
Adaptive and Bounded Investment Returns Promote
Cooperation in Spatial Public Goods Games
Xiaojie Chen1*, Yongkui Liu2,3,4, Yonghui Zhou5, Long Wang6, Matjaž Perc7*
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Abstract

The public goods game is one of the most famous models for studying the evolution of cooperation in sizable groups. The
multiplication factor in this game can characterize the investment return from the public good, which may be variable
depending on the interactive environment in realistic situations. Instead of using the same universal value, here we consider
that the multiplication factor in each group is updated based on the differences between the local and global interactive
environments in the spatial public goods game, but meanwhile limited to within a certain range. We find that the adaptive
and bounded investment returns can significantly promote cooperation. In particular, full cooperation can be achieved for
high feedback strength when appropriate limitation is set for the investment return. Also, we show that the fraction of
cooperators in the whole population can become larger if the lower and upper limits of the multiplication factor are
increased. Furthermore, in comparison to the traditionally spatial public goods game where the multiplication factor in each
group is identical and fixed, we find that cooperation can be better promoted if the multiplication factor is constrained to
adjust between one and the group size in our model. Our results highlight the importance of the locally adaptive and
bounded investment returns for the emergence and dominance of cooperative behavior in structured populations.
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Introduction

The emergence of cooperation among selfish individuals is an

intensively studied problem [1,2]. Traditionally, the problem of

cooperation is investigated by means of the game theoretical

models of the prisoner’s dilemma for pairwise interactions, and

more generally public goods game for groups of interacting

individuals. In particular, the public goods game is abundant in

human society, e.g., protecting the global climate and avoiding

overfishing of the oceans [3–6]. In the classical public goods game

(PGG), individuals engage in multiplayer interactions and decide

simultaneously whether to contribute (cooperate) or not (defect) to

a common pool. Then the accumulated contributions by

cooperators are multiplied by a factor large than one, i.e., the

so-called multiplication factor, and finally the resulting assets are

shared equally among all group members irrespective of their

initial decision. From the perspective of each individual, defection

is clearly the rational decision to make as it yields the highest

income compared to other members. Thus, selfish individuals

should decline to contribute and attempt to free ride on the other

players’ contributions. However, if nobody decides to invest, the

group fails to harvest the benefits of a collective investment, which

drives the population into the tragedy of the commons [7].

Actually, the group is most successful if everybody cooperates, and

hence the dilemma is caused by the selfishness of individual

players.

To study the social dilemma in realistic situations, in the last

decade the risk PGG [3,4], the optional PGG [8–12], the

threshold PGG [13–17], the continuous PGG [18–20], and the

ecological PGG [21,22] have been developed based on the

classical PGG from the viewpoint of realistic societies. On the

other hand, several mechanisms for the evolution of cooperation in

the PGG, such as punishment [23–33], reward [34–38], reputa-

tion [34,37], network reciprocity [39–55] have been justified. In

particular, complex interaction networks provide a natural and

reasonable framework for studying the PGG in structured

populations. Within this framework, some aforementioned mech-

anisms, such as punishment and reward have been further studied

[28,31,32,36]. Also, some other factors have been incorporated,

such as noise [44], social diversity [39,41,46,47], and success-

driven distribution [53]. It is found that social diversity associated

with the number and the size of the public goods game as well as

the individual contribution to each game can greatly promote the

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e36895



emergence of cooperation [41]. Indeed, social diversity by means

of the system’s other feature information, e.g., game payoffs

[47,56], teaching activity [39] and preferential selection [46] in

strategy updating, have been also demonstrated to facilitate

cooperation in the PGG.

It is worth mentioning that the inhomogeneities and social

diversity about features of the system are widely existent in human

society and animal world, which can characterize the asymmetric

and different influence of individuals or interacting environments.

However, they are introduced artificially in some previous studies

mentioned above. Indeed the inhomogeneities or social diversity

can emerge spontaneously via the coevolutionary rules, since the

values of property should be not invariable, but evolve based on

the state of the system. In the context of evolutionary game theory,

the adaptive features are often coupled with the strategy evolution.

The coevolution of strategies and features of the model, e.g.,

individual social ties (for example see Refs. [57–65]), noise level

[66,67], payoff matrices [68,69], capability of strategy transfer

[71,72] and individual learning rules [73,74], have been investi-

gated in different evolutionary games, especially the prisoner’s

dilemma game (see [75] for a review). Remarkably, recently Lee

et al. further proposed a multiadaptive prisoner’s dilemma game

where both the payoff matrices and the interaction structure are

shaped by the behavior of the agents, and found that such

multiadaptive mode can result in the coemergence of hierarchical

structure and cooperation [70].

At present, we propose a coevolutionary rule in the PGG. We

consider that each interacting group has its own multiplication

factor, which evolves based on the local strategy distribution in the

group and the global strategy distribution in the whole system.

Different from the setting in some previous works [53,68–70], this

adaptive multiplication factor is used to measure the local

interacting or cooperative environment in each group, rather

than individual’s feature or the whole system’s interaction

conditions. Correspondingly, the multiplication factor represents

the feedback return of the local investment to the public good, and

a larger value of the multiplication factor enables a better

investment return [18]. Structured populations provide a compe-

tent framework to describe this local feature, which is updated

based on the local and the global level of cooperation. In the

present study, in order to focus solely on the effects of the adaptive

investment returns, we employ a square lattice where the number

of group members is fixed and always the same. Due to the

diversity of local strategy distribution, the investing cooperators

can get together in some groups, whereas in other groups they are

sparse. The inhomogeneous distribution can induce different

investment returns in different interacting groups, which may

correspond to the phenomenon of uneven regional exploitation of

the common resources in a society. For example, in some pastures

the herdsmen may over-exploit the pasture resource by adding

more and more animals to their herd, which may lead to the

gradual desertification of the grassland. Correspondingly, the

socioeconomic returns from herding in these grazing areas

decrease gradually and finally the economic losses are unavoid-

able. On the contrary, in other pastures the herdsmen may still use

the grassland resources while at the same time considering the

conservation of the ecosystem, and in such cases a higher

socioeconomic return is likely. We adopt the state of the system,

i.e., the global cooperation level, as the criterion to measure

whether the local cooperative environment is favorable or not.

Since the state of the system is evolving simultaneously, here we

prefer the dynamical global cooperation level, instead of the static

criterion in Refs. [69,70]. Moreover, in real situations the

investment return is variable, but should be somewhat limited by

external adjustment. In general, it should be limited in a certain

range [76].

In this study, we assume that the enhancement factor in each

group is updated based on the differences between the dynamical

local and global cooperation levels, and limited between the lower

Rl and the upper Ru limit. We study how the adaptive and

bounded investment returns influence the evolution of cooperation

in the spatial PGG. We find that this PGG model with the

adaptive and bounded investment returns can effectively enhance

cooperation in spatially structured populations, and that appro-

priately bounded limitations of the multiplication factor can result

in the best cooperation level. We find further that, in comparison

to the traditionally spatial PGG where only one invariable

multiplication factor which is larger than one exists in the whole

population, our proposed PGG model can produce a higher

cooperation level when each multiplication factor is limited to

change only between one and the group size.

Results

We start by presenting the results as obtained when the lower

limit of the multiplication factor Rl is equal to the opposite

number of the upper limit Ru, i.e., Ru~{Rl~Rw1. Here R is

the limit value (for the detailed definitions see the Methods

section). Figure 1(a) shows the cooperation level r at equilibrium in

the population in dependence on the feedback strength a for

different values of R. We find that when aw1 cooperation can be

promoted for larger R. To be specific, when R is small, e.g., R~4,

full defection is achieved, irrespective of the values of feedback

strength. This is because cooperators cannot survive in structured

populations if the maximum enhancement factor is not sufficiently

large [44]. When R becomes larger, e.g., R~5, the cooperation

level first increases and then slightly decreases. Subsequently, it

holds at about 0:8 with increasing a. While there is no limitation

for the multiplication factor, although the cooperation level is very

high, but a small amount of defectors can survive in the population

even for high feedback strength, e.g., a~1000. When moderate

values of R is set, e.g., R~10, full cooperation can be achieved for

high feedback strength, and the cooperation level is very similar

for other moderate values of R. To further qualify the effects of R
on the evolution of cooperation, we present r as a function of R for

different a in Fig. 1(b). Clearly, we see that for different values of a,

the cooperation level first increases dramatically from zero until

reaching the maximum value at a moderate R, then decreases

slowly with increasing R. Here, we do not show the cooperation

level in dependence on R for large a. In fact, we can still observe

the nonmonotonous dependence of r on R even for large a. These

results suggest that the PGG model with the adaptive and bounded

multiplication factor can effectively enhance cooperation in spatial

structures, and higher cooperation level can emerges if an

appropriate limitation is considered for the dynamical multiplica-

tion factor.

In order to intuitively understand the evolution of cooperation,

we show some typical snapshots of the distribution of strategy and

multiplication factor in the whole population in Fig. 2. We find

that at the beginning of evolution, cooperators can form many

small and isolated patches. But subsequently, some small compact

cooperator clusters are embedded in the sea of defectors. As time

increases, the cooperator clusters increase gradually, and finally

cooperators may expand as a single ever growing cluster [upper

row in Fig. 2]. Correspondingly, the multiplication factor in the

full cooperation group can reach the upper limit, whereas the

multiplication factor in the full defection group can reach the

lower limit [bottom row in Fig. 2]. However, the multiplication
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factor within the groups along the boundary of cooperators and

defectors reaches a value between the lower and upper limit.

In combination with the above investigations, let us now explain

the emergent results. Indeed, a feedback mechanism is at work

between the strategy distribution and the distribution of multipli-

cation factors in all the groups. Therefore, cooperators form

compact clusters, and these clusters can become larger and larger,

especially when the global cooperation level is not very high.

Meanwhile, the multiplication factor in the cooperators’ clusters

becomes larger and larger, which provides cooperators, especially

the ones on the boundary, with a higher payoff. Whereas defectors

also gather together, and the multiplication factor in the defectors’

clusters becomes smaller and smaller [bottom row in Fig. 2]. In

those interacting groups where the multiplication factor is

negative, it is better for the players to choose the defective strategy

such that they can have relatively higher payoffs. In a sense, this

adaptive mode can induce a double-edged sword effect on the

evolution of cooperation. However, under the social learning

defectors are inclined to learn from their neighboring cooperators.

As a consequence, the evolution of cooperation can be favored by

this locally adaptive investment return.

If there is no limitation for the adaptive multiplication factor,

due to the continuing negative feedback effects cooperators cannot

invade the defectors’ clusters, even if the feedback strength is high.

In this situation, cooperators can thrive, but cannot dominate the

whole population. When the limitation is considered for the

dynamical multiplication factor, the feedback mechanism, espe-

cially the negative feedback effects, can be effectively weakened. If

there is too much restriction for the adaptive multiplication factor,

that is, R is not very large, e.g., R~4, the multiplication factor in

Figure 1. Promotion of cooperation due to adaptive and bounded investment returns. Panel (a) depicts the fraction of cooperators r in
dependence on the feedback strength a for different values of R. Panel (b) depicts the fraction of cooperators in dependence on the boundary value
R for different values of a. It can be observed that cooperation can be promoted for large values of feedback strength, and there exist moderate
boundary values warranting the best promotion of cooperation. Here, r0~1.
doi:10.1371/journal.pone.0036895.g001
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Figure 2. Characteristic snapshots of strategy and multiplication factor distributions on a square lattice during the coevolutionary
process. Top row depicts the time evolution (from left to right) of typical distributions of cooperators (grey) and defectors (black) on a square lattice,
and bottom row depicts the corresponding time evolution (from left to right) of typical distributions of multiplication factor. Results in all panels are
obtained for a~5, r0~1, and R~10. We have checked that similar results can emerge for other parameter settings.
doi:10.1371/journal.pone.0036895.g002
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some groups can reach the upper limit from a negative value due

to the social learning, but this upper limit cannot warrant the

promotion of cooperation in spatial PGG even if the feedback

strength is enough high. Whereas for a larger R, e.g., R~10, the

multiplication factor in the group along the boundary reaching the

upper limit can warrant a better promotion of cooperation. Hence,

this adaptive and bounded mode for the multiplication factor can

provide a better environment for the evolution of cooperation.

However, under this adaptive and bounded mode, the

multiplication factor in some groups along the boundary cannot

rapidly become a positive and large value from a negative one

when the feedback strength is not very high [bottom row in Fig. 2].

Although the average multiplication factor r in the whole

population can reach an enough high value which can make the

cooperation level reach one in the traditionally spatial PGG [44],

the average multiplication factor along the boundary of cooper-

ators and defectors rb becomes negative as time increases

[Fig. 3(a)]. This does not provide a favorable environment for

players’ interactions. Correspondingly, the average payoffs of

cooperators and defectors along the boundary are both negative.

Moreover, as time increases the average payoff of cooperators

along the boundary is just a litter higher than the one of defectors

along the boundary, but have larger fluctuations [Fig. 3(b)]. Under

the stochastic strategy updating, defectors do not always success-

fully imitate their neighboring cooperators, but sometimes may

spread their strategy to the cooperators. As a result, cooperators

cannot defeat those defectors along the boundary, and they can

only coexist with defectors for an exceedingly long time. On the

contrary, when the feedback strength is high, by means of social

learning the multiplication factor in the group along the boundary

can have the opportunity to suddenly reach the upper limit, which

can warrant the invading of cooperative behavior into the

defectors’ clusters. Finally, full cooperation can be achieved.

In what follows, we study how cooperation evolves if the lower

limit is not the opposite number of the upper limit. Figure 4(a)

shows the typical time evolution of cooperation for fixed Rl~{5
and three different values of Ru. We find that increasing the value

of Ru can make the system reach a higher cooperation level, but

the cooperation level at equilibrium for Ru~z? is just slightly

larger than the one for Ru~10. In Fig. 4(b) we show the fraction of

cooperators as a function of time for fixed Ru~10 and three

different values of Rl . We find that increasing the value of Rl can

make the system reach a higher cooperation level. Moreover, as

time increases the fraction of cooperators first drops and then

rapidly increases, but the larger values of Ru or Rl make the

cooperation level increases faster. We also find that to have a

favorable cooperation level, it is better to set the lower limit higher

and it is not necessary to set the upper limit too high.

Finally, we study whether cooperation can be better promoted if

the adaptive multiplication factor is constrained between 1 and N
by means of a comparative investigation. Previous work has

reported that in the traditional PGG where only one invariable

multiplication factor exists in the whole population, defectors

outperform cooperators in any given mixed group for rvN [8].

We further find that in the traditionally spatial PGG, for noise

value k~1:0 cooperators can dominate the whole population only

if rw5:4, and they can survive in the system only if rw4:1, as

shown in Fig. 5(a). It is worth pointing out that the traditionally

spatial PGG corresponds to the situation of a~0 in this present

model, where the multiplication factor in each interacting group is

fixed at r0~r. In Fig. 5(b), we set r0~Ru, and show the

cooperation level as a function of feedback strength aw0 for

Rl~1 and different values of Ruw4:1. We see that the cooperator

density varying with a displays two different behaviors: for smaller

values of Ru, e.g., Ru~4:2, the cooperation level first decreases

and then increases until reaching the maximum value. Subse-

quently, it decreases very slowly with increasing a and its value

approaches 0:8; for larger values of Ru, e.g., Ru~4:8, the

cooperation level does not change too much for small values of a,

then monotonously increases to one with increasing a. In addition,

for smaller values of Ru just a small amount of a (av0:5) is needed

to warrant a better promotion of cooperation in comparison to the

traditionally spatial PGG, and the critical amount of a becomes

smaller if the Ru is increased. For larger values of Ru, the

cooperation level for any value of aw0 is not less than the one for

a~0. In fact, the average multiplication factor in the population

for aw0 is not larger than the one for a~0, but these results

suggest that cooperation can be better promoted in comparison to

the traditionally spatial model. In addition, Fig. 5(b) shows that the

cooperation level increases with increasing the upper limit of the
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Figure 3. Time evolution of average multiplication factor and payoffs. Panel (a) depicts the time evolution of average values of
multiplication factor in the whole population and in the boundary groups, respectively. Panel (b) depicts the time evolution of average payoffs of
cooperators and defectors along the boundary, respectively. It can be observed that although the average value of multiplication factor in the whole
population is large enough for the evolution of cooperation [44], the average value along the boundary becomes negative. Correspondingly, the
average payoffs of cooperators and defectors along the boundary are both less than zero. As time increases, the average payoff of cooperators along
the boundary is a little higher than that of defectors, but has larger fluctuations. Here, a~5, r0~1, and R~10.
doi:10.1371/journal.pone.0036895.g003
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multiplication factor and the initial value of the multiplication

factor. We have also verified that increasing the initial fraction of

cooperators is beneficial for the evolution of cooperation in this

model.

Discussion

In summary, we have presented a coevolutionary rule where the

multiplication factor in each interacting group is updated based on

the local strategy distribution in the group and the global strategy

distribution in the whole population, and studied its impact on the

evolution of cooperation in the spatial public goods game. We

found that this adaptive rule for the multiplication factor can

effectively enhance the evolution of cooperation. When the

appropriate bounded limitation for the dynamical multiplication

factor is further considered, cooperation can be better promoted.

In particular, full cooperation can be achieved in the system when

the feedback strength is high enough. Also, increasing the lower

and upper limit values of the multiplication factor is favorable for

the evolution of cooperation, but high cooperation level can be

reached even if the upper limit is not very large. We further found

that even if the multiplication factor is constrained to change

between one and the group size, cooperation can be better

promoted in the adaptive mode, in comparison to the classically

spatial public goods game where the payoff parameter in each

group is fixed and identical.

The adaptive mode for the investment returns results in that a

feedback mechanism is at work, that is, the Matthew effect is

introduced. From the viewpoint of this emergent feature, our

model is related to the one proposed by Perc [53], who considered

that the reproductive success of each individual is updated by

means of the enforcement of strategy and the distribution of public

Figure 4. Cooperation promoted when the values of the lower and upper limits of the investment returns are increased. Panel (a)
depicts the fraction of cooperators in the whole population as a function of time for fixed lower limit Rl~{5 and different values of upper limit.
Panel (b) depicts the fraction of cooperators in the whole population as a function of time for fixed upper limit Ru~10 and different values of lower
limit. Increasing the values of lower and upper limit can provide more positive effects on the evolution of cooperation. Here, a~5 and r0~1.
doi:10.1371/journal.pone.0036895.g004

Figure 5. Cooperation promoted even when the investment return is updated within the interval. ½1,N�. Panel (a) shows the fraction of
cooperators as a function of r0 for a~0. In this situation, the model recovers to the traditionally spatial PGG, where the multiplication factor in each
group is fixed at r0 and r~r0 . For k~1:0, cooperators can survive only if r0w4:1, and they can dominate the whole population only if r0w5:4. Panel
(b) shows the fraction of cooperators as a function of a for fixed Rl~1 and different values of Ru . Initially, the multiplication factor in each interacting
group is r0~Ru. Dash lines are used to indicate the critical value of aw0 for a better promotion of cooperation in this adaptive and bounded mode
for the enhancement factor.
doi:10.1371/journal.pone.0036895.g005

Adaptive and Bounded Investment Returns

PLoS ONE | www.plosone.org 5 May 2012 | Volume 7 | Issue 5 | e36895



goods is driven by the reproductive success of individuals. Under

this success-driven mechanism, cooperation can be promoted.

However, defectors can have a much higher payoff even in the sea

of cooperators, and easily enforce their strategy choice to their

neighbors. Correspondingly, the superpersistent defector emer-

gences spontaneously, and cooperators cannot dominate the whole

population. The complete dominance of cooperators is elusive

even if the limitation factor about the value of reproductive success

is considered. Whereas in our model, the multiplication factor in

each interacting group is updated based on the local and global

strategy distribution, which characterizes the local investment

environment for collective interactions, rather than individual’s

personality. Also, we incorporate the limitation factor for the

dynamical multiplication factor. In this framework, cooperators

and defectors can form their own compact clusters respectively,

and correspondingly cooperators along the boundary can have a

higher payoff than the neighboring defectors. Under the social

learning, cooperators can easily spread their strategy even if the

noise level for strategy updating is large. In particular, when the

feedback strength is high, the interacting environment including

some defectors can rapidly become favorable. Thus, cooperators

can gradually invade defector’s clusters, and finally dominate the

whole population. It could be concluded that our work further

enriches the knowledgeless of coevolutionary rules in PGGs, and

importantly our spatial PGG model with adaptive and bounded

investment returns not only can promote cooperation, but also

make cooperators completely dominate the population.

It is worth emphasizing the bounded values of the multiplication

factor play a different role in the evolution of cooperation in our

model in comparison to the one in Ref. [70]. It is found that the

main results remain qualitatively if the limit value of the payoff

parameter in the prisoner’s dilemma is large enough. Moreover, it

is demonstrated that the final cooperation level strongly depends

on the values of initial payoff parameter and feedback strength in

Ref. [70]. In particular, with increasing the initial payoff

parameter, the probability that the system ends in full cooperation

state decreases. Whereas in this work, we find that the introduced

limitation factor can weaken the Matthew effect, particularly the

negative feedback effect on the unfavorable interacting groups,

which makes the limit value a crucial model parameter. The

limited negative effects can be overcome via social learning.

Hence, appropriate limitation can warrant the best promotion of

cooperation. In addition, we show that the finial cooperation level

not only depends on the the values of initial payoff parameter and

feedback strength, but also depends on the limit values. With

increasing the initial payoff parameter and the initial fraction of

cooperators, cooperation can be better enhanced when the

dynamical multiplication factor is limited. In a sense, this work

further explores the effects of adaptive and bounded game payoffs

on the evolution of cooperation.

During the coevolutionary process, the investment return in

most of interacting groups reaches the upper or lower limit due to

the feedback effects. This segregation and polarization of

investment returns occurs spontaneously over time, which is

different from the distribution in Ref. [47]. In the latter case, the

distribution of the multiplication factor is artificially introduced by

the authors and does not change during the evolutionary process.

Although the emergent values of the multiplication factor in all the

interacting groups do not display too much diversity, we find that

cooperation can be promoted in this adaptive and bounded mode.

Compared with the results in the traditionally spatial PGG model,

cooperation can be better promoted even if the multiplication

factor can only change between one and the group size.

In the present model, we consider the adaptive mode for the

multiplication factor in a group based on the local cooperation

level in the classical PGG where players just have two discrete

strategy choices C or D, and correspondingly the local cooper-

ation level only has several finite values. To make the local

cooperation level change continuously between zero and one, we

also introduce the adaptive and bounded investment returns into

the spatial continuous PGG [18–20], and still find that this PGG

with adaptive and bounded investment returns promotes cooper-

ation. We also test our model in well-mixed populations as well as

on other types of interactions networks, and still find that

cooperation can be enhanced by the proposed coevolutionary

rule. Moreover, we would like to point out that in this work we fix

the value of noise to one. In general, the qualitative behavior of the

system remains unchanged for other values of noise, although for

pairwise interactions there may exist an optimal value of noise at

which the evolution of cooperation is most successful [44]. It could

be inferred that if we can choose the optimal noise value for

strategy updating, the positive effects from social learning can be

amplified. We also believe that, cooperation can be better

promoted if we further incorporate the selection of noise level in

strategy adoption [66,67] into this adaptive and bounded mode for

the multiplication factor.

Methods

We consider the PGG on a square lattice of size L|L with

periodic boundary conditions. Each individual who is a pure

strategist can only follow two simple strategies: cooperate (C) and

defect (D). Cooperators contribute a fixed amount (here consid-

ered to be equal to 1 without loss of generality) to the public good

while defectors contribute nothing. The sum of all contributions in

each group i is multiplied by the factor ri, and the resulting public

goods are distributed among all the group members. Correspond-

ingly, the payoff of player x from the group i is

Pi
x~

ri
ni
N

{1 if sx~C,

ri
ni
N

if sx~D,

(
ð1Þ

where sx denotes the strategy of player x, ni denotes the number of

cooperators in the group i, and N denotes the group size. Here, we

consider the square lattice with von Neumann Neighborhood.

Accordingly, the interacting group size is fixed at N~5, and each

individual belongs to five different groups. The payoff of each

player is accumulated from the fixed five interacting groups, and

thus player x’ total payoff Px~
X

i

Pi
x.

After playing the games, the multiplication factor in each group

needs to be updated. Specifically, we assume that the multiplica-

tion factor of the group centered on player x at time tz1 is

rx(tz1)~rx(t)za½rx(t){r(t)�, ð2Þ

where a controls the strength of feedback from the comparison

between the local and global cooperative environments, rx(t) is the

multiplication factor of the focal individual x’s group at time t, r(t)
is the fraction of cooperators in the whole population at time t, and

rx(t) is the local cooperation level in the group centered on x at

time t. Here, rx(t)~nx=N, where nx denotes the number of

cooperators in the group where player x is the focal individual at

time t. Moreover, we consider the limitation for the adaptive

multiplication factor following previous work [70], that is, letting

rx(tz1)~Ru if rx(tz1)wRu and letting rx(tz1)~Rl if
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rx(tz1)vRl . Here, Ru and Rl respectively represent the upper

and lower limits of the multiplication factor in each group, and

they satisfy the following inequalities: RuwRl and Ruw1. In

particular, when Ru~{Rl~R, the multiplication factor is

constrained in a symmetric interval, which is the same to the

setting in Ref. [70]. Moreover, when R~z? (no bounded

limitation for the multiplication factor) or a~0 (no updating for

the multiplication factor), the average multiplication factor in all

the interacting groups r~L{2
X

x
rx(t)~r0, where r0 is the

initial value of the multiplication factor in each group.

Subsequently, each player is allowed to learn from one of its

neighbors and update its strategy. Player x adopts the randomly

chosen neighbor y’ strategy with a probability depending on the

payoff difference as

f (Py{Px)~
1

1z exp½{(Py{Px)=k� , ð3Þ

where k denotes the amplitude of noise [77], accounting for

imperfect information and errors in decision making. Following

previous work [70], we simply set k~1:0 representing that it is

very likely that the better performing players will pass their

strategy to other players, yet it is possible that players will

occasionally learn also from the less successful neighbors.

Simulations of this spatial PGG model are performed by means

of a synchronous updating rule, using L~100 to 400 system size.

Initially, the two strategies of C and D are randomly distributed

among the population with an equal probability, and the

multiplication factor in each interacting group has the same value

r0. The key quantity for characterizing the cooperative behavior of

the system is the density of cooperators, which is defined as the

fraction of cooperators in the whole population. The system can

reach a dynamical equilibrium after a suitable transient time [78–

80]. Then the density of cooperators reaches its asymptotic value r
and remains there within small fluctuations (less than 0:01). This

asymptotic value is taken to describe the cooperation level in the

whole population, and all the simulation results are averaged over

100 different realizations of initial conditions.
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31. Szolnoki A, Szabó G, Perc M (2011) Phase diagrams for the spatial public goods
game with pool punishment. Phys Rev E 83: 036101.
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79. Vukov J, Szabó, Szolnoki A (2008) Evolutionary prisoner’s dilemma game on

Newman-Watts networks. Phys Rev E 77: 026109.
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