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ABSTRACT 

The paper considers the specifics, strengths and 
weaknesses of available remote sensing products 
within major steps and modules of a verified terrestrial 
ecosystems full carbon account (FCA) of Russia’s 
land. The methodology used is based on system 
integration of all available information sources and 
major methods of carbon accounting using IIASA’s 
landscape-ecosystem approach for overall designing of 
the account. A multi-sensor remote sensing concept is a 
corner stone of the methodology being substantially 
used for (1) georeferencing and parametrization of land 
cover and its change, (2) assessment of important 
biophysical and ecological parameters of ecosystems 
and landscapes, and (3) assessment of the impacts of 
environmental conditions on ecosystem productivity 
and disturbance regimes. System integration and 
mutual constraints of remote sensing and ground 
information allow for substantially decreasing 
uncertainty of the FCA. In the Russian case-study, the 
net ecosystem carbon balance of Russia for an 
individual year (2009) is estimated with uncertainty at 
25-30% (CI 0.9), that presumably should satisfy 
current requirements to the FCA at the national 
(continental) scale. 

1. INTRODUCTION 

High uncertainties surrounding assessment of the 
impacts of terrestrial ecosystems on global and regional 
carbon cycling hinder the reasonable inclusion of the 
terrestrial biosphere in the post Kyoto international 
negotiations. Overcoming this problem requires 
assessment of the uncertainties and their reduction to a 
level that would be acceptable for policy-makers. It 
leads to a need for a verified terrestrial ecosystem full 
carbon account (FCA) as a methodology that would 
comprise all ecosystems and all processes in a spatially 
explicit fashion and continuously over time, would 
allow to comprehensively and reliably assess 
uncertainty, and present information for management 
of uncertainties, particularly if they do not provide a 
preliminary settled level [1]. The major idea beyond 
this approach is the understanding of the FCA as a “full 
complexity” problem, i.e. ill-defined and quasi-
manageable task, that is (1) structurally, functionally 

and dynamically intricate; (2) non-separable from 
context, observation and interest; (3) multi-
objective/subjective; (4) inherently uncertain due to 
incomplete knowledge and (5) is practically non-
verified by any strict formal methods (cf. [2]). It leads 
to a principal conclusion: it is not possible to estimate 
uncertainty of the FCA at national or continental scales 
in a reliable and comprehensive way if any of the major 
methods of FCA (i.e. landscape-ecosystem approach; 
dynamic vegetation models; direct measurements of 
ecosystem-atmosphere carbon exchange; and inverse 
modeling) are used individually.  

In our attempt to provide a FCA for Russian terrestrial 
ecosystems, we developed a methodology that takes 
into consideration (1) the fuzzy character of the studied 
system; (2) strengths and weaknesses of major 
individual approaches to carbon accounting; (3) 
possibility to provide synergetic combination of 
different information sources of different details and 
reliability, particularly for remote territories of polar 
and boreal zones; (4) abundance of vast territories with 
rapid changes, mostly after natural and human-induced 
disturbances; (5) lack of knowledge of some important 
processes; and (6) availability of temporal trends and 
substantial seasonal variability of major components of 
the carbon budget. The guiding idea of such a 
methodology is that only system integration of relevant 
information sources and different methods of the 
account, which are obtained independently, are able to 
extract maximum information on the ecosystem carbon 
budget. A landscape-ecosystem approach (LEA) is 
used as a system background and for overall designing 
of the FCA and defining intra- and inter-system 
boundaries. The FCA within LEA is provided as a 
complimentary combination of pool-based and flux-
based methods. Estimates received by other methods of 
carbon accounting are used for comparative analysis, 
harmonization and multiple constraints of the results 
and corresponding uncertainties. The information 
environment of LEA is organized in the form of an 
Integrated Land Information System (ILIS) of Russia, 
for 2009. The ILIS integrates all relevant information 
sources - cartographical materials (digitized maps of 
vegetation, land use – land cover, soil, landscapes, 
administrative maps etc.), data of different inventories 
and surveys (State Land Account, State Forest 
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Account, fire maps etc.), diverse databases of in situ 
measurements (live biomass, net primary production, 
heterotrophic respiration and many others), spatially 
distributed climate data, relevant remote sensing 
products, numerous auxiliary models for assessment of 
biophysical indicators of ecosystems etc. This 
information is organized around a hybrid land cover 
land cover at the spatial resolution of 1 km2. A multi-
sensor remote sensing concept is a corner stone of the 
methodology of the FCA being substantially used for 
(1) classification, georeferencing and parametrization 
of land cover and its change, (2) estimation of 
important biophysical and ecological parameters of 
ecosystems and landscapes, and (3) assessment of the 
impacts of environmental conditions on ecosystem 
productivity and disturbance regimes. 

2. DEVELOPMENT OF HYBRID LAND COVER 

Current ground information on land cover and state of 
terrestrial ecosystems for vast, mostly sparsely 
populated territories of Northern Eurasia is not 
satisfactory. Official statistics systematically report 
obsolete data of unknown accuracy for large parts of 
the region. The region is represented by substantial 
areas of rapid change (burnt forest area, industrially 
transformed territories etc.). Thus, remote sensing 
remains the most important tool for representing the 
updated land cover. However, there is an evident trade-
off between a need to cover large territories, required 
minuteness of the FCA, and technical capabilities of 
remote sensing products.  

The major idea, realized in development of the hybrid 
land cover, was combining the different sources of 
information for georeferencing and parameterizing 
hierarchical classification of land classes with stepwise 
inclusion of remotely sensed and ground information of 
known reliability. At the first stage, two land cover 
datasets were used: the GLC2000 (GLC) [3] and 
MODIS land cover. GLC seems to be the most reliable 
product, validated by regional experts [4]. MODIS land 
cover on the other hand provides the most up to date 
information. The MODIS Vegetation Continuous 
Fields (VCF) product is an annual representation of 
percent tree, herbaceous/shrublands and barren cover 
for each pixel [5]. The VCF provides the necessary 
flexibility, allowing us to prioritize the assignment of 
statistical data to land cover data. These three products 
allowed for identifying aggregated land classes – 
unproductive land, agricultural land, forest, wetlands, 
grasslands, and shrubs.  

A number of key GIS datasets was used to assign data 
from different statistical inventories - administrative 
region coverage (81 regions) and forest enterprises map 
(about 1600 polygons) updated for 2009. A soil 
database was one of the key components for selecting 
the appropriate area of arable land and wetlands. It 

contains a total of 292 unique soil types across the 
country with 21,988 polygons. The digitized soil map 
was developed by V.V. Dokuchaev Soil Science 
Institute (Moscow) in 1996 (1:2.5 Mil scale), edited by 
[6]. A vegetation dataset was also utilized to provide 
broad vegetation classes and bioclimatic zones (derived 
from the dataset titled Vegetation of the former USSR), 
produced at a scale of 1:4 Mil [7]. The dataset includes 
georeferencing of 101 vegetation classes and 8 
bioclimatic zones (polar desert; tundra; forest tundra, 
northern & sparse taiga; middle taiga; southern taiga; 
temperate forests; steppe; deserts and semi-deserts). In 
order to account for data not captured in the above 
datasets due to small areas of individual polygons, but 
which could have substantial total areas (e.g.,. linear 
features; small waterbodies; harvested areas, etc), we 
relied on the Russian 1:1 Million Planimetric dataset to 
account for “virtual polygons”. All of these virtual 
polygons (not presented on the map, but taken into 
account for the area balance and further calculations) 
were then tabulated per administrative region.  

The State Forest Account (SFA) 
(http://www.roslesinforg.ru) contains statistics for 
approximately 1600 forest enterprises. The SFA data 
contains areas and growing stock by dominant forest 
species distributed by age, site index and relative 
stocking. There are approximately 50 sets of records 
for each enterprise on average [8]. The State Land 
Account (SLA) is provided annually by the State 
Committee of Land Resources of Russia based on land 
statistics. Originally, the SLA is provided by 
administrative districts (about 3000 for Russia) and 
contains areas by (approximately 50) land classes. The 
SLA contains a two-dimensional official Russian land-
use and land-cover hierarchical classification. Land 
cover classes are defined by their dominant use and are 
based on natural and historical characteristics. They 
include agricultural (arable; fallow; hayfields; pastures; 
and perennial vegetation) and non-agricultural land 
classes (forest lands and lands under tree and shrub 
vegetation; built-up land; lands under roads; land of 
water fund; disturbed land – mining operations, 
earthmoving, etc.; and other land – ravines, sand, 
dumps etc.) [9]. 

We calculated the quantitative correspondence of 
statistics (forest and land account) and spatial (remote 
sensing, GIS) data – agreement index of land suitability 
(Sts) for each pixel-pair (grid of territory (t) and 
statistics record (s)) within the territory unit (forest 
enterprise, administrative region). 
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administrative unit). 

Data on a nominal scale, i.e. GLC land cover classes 
were ranked with respect to a certain vegetation class 
in the statistics.The resultant agreement index S varies 
from 0 to 1. It can be interpreted as a distance between 
objects (grid of territory and statistics record) within 
the space of parameters. The lower the index value, the 
higher agreement of initial datasets and more suitable 
is the current piece of territory for the given statistical 
data.  

The final stage involved the optimization of 
distribution statistics data on the territory based on the 
agreement index results. The assignment of ground 
data to the most suitable grid for forests was provided 
using SFA data within each forest enterprise. SFA data 
were assigned to the 1-km grid applying the following 
parameters: GLC/MODIS to place species from the 
SFA in the most appropriate GLC/MODIS classes; 
VCF: to assign the highly stocked forests to cells with 
a high VCF_trees; NPP: to compare NPP derived from 
statistics and measured from Space; and Soil and 
vegetation zone maps to assign the most productive 
forests to the most appropriate soils and landscape 
elements. 

For some administrative units, both remote sensing 
products (VCF, GLC) indicated forested area which 
exceeds the forested area found in the SFA. Generally 
these areas correspond to territories with obsolete 
forest inventory data (time since inventory more than 
15 years) or areas of abandoned agriculture. We 
distinguish these kinds of forests using GLC 
“vegetation” classes and VCF_trees ≥ 21% (for 
Tundra, Forest-tundra and Sparse & Northern Taiga) 
and VCF_trees ≥ 35% (for forests situated southward 
of the middle taiga zones). For these areas we assign 
the most representative SFA records within the 
respective administrative units and forest enterprises. 
The productivity parameters (i.e. growing stock 
volume, NPP) of such forests were corrected by 
regional regressions in accordance with the VCF_trees 
level and controlled for some regions based on radar 
images (ASAR, PALSAR). 

Appropriate procedures of combining remote sensing 
and ground data have been applied to other land 

classes. The State Land Account (SLA) contains the 
following agricultural land categories by 
administrative regions: arable land; hayfield; pasture; 
and fallow. Areas of these categories have been used 
for independent control. An “abandoned arable land” 
category was also introduced in accordance with 
estimates done by the Russian Academy of 
Agricultural Sciences and the Federal Service of State 
Statistics [10]. We also used the following sources to 
distribute agricultural land: GLC (Cropland, Cultivated 
area, Herbaceous cover and mosaics); MODIS land 
cover (croplands, cropland/natural vegetation mosaic); 
VCF_Herbaceous (maximum value exceeds 50%); and 
the Soil map (soil was ranked in order of potential 
agricultural productivity). The highest priority has been 
ascribed to arable land, then to abandoned arable, then 
other agricultural land. The final control was provided 
based on areas of currently cultivated land. 

Wetlands were basically identified based on the soil 
map. Soils with a considerable peat layer (thickness 
>30 cm) as well as wet meadow and tundra soils were 
ranked with high probability, excluding the areas 
which had been classified as other above land classes 
based on remote sensing data (GLC, VCF). The SLA 
typically overestimates wetland area due to the 
definitions used, and the SFA typically underestimates 
regional wetland area because indicated only treeless 
bogs. The final wetlands area was assigned in the range 
of both land and forestry statistics based on the 
appropriate soil types. Finally, nine wetland classes 
were assigned according to vegetation zone, landscape 
peculiarities and soil type: polygon mires; palsa mires; 
aapa mires; raised string bogs; pine bogs; reed and 
sedge fens; marshes; flood plain wetlands; and 
eutrophic fens. Open woodlands were identified using 
the correlation between canopy closure and relative 
stocking of stands by tree species and vegetation zone. 
This area was distributed over remaining land with 
percent tree cover (VCF) in the range of 13-34%. For 
some regions and vegetation zones, area of open 
woodland proved to be higher than the area indicated 
by the SFA, particularly for the regions outside of the 
forest fund area. For such regions the entire area with a 
VCF_trees level in the range of 13-20 % were shifted 
to open woodland. Burnt area is presented in the SFA 
by forest enterprise. We combined burnt area in the 
SFA with that from remote sensing, and assigned it to 
the appropriate GLC class (10 – tree cover, burnt). The 
remaining area was distributed according to areas of 
low VCF_trees value, not previously assigned to other 
vegetation classes. The assignment of shrub and 
grassland was the final step in the assignment of 
vegetative land cover. There are no appropriate 
statistics recorded for this land class. Thus we used 
remote sensing data (VCF, GLC) to define the area. 
The vegetation dataset was used to classify shrub and 
grassland types. The GLC water class was used to 



assign water to the resultant coverage. Additionally we 
calculate virtual polygons: small water bodies and 
rivers which are not captured by remote sensing at the 
resolution 1 km. Unproductive polygons for our dataset 
were derived from the GLC coverage. 

Application of the methodology described above has 
resulted in the new hybrid land cover/land use map of 
Russia at 1km resolution (fig.1) A total of six major 
land cover types were identified, namely: forest, 
agriculture, wetlands, shrubs/grasses, water and 

unproductive land. These are further subdivided into 
the following classes: forest – each grid links to the 
SFA database (the SFA data contains areas and 
growing stock by dominant forest species distributed 
by age, site index and relative stocking), containing 
78639 records; agriculture – 6 classes, parameterized 
by 81 administrative units; wetlands – 8 classes, 
parameterized by 83 zones/regions; and 
shrub/grassland – 58 classes, parameterized by 321 
zones/regions. 

 

 
Figure 1. Land cover of Russia 2009 

Direct validation of the Russian hybrid land cover 
dataset is rather difficult and we were able to do it only 
for some regions with a highly detailed and verified 
land cover (e.g., regions covered by previous projects 
SIBERIA and SIBERIA-II). As a validation procedure, 
we attempted to assess spatially the level of confidence 
in the assignment, based on the assessed agreement 
between the input datasets [11]. As a result, 52% of the 
country’s area infers a high degree of confidence in the 
agreement among the remote sensing products and the 
statistics. Another 18% of the territory has good and 
24% acceptable agreement between initial datasets. 
High disagreement has only about 5% of area. This is 
mostly sparse vegetation with typical forms of 
disagreement such as wetland-grassland in West 
Siberia and forest-tundra ecotones in East Siberia and 
the Far East. A large portion of this class (36·106 ha) is 
situated in dry steppe and semi dessert zone of 
European Russia. In GLC it is indicated as “bare 
areas”, but VCF shows herbaceous cover in the range 

of 61-98%. In accordance with the SLA data, we 
assigned “pasture” to this area. High disagreement also 
appears in mountains and on the outskirts of large cities 
where 1 km grid cannot perform better because of 
mosaic. Forest statistics incompleteness appears on 
about 1% of area. Most of the area lies in the European 
southern taiga (assumed to be abandoned agricultural 
area which is afforested) or in the north (outside of 
inventoried forest area). Overall, the confidence map 
showed a satisfactory confidence in the agreement 
between the various remote sensing and statistical 
datasets. Finally, the hybrid land cover was assigned on 
a per-pixel basis (1km) across the entire country 
following the general principle that the most accurate 
and updated information has priority in assignment. 

3. ASSESSMENT OF BIOPHYSICAL 
INDICATORS AND PROCESSES 

Limited size of this paper does not allow presenting 
here any detailed description of development of diverse 



layers of biophysical and other indicators included in 
the ILIS and used in the FCA (live biomass, NPP, HR, 
coarse woody debris among many others). Here we 
limit the consideration by several  different typical 
examples. Some additional information on this could 
be found in publications (e.g., [12]). 

Forests contains above 85% of live biomass (LB) of the 
country’s vegetation. Thus the accuracy of estimation 
of forest LB is important within the FCA. For 
territories with reliable forest inventory data, 
assessment of LB is provided based on a system of 
multi-dimensional regressions which combine biomass 
extension factors with inventory indicators Ri = φ (A, 
RS, SI), where Ri = Mi/GCV, i = 7, Mi denotes LB of 
stems, branches, foliage, roots, understory and green 
forest floor, and GSV, A, RS and SI are growing stock 
volume, age, relative stocking and site indexes, 
respectively, for stands of individual species by 
ecological region [13]. However, this approach cannot 
be directly applied to forests with outdated forest 
inventory data among which growing stock volume 
(GSV) is most important. 

 

Spaceborn optical and short wave synthetic aperture 
radar (SAR) backscatter data (particularly limited by X 
and C bands) are not optimal for assessment of LB or 
GSV. However, a novel GSV retrieval approach from 
SAR data in the case of C-band Envisat ASAR images 
acquired in ScanSAR mode (100 m and 1 km spatial 
resolution) reported very promising results [14] based 
on the BIOMASAR algorithm. The BIOMASAR 
algorithm is implemented in a three-step procedure: (i) 
a SAR processing block to obtain co-registered stacks 
of SAR images, (ii) a Water-Cloud modeling solution 
expressing the backscatter as a function of GSV and 
(iii) a multi-temporal combination of individual GSV 
estimates. The retrieval of GSV showed no saturation, 
up to 300 m3/ha, which represented the entire range of 
GSV in remote regions of the boreal zone with 
outdated inventories. The accuracy was between 34 and 
48% using one year of ASAR data. The relative root 
mean square error (RMSE) improved substantially 
when averaging GSV estimates over neighboring 
pixels. The 25% level was reached for a pixel size of 1 
km when starting from 100-m spatial resolution 
estimates. These results allowed to use the retrieved 
forest GSV from hyper-temporal stacks of C-band 
backscatter data for improving the assessment of forest 
LB. Note, that availability of the above mentioned 
system of interdependences of different components of 
LB with biometric indicators of stands allows to use 
different SAR bands for assessing certain components 
of biomass (e.g., the use of X band for estimating mass 
of foliage and twigs) and a following calculation of the 
entire LB including “hidden” components like below 
ground biomass. However, the resulted accuracy  of 

such estimations depend on accuracy and adequacy of 
regional regressions included in the system. 

Integration requires careful professional analysis of all 
components of the estimation procedures. The 
following example illustrates how substantial 
unrecognized biases could be. Based on results of 
measurements on about 5,000 sample plots, it has been 
recognized that during recent decades (1960-2000s) the 
structure of LB in Northern Eurasian forests has 
changed significantly [15]. Fig. 2 shows dynamics of 
ratio between dry mass of above ground wood, green 
parts and roots to GSV for all Russian forests 
normalized for values of 1983: the green parts have the 
highest rate of the change. An interesting fact is that 
average NDVI for this region is highly correlated with 
relative amount of the green parts. Taken into account 
the change of LB structure, the estimate of carbon 
sequestered by Russian forests is very close to the 
result following from forest inventories; disregarding 
these dynamics and using NDVI as the only proxy for 
changes in the total LB of Russian forests leads to 
overestimation of the carbon sequestration of about 3- 
fold during the 1982-1999 period [16].  

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1960 1970 1980 1990 2000

Green parts Roots

AG wood NDVI
 

Figure 2. Alteration of live biomass structure in 
Russian forest 1961-1998 

The MODIS net primary production (NPP) product 
[17] presents up to date estimation of vegetation 
productivity. Fig. 3 shows comparison of forest 
MODIS NPP with empirical assessment of NPP for 
~1600 forest enterprises across Russia. The NPP by the 
individual enterprises was defined with uncertainty at 
10-12%. Weighted mean MODIS NPP (310 g C m-2 yr-

1) and Empirical NPP (316) are almost identical for the 
whole country (the difference is in limits of 2%), there 
are substantial bias in MODIS NPP for low productive 
and high productive forests. Likely, these differences 



follow from substantially different physiognomic 
characteristics of forest canopy (mostly larch forests in 
the first case and dark coniferous forests in the second).  

MODIS NPP = -105.5381 + 2.6561*x - 0.0048*x2 + 2.9488E-6*x3 (R2 = 0.46)
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Figure 3. Empirical NPP vs. MODIS NPP (average by 

forest enterprises) 

Natural disturbance plays a large role in shaping the 
landscape of northern Eurasia. Wildfire is responsible 
for large areas of annual land cover change. There are 
several RS sources for assessing burnt areas and 
severity of fire. Two major remote sensing products 
used in Russia for detection of vegetation fire - VGT 
and AVHRR - have a similar temporal resolution and 
nadir spatial resolution. VGT has better geometric 
fidelity, radiometric calibration, multi-spectral 
registration, multi-temporal registration, and absolute 
geolocation, but has no thermal channels. The latter is 
important for Russian forests with the dominance of 
ground fire. It leads to substantial seasonal variation of 
the number of fires and area burnt defined by these two 
products. However, detection of large fires (>200 ha), 
which comprise about 90% of burnt areas in the 
country, particularly for long periods, are rather 
similar. Burnt areas defined by VGT, AVHRR and 
indicated in GFED3 (e.g., [18-19]) have similar 
attitude and uncertainty – the difference between total 
burnt area during the last decade does not exceed 15%. 
However, the diversity of reported burnt areas in 
Russia (and, consequently, emissions of greenhouse 
gases) remains. The average area of vegetation fire 
from 2003-2007 in [20] is reported to be 19.6 million 
ha included 6.9 million ha in forest. The estimate [21] 
of burnt area in forest is 3.9 million ha for the same 
period. Both of these assessments are based on the 
same remote sensing products (Terra-MODIS). 

In this study, wildfire data were acquired based on the 
Advanced Very High Resolution Radiometer 
(AVHRR) (hot spots) with control of burnt area by the 
LANDSAT Thematic Mapper [22]. The dataset 
contains burnt area and the date of fire for each 1 km2 
pixel. The average burnt area in 1998-2009 is estimated 
to be 9.0 million ha that is closed to GFED3 estimate 

(9.2 million ha). These data are assumed substantially 
more reliable than official fire statistics [23]. The 
second crucial indicator for assessing fire emissions is 
severity of fire. Following a number of studies (e.g., 
[24-25]), fire radiative power (energy) seems to be a 
very promising indicator for assessing fire severity. 
However, quantification of this approach requires 
development of regional empirical models which 
would connect amount of consumed fuel with fire 
radiative power signal for different types of fire, 
particularly peat and steady ground fire on in forests. 
Our estimate of the amount of carbon consumed by fire 
in all ecosystems in 1998-2009 was estimated at 20% 
more than the estimation of GFED3 for the same 
period (127 Tg C yr-1). 

4. DISCUSSION 

This study has demonstrated the ability and benefits of 
system integration of different information sources into 
an integrated information system for solution of 
complicated ecological problems, like assessment of 
carbon cycling on large areas. Every source of 
information has its advantages and shortcomings. 
Multi-sensor remote sensing supplies the most up-to-
date information, but a lack of parameterization and 
interpretation. Land statistics are the best 
parameterized product, but lack spatial distribution and 
are partially out-of-date. GIS datasets are explicit 
spatially, well parameterized, but also often out-of-
date. The ILIS uses the advantages of all sources, 
supplies up-to-date geographically explicit and well 
parameterised information, thus allowing for reduction 
of all source’s uncertainties. The main advantage of the 
methodology is the ability to link on-ground data and 
models to the remote sensing products. The algorithm 
presented in this study for hybrid land cover 
development is flexible, allowing for the inclusion of 
additional existing datasets or newly created datasets in 
the future (i.e. elevation, lidar biomass, and more).  

As a result obtained within the landscape-ecosystem 
approach, the Net Ecosystem Carbon Balance of 
Russia was estimated at 0.6±0.25 Pg C yr-1. This value 
is subject to changes in limits of ±10-15% dependently 
on different account’s boundaries. The application  of 
an ensemble of different Dynamic Global Vegetation 
Models which are substantially based on remote 
sensing products showed a rather good consistency of 
estimates of major carbon fluxes (e.g., NPP) for the 
entire country; however the estimates for large regions 
(e.g., bioclimatic zones) are less reliable and often  
substantially biased. Recent results for Russian land 
received from four different inversion approaches gave 
a mean -0.65±0.12 PgC yr-1 (inter-model variability) 
and a median -0.61 Pg C yr-1 [26]. Overall, the 
methodology used allowed assessing the Net 
Ecosystem Carbon Balance for Russia with uncertainty 



of 25-30% (CI 0.9) likely suitable for decision making 
in the post Kyoto world [1]. 

However, there are evident validation and verification 
problems. The major problem that the users face is 
unknown reliability of the majority of RS products as 
applied to an individual region. On-ground regional 
validation of global RS products remains poor and 
thresholds of estimated indicators substantially depend 
on the algorithms used. A fundamental solution of the 
problem is development of a unified system on on-
ground truth in different zones and regions of the 
globe. An attempt to generate such a system for boreal 
Asia has been done within the EU Project SIBERIA 
(SAR Imaging for Boreal Ecology and Radar 
Interferometry Applications) [27]. The project 
developed 82 test territories with a GIS at scale 
1:50,000 of the total area of about 3 million ha and 
detailed quantification of each land cover polygon. 
Evidently, information from such test territories 
requires periodical updating. 

Major directions of future improving the reliability of 
the results of the FCA for Russian ecosystems include 
inter alia: (1) introduction of more detailed hybrid land 
cover for regions with more accurate available ground 
and remote sensing information; (2) more complete 
implementation of models and remote sensing products 
for correction of many year empirical ecological 
indicators using climatic and environment 
characteristics of individual growth seasons; (3) 
development of empirical models for regional 
correction of remotely sensed biophysical indicators 
(like NPP, fire radiative energy, et.); (4) further 
improvements of ecological models which combine 
remotely sensed and “hidden” components of 
ecosystem; some others.  

In addition to regional and continental applications, the 
possibility to apply this methodology over the globe 
now exists, with the majority of input datasets used 
being global. The method allows use of not only the 
fixed set of data, but all existing relevant information. 
We consider some other remote sensing products (e.g. 
GlobCover, elevation models, lidar data, and others) as 
very promising for use in this methodology. In 
addition, it is possible to place weights on datasets (i.e. 
favouring data with low uncertainty) or recently 
updated statistics.  
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