same biomass data is used, and the same energy demand grid is used. The feasibility 

of second generation metanol and ethanol in Austria is analysed. Table 1presents the key factors 

used in the model for the two technologies studied. 

 
Table 1: Key factors for the production of methanol [16-18] and ethanol [19].  

Key factors Unit 
Methanol 

(Gasification) 

Ethanol 

(Hydrolysis and 

Fermentation) 

Fuel efficiency GJbiofuel/GJbiomass 0.58 0.243  

Heat efficiency GJheat/GJbiomass 0.08 0.176 

Power efficiency GJelectricity/GJbiomass - 0.085 

Biogas efficiency GJbiogas/GJbiomass - 0.132 

Base plant size MWbiomass. 388 100 

Investment cost M€ 505 100 

Operation cost €/GJbiofuel 6.13 11.0 

 

2.3. Simulations 

Former studies on a similar topic have extensively analysed the strong effect of the biomass 

price, heat demand or production characteristics (investment costs, production efficiency) on the 

biofuel cost and the location of the biofuel production plants [7, 8, 20, 21]. For this analysis, 

those parameters are kept constant, and only the influence of three external factors to the supply 

chain is analysed: CO2 cost, Fossil fuel price and wood demand. The CO2 cost represents the CO2 

emission cost, for example a CO2 tax or tradable emission permits. Fossil fuel represents 

transportation fossil fuel only. The wood demand represents the wood demand from the already 

existing woody based industries, the change in wood demand is the same for all of those 

industries whithout any specific distinction. Table 2 presents the range of the values for those 

parameters and the increment used for the simulations. 210 simulations were run for all different 

combinations possible of all values for these three parameters. Runs with and whithout poplar 

plantations were also computed. 
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Table 2: Parameters studied. 

Parameters Unit Min Increment Max 

CO2 cost €/tCO2 0 25 150 

Fossil fuel price €/GJ 15 5 40 

Wood demand* % 0 25 125 

* 100% represents the 2005 wood demand situation 

 

3. Results and discussion 

3.1. Fossil fuel price and biofuel production 

The influence of the wood demand from the existing wood industries in Austria on the biofuel 

(ethanol and methanol) production is presented in Figure 2 for different fossil fuel prices ranging 

from 15 €/GJ to 40 €/GJ. As the demand of wood is increasing the production of biofuel is 

decreasing, due to a higher feedstock demand. As the fossil fuel price increases, the amount of 

biofuel produced increases for the same wood demand, letting the biofuel technology beeing 

more competitive: i.e. at 50% wood demand, 40 PJ of biofuel can be produced if a 35 €/GJ fossil 

fuel price is set, whereas 120 PJ of biofuel can be produced if the fossil fuel price increases to 40 

€/GJ. At the present situation (wood demand 100%, and fossil fuel price between 30 and 35 

€/GJ) up to 14.4 PJ biofuel could be produced if only forestry wood was used, whereas 25.5 PJ 

of biofuel could be produced if both poplar plantations and forestry wood were used.  
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Figure 2: Influence of the wood demand on the biofuel (ethanol and methanol) production for five fossil fuel 

price (€/GJ) scenarios (carbon cost 0 €/tCO2, with poplar plantations and forestry wood (left), and with 

forestry wood only (right)). 

 

3.2. CO2 cost and biofuel production 

The influence of a CO2 cost on the biofuel production is illustrated by Figure 3, left side. The 

situation at a CO2 cost of 0 €/tCO2 corresponds to the situation in Figure 2 for a fossil fuel price of 

20 €/GJ. Setting a CO2 cost over 25 €/tCO2 imposes the production of biofuel. With a CO2 cost 

applied, the production of biofuel is limited to 40 PJ for a wood demand up to 100%. Over that 

limit, the biofuel producion decreases. Figure 3, right side, presents the share of methanol 

produced at a certain wood demand and CO2 cost. Untill a wood demand of 75%, there is as 

much methanol as ethanol produced. For a wood demand of 100%, the share of methanol 

produced is between 71-90% depending of the CO2 tax imposed, and it reaches a share of 100% 

for a wood demand of 125%: as the feestock becomes scarcer, it becomes more interesting to 

invest in methanol as the overall efficiency is greater than the ethanol efficiency. 

 

 
Figure 3: Left: influence of the wood demand on the biofuel production; right: influence of the wood demand 

on the methanol production, for four carbon cost (€/tCO2) scenarios. (Fossil fuel price 20 €/GJ, feddstock used: 

forestry wood and poplar plantations). 

 

The corresponding biofuel costs to Figure 3 are presented in Figure 4 for both methanol (left) 

and ethanol (right). The biofuel cost corresponds to the sum of the costs from transportation, 

feedstock, biofuel production, and income from carbon subsidies. As the wood demand increases 
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the biofuel cost increases too: the transportation distances for collecting the feedstock increases 

as the wood demand is increasing. The methanol cost varies whithin a range of 5 €/GJ, whereas 

the ethanol cost varies within a range of 7 €/GJ. The later is indeed much sensible to income 

from the by-products, and therefore the location of the plant is of high importance in order to 

make use of the residual heat. For a wood production of 100%, a methanol cost between 15 and 

20 €/GJ can be reached whereas the cost of ethanol can reach 19-28 €/GJ. 

As the CO2 cost increases, the biofuel cost decreases. This is due to the income from CO2 

permits or CO2 tax exemptions. If those incomes were not consired in the cost, the biofuel costs 

would remain constant whatever the carbon cost applied as the biofuel production does not 

change for different CO2 cost scenarios (see Figure 3). 

 

 
Figure 4: Influence of the wood demand on the methanol cost (left) and ethanol cost (right) for four carbon 

cost scenarios (fossil fuel price 20 €/GJ , feedstock used: forestry wood and poplar plantations). 

 

3.3. Production plant locations 

The optimal locations of the biofuel production plants can be determined. The 310 grid points of 

the grid are potential location for the biofuel production plant. From the 210 scenario runs, 

Figure 5 presents the optimal locations in respect with their number of appearance for methanol 

production plants (first row) and ethanol production plants (second row), with the use of forestry 

wood only (left side) and foresty wood with poplar plantations (right side). Three categories can 

be defined: the locations that appear for 1-10% of the runs, 11-25% of the runs, and the locations 

that appear for 26-40% of the runs and constantly (100%) for ethanol and methanol production 

plants respectively. 
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For the methanol production plants, two points are of interest (appearance equals to 100%), one 

is located in the vicinity of Salzburg, and the other one close to Amstetten. These cities can be 

supplied by residual heat from the production plants; they are also close to a highway and 

railway, which facilitates feedstock and biofuel transportation through the country. Adding 

poplar plantations as an energy feedstock does not influence the results on the locations.  

For the ethanol production plants, the main area of interest is around Vienna. The production of 

residual heat plays a major role in the location of the ethanol production plant. The production of 

residual heat is higher during the production of ethanol than during the production of methanol; 

therefore the ethanol production plant should be located closer to higher heating demand areas. 

 

  

   
Figure 5: Positions of the production plants selected from the 210 simulations (from top to down, and left to 

right: 1. methanol with forest only; 2. methanol with forest and poplar plantations; 3. ethanol with forest 

only; 4. ethanol with forest and poplar plantations. 
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4. Conclusion 

The present study is a follow up of a work on the potential of bioenergy production in Austria. A 

geographically explicit model optimisation model has been used to determine the possible 

location of methanol and ethanol production plants in regards with the wood demand from the 

already existing forestry industries. The feasibility of the biofuel production plants has been 

studied considering changes in wood demand, carbon cost and fossil fuel price. 

The results show that methanol production plants are selected over ethanol production plants 

when the availibilty of feedstock becomes scarcer. With today’s wood consumption in Austria, 

and today’s fossil fuel price, up to 14.4 PJ of biofuel could be produced. Setting a carbon cost, 

forces the production of biofuel to a limit of 40 PJ biofuel, and an increase of the wood demand 

by 25% would limit the biofuel production to 20 PJ if poplar plantations is added into the system. 

Two locations are of high interest for the methanol production plants which are in the vicinity of 

Salzburg and Amsteten, whereas the ethanol production plants are mainly located to higher heat 

demand areas. 
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 8. Biotreibstoffe der 2. Generation – Potentiale 
 

  J. Schmidt, S. Leduc, BOKU Wien, IIASA Laxenburg 
 

 
 
Biotreibstoffe der 2. Generation können im Gegensatz zu Treibstoffen der 1. Generation aus 
der gesamten Biomasse einer Pflanze gewonnen werden, während bei Erst-
generationstreibstoffen nur die zucker-, stärke- oder ölhaltigen Pflanzenteile von agrarischen 
Produkten zur Umwandlung in Treibstoffe zur Verfügung stehen. Als Rohstoffe bieten sich 
für Zweitgenerationstreibstoffe daher Forstprodukte genauso wie Kurzumtriebsgehölzer 
aus agrarischer Produktion an. Zurzeit sind weltweit einige Demonstrationsanlagen der 
2. Generation in Betrieb, erste kommerzielle Anlagen sind im Bau. 
 
Im Rahmen eines Forschungsprojekts des Austrian Climate Research Programm (ACRP) 
haben die Universität für Bodenkultur Wien und das International Institute of Applied 
Systems Analysis Laxenburg untersucht, welche technisch-ökonomischen Potentiale für 
Zweitgenerationstreibstoffe in Österreich bestehen und wie sie im Vergleich zu anderen 
Nutzungen von holziger Biomasse abschneiden. Dazu wurde ein räumlich explizites 
Optimierungsmodell erstellt, das sowohl forstliche als auch agrarische Produkte als 
Rohstoffe für die Bioenergieproduktion berücksichtigt. Die Konkurrenz zu anderen 
Bioenergietechnologien zur Wärme- und Stromgewinnung wurde ebenfalls abgebildet. Als 
konkrete Produktionstechnologien wurden Methanol-, Ethanol- und Fischer-Tropsch-
Dieselproduktion modelliert. Die Ko-Produktion von Wärme und Strom wurde dabei 
berücksichtigt. 
 
Die hohen Investitionskosten für Zweitgenerationsanlagen sowie die im Vergleich zur Wär-
menutzung bzw. zur Kraft-Wärme-Kopplung geringen Umwandlungseffizienzen machen den 
Verwertungsweg Treibstoff für holzige Biomasse in Österreich unattraktiv. So können über 
die Verwertung von Biomasse für Wärme oder gekoppelte Wärme-Stromproduktion (KWK) 
deutlich mehr fossile Energieträger ersetzt werden als durch die Herstellung von Treib-
stoffen. Gleichzeitig zeigen die Projektergebnisse, dass im Vergleich zu Treibstoffen der 
1. Generation die Effizienzen bei Zweitgenerationstreibstoffen höher und die Kosten geringer 
sind und dass der Flächenverbrauch zur Erreichung der Biotreibstoffbeimischungs-
verpflichtungen mit Zweitgenerationstreibstoffen deutlich unter jenem für Erstgenerations-
treibstoffe liegt. 
 
Ein interessantes Einsatzfeld würde für die Biotreibstoffproduktion entstehen, falls die CO2-
Abscheidung und -speicherung (CCS) in Europa in großem Maßstab zur Anwendung 
kommt. Hier bieten Biotreibstofffabriken der 2. Generation eine kostengünstige Möglichkeit. 
Im Produktionsprozess für Biotreibstoffe fallen relativ reine CO2-Ströme an, die direkt 
abgeschieden und gespeichert werden können, während in der Stromproduktion eine 
Abscheidung aufwändig, teuer und energieintensiv ist. 
 
Bei einer Beibehaltung der Verpflichtungen zur Beimischung von Biotreibstoffen ist ein 
langfristiger Umstieg auf Zweitgenerationstreibstoffe – insbesondere auf die Produktion von 
Methanol – empfehlenswert, um Kosten zu sparen und den  Verbrauch von agrarischem 
Land zu minimieren. Grundsätzlich ist eine Verwertung holziger Biomasse zur Wärme- und 
Stromproduktion der Treibstoffproduktion allerdings vorzuziehen. Der vollständige 
Projektendbericht erscheint Ende Dezember 2010. 
 
Informationen: Univ.-Prof. Dipl.-Ing. Dr. Johannes Schmidt, Institut für nachhaltige Wirtschafts-
entwicklung, Universität für Bodenkultur Wien, johannes.schmidt@boku.ac.at 
Sylvain Leduc, International Institute for Applied Systems Analysis Laxenburg, leduc@iiasa.ac.at  
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