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Introduction

Environ Analysis is in a more general class of meth-

ods called Ecological Network Analysis (ENA)

which uses network theory to study the interactions

between organisms or populations within their envi-

ronment. Bernard Patten was the originator of the

environ analysis approach in the late 1970s and

along with his colleagues have expanded the analy-

sis to reveal many insightful, holistic properties of

ecosystem organization. ENA follows along the

synecology perspective introduced by EP Odum

which is mostly concerned with interrelations of ma-

terial, energy and information among system com-

ponents (Table 1).

ENA starts with the assumption that a system can be

represented as a network of nodes (compartments,

objects, etc.) and the connections between them

(links, flows, etc.). In ecological systems, the con-

nections are usually based on the flow of energy,

matter, or nutrients between the system compart-

ments. If such a flow exists, then there is a direct

transaction between the two connected compart-

ments. 

Overview of Network Environ Analysis: 
A systems analysis technique for 

understanding complex ecological systems

Brian D. Fath1,2,3

1Biology Department Towson University, Towson, Maryland, USA
2Fulbright Distinguished Chair in Energy and Environment, Parthenope University of Naples, Italy
3Advanced Systems Analysis Program, International Institute for Applied Systems Analysis, Austria

Synecology Autecology

• Holistic • Reductionistic

• Ecology of relationships among the various organisms • Ecology of individual organisms and populations

and populations

• Mostly concerned with communication of material, energy • Mostly concerned with the elements themselves

and information among system components

Table 1 - Two main paradigms used for ecological investigations

Synopsis

Network Environ Analysis, based on network theory,

reveals the quantitative and qualitative relations be-

tween ecological objects interacting with each other

in a system. The primary result from the method pro-

vides input and output “environs”, which are inter-

nal partitions of the objects within system flows. In

addition, application of Network Environ Analysis on

empirical datasets and ecosystem models has re-

vealed several important and unexpected results that

have been identified and summarized in the litera-

ture as network environ properties. Network Environ

Analysis requires data including the intercompart-

mental flows, compartmental storages, and boundary

input and output flows. Software is available to per-

form this analysis. This article reviews the theoretical

underpinning of the analysis and briefly introduces

some the main properties such as indirect effects ra-

tio, network homogenization, and network mutual-

ism. References for further reading are provided.
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These direct transactions give rise to both direct and

indirect relations between all the objects in the sys-

tem. Network analysis provides a systems-oriented

perspective as it is based on uncovering patterns and

relations among all the objects in a system.

Theoretical Development of Environ Analysis

Patten was motivated to develop Environ Analysis

to attempt to answer the question, “What is environ-

ment?”. In order to study environment as a formal

object, a system boundary is a necessary condition

to avoid the issue of infinite regress, because in prin-

ciple one could trace the environment of each object

back in history to the big bang origins. The realiza-

tion of a boundary is, in fact, one of the three foun-

dational principles in his seminal paper introducing

the environ theory concept (Patten 1978). The nec-

essary boundary demarcates two environments, the

unbound external environment, which indeed in-

cludes all space–time objects in the universe, and the

second internal, containing the environmental com-

partments of interest. This quantifiable, internal en-

vironment for each system object is termed “envi-

ron”, and is the study of Environ Analysis. An ob-

ject’s environ stops at the system boundary, but as

ecosystems are open systems, they require ex-

changes across the boundary into and out of the sys-

tem. Therefore, input and output boundary flows are

necessary to maintain the system’s far-from-equilib-

rium organization. Objects and connections that re-

side wholly in the external environment are not ger-

mane to the analysis.

Another foundational principle of environ analysis

theory is that each object in the system itself has two

“environs” one receiving and one generating flows

in the system. In other words, an object’s input env-

iron includes those flows from within the system

boundary leading up to the object, and an output en-

viron, those flows emanating from the object back to

the other system objects before exiting the system

boundary. This alters the perception from

internal–external to receiving–generating. Thus, the

object, while distinct in time and space, is more

clearly embedded in and responsive to the couplings

with other objects within the network. This shifts the

focus from the objects themselves to the relations

they maintain; or from parts to processes (or what

Ilya Prigogine called from “Being to Becoming”).

The third foundational principle of Network Environ

Analysis is that individual environs (and the flow

carried within each one) are unique such that the

system comprises the set union of all environs,

which in turn partition the system level of organiza-

tion. This partitioning allows one to classify environ

flow into what have been called different modes:

mode 0) boundary input; 1) first passage flow re-

ceived by an object from other objects in the system

(i.e., not boundary flow), but also not cycled flow (in

other words first time flow reaches an object); 2) cy-

cled flow that returns to a compartment before leav-

ing the system; 3) dissipative flow in that it has left

the focal object not to return, but does not directly

cross a system boundary (i.e., it flows to another

within system object); and 4) boundary out. 

The modes have been used to understand better the

general role of cycling and the flow contributions

from each object to the other, which has had appli-

cation in showing a complementarity of several of

the holistic, thermodynamic-based ecological indi-

cators (see Fath et al. 2001).

Holistic Reductionism

On one level network Environ Analysis could be re-

ferred to as a holistic/reductionistic approach. It is

holistic because it considers simultaneously the

whole influence of all system objects, yet it is reduc-

tionistic in that the fine details of all object transac-

tions are entailed in the analysis. The network data

requirements include the complete flow–storage

quantities for each identified link and node (note

flow and storage are interchangeable as determined

by the turnover rate). 

Data can be acquired from empirical observations,

literature estimates, model simulation results, or bal-

ancing procedures, when all but a few are unknown.

This difficulty in obtaining data has resulted in a

dearth of available complete network datasets. Due

to this lack of requisite data for fully quantified food

webs, researchers have developed community as-

sembly rules that are heuristics to construct ecologi-

cal food webs. Assembly rules are in general a set of

rules that will generate a connectance matrix for a

number of N species. 

Common assembly rules that have been developed

are random or constant connectance, cascade, niche,

modified niche, and cyber-ecosystem each with its
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own assumptions and limitations (see Halnes et al.

2007). In all but the last case, the assembly rules

construct only the structural food web topology. The

cyber-ecosystem methodology also includes a pro-

cedure for quantifying the flows along each link. It

uses a meta-structure of six functional groups: Pro-

ducer (P), Herbivore (H), Carnivore (C), Omnivore

(O), Detritus (D), and Detrital Feeders (F), within

which random connections link species based on

these definitional constraints.

Example Network

To demonstrate basic Environ Analysis, a common-

ly studied ecosystem network model first proposed

by Tilly (1968) is used as an example. Figure 1

shows the network structure and includes the stor-

ages and flow values between compartments. The

network has 5 compartments or nodes (xi, for i=1 to

5) representing: X1) Plants, X2) Detritus, X3) Bac-

teria, X4) Detritus Feeders, and X5) Carnivores, re-

spectively. Compartments are connected by transac-

tion of the energy flows between them. These pair-

wise couplings are the basis for the internal network

structure. 

This basic information regarding the storages, flows,

and boundary flows provides all the necessary infor-

mation to conduct Environ Analysis. Environ Analy-

sis has been classified into a structural analysis-deal-

ing only with the network topology, and three func-

tional analyses-flow, storage, and utility-which re-

quire the numerical values for flow and storage in

the network (Table 2).

Structural Analysis

A structural connectance matrix, or adjacency ma-

trix, A, is a binary representation of the connections

such that aij=1 if there is a connection from j to i, and

a zero otherwise (Eq 1).

(1)

Using this adjacency matrix one can calculate the

number of pathways between compartments along

paths of various lengths, in that the power of the ma-

trix is equivalent to the path length. For example, the

A2 matrix below shows that there is exactly one path

of length two from X1 to X5 and zeros paths of

length two from X1 to X6, etc. A few powers are

given below for inspection. Note, that while taking

longer path sequences the numbers of path connec-

tions between compartments increases in well con-

nected networks (except row 1 remains zero since

there are no return paths to the X1). In fact, they

grow so rapidly (note, by the time we look at A20

there are upwards of 78,000 unique paths!) that it is

this abundance of pathways that give rise to the im-

portant contribution of indirect influence described

below in the functional properties.

STRUCTURAL ANALYSIS FUNCTIONAL ANALYSES

Path Analysis Flow Analysis: gij = fij/Tj

enumerates pathways in a network (connectance, cyclicity, etc.) Identifies flow intensities along indirect pathways

Storage Analysis: cij = fij/xj

Id entifies storage intensities along indirect pathways

Utility Analysis: dij = (fij–fji)/Ti

Identifies utility intensities along indirect pathways

Table 2 - Basic methodologies for Network Environ Analysis

Figure 1 - Cone Spring Network Model (after Finn 1976); Five compartment

model used to demonstrate Eviron Analysis notation and methodology.
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There are many structural properties of the network

which can be determined from this analysis. Table 3

provides a few for Cone Spring ecosystem such as con-

nectance, link density, in-degree, out-degree, and path

proliferation (the rate of increase in number of paths). 

Functional Analysis

Storage and flows must have consistent units (al-

though it is possible to consider multi-unit net-

works). Typically, units for storages are given in

amount of energy or biomass per given area or vol-

ume (e.g., g/m2), and units for flows are the same but

as a rate (e.g., g/(m2*day)). The generic intercom-

partmental flows for Figure 1 are given in the fol-

lowing flow matrix, F:

(2)

which for this specific example becomes:

Note the orientation of flow from j to i is used be-

cause that makes the direction of ecological relation

from i to j. For example, if i preys on j, the flow of

energy is from j to i. All compartments experience

dissipative flow losses (yi, for i=1 to 5), and here the

first compartment receives external flow input, z1,

(arrows starting or ending not on another compart-

ment represent boundary flows). For this example,

these can be given as:

y = [y1 y2 y3 y4 y5] (3)

and 

(4)

which are, respectively:

y = [2303 3969 3530 1814 203]

Total throughflow of each compartment is an important

variable, which is the sum of flows into, ,

or out of,
the ith compartment. 

At steady state, compartmental inflows and outflows

are equal such that dxi/dt = 0, and therefore, incom-

ing and outgoing throughflows are equal also: 

Ti
in=Ti

out=Ti. In vector notation, compartmental

throughflows are given by:

(5)

The sum of all throughflows is called Total System

Throughflow (TST) and is an important measure of

the total energy (power) passing through the net-

work. For Cone Spring ecosystem TST = 30626

kcal m-2 yr-1.

The technical aspects of environ analysis are ex-

Structural property Value

# links 8

Connectance 0.32

Link density 1.6

In-degree (row sum) [0 4 1 2 1]

Out-degree (column sum) [1 2 2 2 1]

Path proliferation 1.84

Table 3 - Structural network properties
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plained in detail elsewhere, so rather than repeat those

here, the remainder of the entry highlights some of the

important results from environ analysis. But first, one

issue that must be covered is the way in which net-

work analysis identifies and quantifies indirect path-

ways and flow contributions. Indirectness originates

from transfers or interactions that occur non-directly,

and are mediated by other within system compart-

ments. These transfers could travel two, three, four, or

many links before reaching the target destination. For

example, the flow analysis starts with the calculation

of the non-dimensional flow intensity matrix, G,

where gij=fij/Tj. The G matrix corresponding to Figure

1 would look as follows:

(6)

These values represent the fraction of flow along

each link normalized by the total throughflow at the

donating compartment. These elements give the di-

rect, measurable flow intensities (or probabilities)

between any two nodes j to i. To identify the flow in-

tensities along indirect paths (e.g., j––>k––>i), one

need only consider the matrix G raised to the power

equal to the path length in question. For example, G2

gives the flow intensities along all paths of length 2,

G3 along all paths of length 3, etc. This well-known

matrix algebra result is the primary tool to uncover

system indirectness. In fact, it turns out that due to

the way in which the G matrix is constructed all el-

ements in Gm go to zero as m––> ∞. Therefore, it is

possible to sum the terms of Gm to acquire an “inte-

gral” flow matrix (called N), which gives the flow

contribution from all path lengths.

(7)

where G0=I, the identity matrix, G1 the direct flows,

and Gm for m>1 are all the indirect flows intensities.

Note, that the elements of G and N are non-dimen-

sional; to retrieve back the actual throughflows, one

need only multiply the integral matrix by the input

vector: T=Nz. In other words, N redistributes the in-

put, z, throughout each compartment to recover the

total flow through that compartment. Similarly, one

could acquire any of the direct or indirect flows by

multiplying Gmz for any m. 

A similar argument is made to develop integral stor-

age and utility matrices.

(8)

(9)

where pij=(fij/xj)Δt, and dij=(fij-fji)/Ti.

Network Properties

Patten has developed a series of “ecological network

properties” which summarize the results of environ

analysis. These have all been described in the litera-

ture (for an overview of the 13 main ones, see Jør-

gensen et al. 2007, Chapter 5). The properties have

been used to assess the current state of ecosystem

networks and to compare the state of different net-

works. Furthermore, while interpreting some of the

properties as ecological goal functions, it has been

possible to identify the structural or parametric con-

figurations that positively affect the network proper-

ty values as a way to detect or anticipate network

changes. For example, certain network alterations,

such as increased cycling, lead to greater total sys-

tem energy throughflow and energy storage, so one

could expect that if possible ecological networks are

evolving or adapting to such configurations. 

This leads to a new area of research on evolving net-

works. In this section, a brief overview is given for

four of these properties: dominance of indirect ef-

fects (or non-locality), network homogenization,

network mutualism, and environs themselves.

Dominance of indirect effects

This property compares the contribution of flow

along indirect pathways with those along direct

ones. Indirect effects are any that require an interme-

diary node to mediate the transfer and can be of any

length. The strength of indirectness has been meas-

ured in a ratio of the sum of the indirect flows inten-

sities divided by the direct flow intensities:

(10)
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where δij, the Kronecker Delta, = 1 if and only if i=j

and is 0 otherwise. When the ratio is greater than one,

then dominance of indirect effects is said to occur.

Analysis of many different models has shown that

this ratio is often greater than one, revealing the non-

intuitive result that indirect effects have greater con-

tribution than direct effects. Thus, each compartment

influences each other, often significantly, by many in-

direct, non-obvious pathways. The implications of

this important result are clear in that each compart-

ment is embedded in and dependent on the rest of the

network for its situation, thus calling for a true sys-

tems approach to understand such things as feedback

and distributed control in the network.

In this particular network the direct and indirect flows

are about equal, with slightly more direct. Therefore,

the ratio of indirect to direct is slightly less than one

(i/d = 0.913). Still, the cycling index demonstrates

that over 9% of the flow is cycled (FCI = 0.092). This

is because of the total system throughflow, the

boundary flow is 11819, first passage flow is 15991

and cycled flow is 2816.

Network homogenization

The homogenization property yields a comparison

of resource distribution between the direct and inte-

gral flow intensity matrices. Due to the contribution

of indirect pathways, it was observed that flow in the

integral matrix was more evenly distributed than

that in the direct matrix. A statistical comparison of

resources distribution can be made by calculating

the coefficient of variation of each of the two matri-

ces. For example, the coefficient of variation of the

direct flow intensity matrix G is given by:

(11)

Network homogenization occurs when the coeffi-

cient of variation of N is less than the coefficient of

variation of G because this says that the network

flow is more evenly distributed in the integral matrix.

The test statistic employed here looks at whether or

not the ratio CV(G)/CV(N) exceeds one. 

For this ecosystem the homogenization ratio is 1.875.

The interpretation again is clear that the view of flow

in ecosystems is not as discrete as it appears because

in fact the material is well-mixed (i.e., homogenized)

and has traveled through and continues to travel

through many, if not, most parts of the system.

Network mutualism

Turning now to the utility analysis, the net flow, util-

ity matrix, D, can be used to determine quantitatively

and qualitatively the relations between any two com-

ponents in the network such as predation, mutualism,

or competition. Entries in the direct utility matrix, D,

or integral utility matrix, U, can be positive or nega-

tive (-1 _< dij, uij <1). The elements of D represent the

direct relation between that (i, j) pairing; for the ex-

ample in Figure 1, this produces the following:

(12)

The direct matrix D, being zero-sum, always has the

same number of positive and negative signs. 

(13)

The elements of U provide the integral, system-de-

termined relations. There is one caveat that must be

mentioned and that is that integral matrix, contribut-

ing indirect flows, makes sense in light of the pow-

er series converging. One test that has been pro-

posed for this is based on the eigenvalues of the D

matrix. It has been proven that if the absolute value

of the largest eigenvalue is less than one, then con-

vergence is guaranteed. It turns out that for the Cone

Spring ecosystem, the absolute value of the largest

eigenvalue is slightly more than one at 1.0156. It is

still an open research question as to interpretation

and alternative approaches. 

For this example, which is didactic in nature, I will

proceed with the integral matrix (which is still cal-

culable from matrix inversion) nonetheless. There-

fore, continuing the example, we get the following

integral utility matrix and relations between com-

partments:
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(14)

Unlike, the direct relations, this is not zero-sum. In-

stead, we see that there are 17 positive signs (includ-

ing the diagonal) and 8 negatives signs. If there are

a greater number of positive signs than negative

signs in the integral utility matrix, then network mu-

tualism is said to occur. 

Here, the ratio is 2.125. Network mutualism reveals

the preponderance of positive mutualistic relations

in the system. Specifically, here, we can identify 3

cases of indirect mutualism and 7 of exploitation

(Table 4). There are no competition relations in this

network.

Environ Analysis

The last property mentioned here is the signature

property, the quantitative environ, both in the input

and output orientation. Since each compartment has

two distinct environs there are in fact 2n environs in

total. The output environ, E, for the ith node is calcu-

lated as:

E = (G - I) N̂ (15)

where is the diagonalized matrix of the ith column of

N. When assembled, the result is the output oriented

flow from each compartment to each other compart-

ment in the system and across the system boundary.

Input environs are calculated as:

E’ = N̂1’ (G’- I) (16)

where, g’ij=fij/Ti, and N’=(I–G’)–1. 

These results comprise the foundation of Network

Environ Analysis since they allow for the quantifica-

tion of all within system interactions, both direct and

indirect, on a compartment-by-compartment basis.

Summary

A practical objective of ecological network analysis

in general, and environ analysis in particular, is to

trace material and energy flow–storage through the

complex network of system interactions. 

The Network Environ approach has been a fruitful

way of holistically investigating ecosystem. In par-

ticular, a series of “network properties” such as in-

direct effects ratio, homogenization, and mutualism

have been observed using this analysis, which con-

sider the role of each entity embedded in a larger

system.
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Direct Integral

(sd21, sd12) = (+, –) g exploitation (su21, su12) = (+, –) g exploitation

(sd31, sd13) = (0, 0) g neutralism (su31, su13) = (+, +) g mutualism

(sd41, sd14) = (0, 0) g neutralism (su41, su14) = (+, +) g mutualism

(sd51, sd15) = (0, 0) g neutralism (su51, su15) = (+, –) g exploitation

(sd32, sd23) = (+, –) g exploitation (su32, su23) = (+, –) g exploitation

(sd42, sd24) = (+, –) g exploitation (su42, su24) = (+, –) g exploitation

(sd52, sd25) = ( –,+) g exploited (su52, su25) = (+, +) g mutualism

(sd43, sd34) = (+, –) g exploitation (su43, su34) = (–, +) g exploited

(sd53, sd35) = (0, 0) g neutralism (su53, su35) = (–, +) g exploited

(sd54, sd45) = (+, –) g exploitation (su54, su45) = (+, –) g exploitation

Table 4 - Direct and integral relations in sample network from Figure 1.

Ecodinamica



and is Associate Editor-in-Chief for Encyclopedia of

Ecology. 

He is also Editor-in-Chief for the journal Ecological

Modelling; President of the North American Chapter

of International Society for Ecological Modelling;

and Chair of Baltimore County Commission on En-

vironmental Quality.

Further Reading

1) Dame, R.F., Patten, B.C. 1981. Analysis of energy flows in

an intertidal oyster reef. Marine Ecol. Progr. Series 5,

115–124.

2) Fath, B.D., Patten, B.C. 1998. Network synergism: emer-

gence of positive relations in ecological systems. Ecologi-

cal Modelling 107, 127–143.

3) Fath, B.D., Patten, B.C. 1999. Review of the Foundations

of Network Environ Analysis. Ecosystems 2, 167–179.

4) Fath BD, Jørgensen SE, Patten BC, Stra?kraba M. 2004.

Ecosystem growth and development. Biosystems. 77, 213-

228.

5) Halnes G, Fath BD, Liljenström H. 2007. The modified

niche model: Including a detritus compartment in simple

structural food web models. Ecological Modelling 208,

9–16.

6) Higashi, M., Patten, B.C. 1989. Dominance of indirect

causality in ecosystems. American Naturalist 133,

288–302.

7) Jørgensen SE, Fath BD, Bastianoni S, Marques JC, Müller

F, Nielsen SN, Patten BC, Tiezzi E, Ulanowicz RE. 2007.

Systems Ecology: A new perspective. Elsevier, Amsterdam.

8) Patten, B.C. 1978. Systems approach to the concept of en-

vironment. Ohio Journal of Science 78, 206–222.

9) Patten, B.C. 1981. Environs: the superniches of ecosys-

tems. American Zoologist 21, 845–852.

10) Patten, B.C. 1982. Environs: relativistic elementary parti-

cles or ecology. American Naturalist 119, 179–219.

11) Patten, B.C. 1991. Network ecology: indirect determina-

tion of the life–environment relationship in ecosystems. In

Higashi, M. and Burns, T. P. (Eds.), Theoretical Ecosystem

Ecology: The Network Perspective. London, Cambridge

University Press. pp. 288–351.

12) Tilly, L. J. 1968. Ecol. Monogr. 38, 169.

13) Whipple, S.J., Patten, B.C. 1993. The problem of non-

trophic processes in trophic ecology: towards a network

unfolding solution. Journal of Theoretical Biology. 163,

393–411.

27Biologi ItalianiMarzo 2012

Ecodinamica

A NEw ECOLOGY:

Systems perspective

Sven E. Jørgensen, Brian D. Fath

and co-authors

A New Ecology presents an ecosystem

theory based on the following ecosystem

properties: physical openness, ontic open-

ness, directionality, connectivity, a com-

plex dynamic for growth and develop-

ment, and a complex dynamic response to

disturbances. 

Each of these properties is developed in

detail to show that these basic and charac-

teristic properties can be applied to ex-

plain a wide spectrum of ecological obser-

vations and convections. 

It is also shown that the properties have

application for environmental manage-

ment and for assessment of ecosystem

health.

A New Ecology, 1st Edition.


