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Abstract Using a fitness-returns argument we derive an expression for the selection 
gradient for the age dependent allocation strategy in a common class of state variable 
based life-history models. By setting the selection gradient equal to zero as part of the 
calculation of the ESS-es for such models, we get a marginal value argument and 
through this recover the local version of Pontryagin’s maximum principle. This fills in 
a minor gap in a recent paper by Parvinen, Heino and Dieckmann (2012; DOI 
10.1007/s00285-012-0549-2), who treated the calculation of the selection gradient and 
of the ESS-es as separate issues. As bonuses we (i) provide an extension of the 
framework of these authors that can handle also the more complicated evolutionary 
dynamics of the life histories that we consider, and (ii) derive also the full Pontryagin’s 
maximum principle from a fitness-returns argument. 
 
Key words: canonical equation of adaptive dynamics · function valued traits · 
Pontryagin’s maximum principle · age-dependent resource allocation · Mendelian take 
on life history theory · evolution in periodic environments 
AMS subject classification: 92D15, 92D40, 37N25, 49K15, 49N90 
 
1 Introduction 
 
In their recent paper “Function-valued adaptive dynamics and optimal control theory”, 
Parvinen et al. (2012) give (i) an abstract recipe for calculating the selection gradient 
for function valued traits affecting the i(ndividual)-dynamics of physiologically 
structured populations for use in the canonical equation of adaptive dynamics (in the 
terminology of Metz and Diekmann (1986), Parvinen et al. refer to these models as 
process-mediated) and (ii) a recipe for calculating the corresponding evolutionarily 
steady strategies (ESS-es) by using Pontryagin’s maximum principle (c.q. 
evolutionarily singular strategies (ess-es) if we confine ourselves to the first order 
condition derived from this principle). They subsequently apply these recipes to derive 
concrete expressions for three sample models. However, they do not explicitly consider 
the relationship between (i) and (ii) but for numerically demonstrating that for their 
special models the adaptive trajectories approach the ess. In this note we (i) 
demonstrate how the selection gradient can be calculated from a concrete starting point 
by using the idea of fitness returns, which gives an interpretation to the components of 
the resulting formulas, and (ii) show that setting the selection gradient equal to zero 
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leads to a classical marginal value argument which turns out to be equivalent to the 
local version of Pontryagin’s maximum principle.  
 
Terminology We employ the term fitness return here for a concept that is widely used 
in evolutionary ecology, often also under this name, but for which we failed to find an 
explicit definition.  
If some fitness proxy can be decomposed as the sum of a number of terms that 
supposedly stand for the contributions of different pathways by which fitness can 
accrue, we call the effect of a strategy change on the contribution of a pathway the 
fitness return through that pathway. For a global ESS the sum of all fitness returns is 
non-positive whatever the strategy change.  
For local ESS-es we consider only the fitness returns of infinitesimal strategy changes. 
To accord with common usage these should be called marginal returns. However, as 
these are the only returns that we consider we shall drop the epithet. When the 
attention is confined to an infinitesimal neighbourhood of a reference strategy far more 
fitness proxies allow a conceptually useful additive decomposition thanks to the rules 
of differential calculus. All that is needed is a biologically interpretable way in which 
the proxy can be decomposed as a differentiable function of a number of differentiable 
functions of the strategy. The (marginal) fitness return through one of these functions 
is then defined as the sensitivity of the proxy to the strategy change in a thought 
experiment in which we keep the argument of all other functions unchanged. 
The fitness returns from state dependent decisions are usually determined from first 
principles conditional on the state under consideration. The epithet conditional is 
customarily dropped in this case. The (marginal) fitness return from a compound 
decision involving more than one state is calculated by summing the fitness returns for 
the separate states weighted with their lifetime occurrence frequencies or duration. 
 
To keep the arguments accessible for our fellow evolutionary ecologists, we restrict 
our calculations from the start to the most commonly encountered class of life history 
models, and use old-fashioned mathematical arguments (in keeping with our own 
training) rather than a more rigorous functional analytical approach. (Mathematicians 
with a modern schooling can anyway easily translate everything into their language, 
while the opposite does not hold true for evolutionary ecologists.) 
 
2 On selection gradients, canonical equations and evolutionarily singular 
strategies, a summary 
 
Below we consider a life history model in which an individual is characterised by two 
dynamical variables, in addition to an inherited strategy u  influencing their dynamics. 
u  is supposed to be a function of the state of the individual taking values in [0,1] . To 
make our life simple we assume that on the population dynamical time scale the 
community dynamics converges to an equilibrium, which generates the non-fluctuating 
environment Eres = Eattr (ures ) , with ures  the strategy currently in residence. This 
assumption of a non-fluctuating environment allows us to make use of the fitness 
proxy R0 (umut;Eres ) , the average lifetime offspring production of a mutant in the 
environment Eres , calculated e.g. by integrating the average rate of producing kids over 
the age of an individual. Consistency requires that R0 (ures;Eres ) = 1 . If its R0  is larger 
than 1, a mutant has a positive probability to invade, else it cannot invade.  



3 

The invasion fitness F  of a mutant is by definition equal to the asymptotic 
exponential growth rate of a mutant population in the environment Eres  (Metz et al. 
1992, Metz 2008). For R0  close to 1 this invasion fitness is well approximated by 

 

  F(umut;Eres ) =
ln R0 (umut;Eres )( )

Tr (ures )
+O ln2 R0 (umut;Eres )( )( ) ,     (1) 

 
Tr (ures )  the average age at which the residents give birth in the environment Eres  (e.g. 
Metz and Diekmann 1986, Durinx et al. 2008).  
 
Remark Parvinen et al. (loc. cit.) consider seasonal differential-equation-based models 
where it is possible to calculate the invasion fitness directly by subtracting the time-
averaged death rate from the time-averaged birth rate. For such models fitness takes 
the explicit form of an integral over the year cycle, and there is no need to fall back on 
an approximation. However, in the usual continuous time life history models only R0  
can be expressed explicitly as an integral. The availability of such an integral-based 
expression formed the basis for the developments in Parvinen et al. (loc. cit.), and will 
also be the cornerstone for our calculations. 
 

The so-called selection gradient G  tells how the invasion fitness of a umut  close 
to ures  depends on the difference x = umut ! ures . Mathematically it is the derivative of 
the invasion fitness for umut  evaluated at umut = ures = u . From the previous 
approximation formula for the invasion fitness it follows that we can calculate G  as 
 

  G(u) = 1
Tr (u)

dR0
dumut

(u;Eattr (u))       (2) 

 
(Durinx et al. 2008, Metz 2008). (The derivative here is a linear operator providing a 
first order approximation for the dependence of R0  on changes in umut .)  
The assumption of a non-fluctuating resident environment moreover makes that we can 
represent the strategy as a function of age,  u :! + ! [0,1] :a" u(a) , and write for a 
function  x :! + ! !  

G(u)x = 1
Tr (u)

g(a;u)x(a)da
0

!

"       (3) 

 
(c.f. Parvinen et al. 2012). Hence the problem of calculating G  reduces to that of 
calculating the function g .  

On the assumption that mutations are rare and mutational steps small the 
dynamics of u  can on the evolutionary time scale be described by the so-called 
canonical equation (CE) of adaptive dynamics (Dieckmann and Law 1996; 
Champagnat 2003; Dieckmann et al. 2006, Parvinen et al. 2006, 2012; Durinx et al. 
2008; Méléard and Tran 2009; Champagnat and Méléard 2011; Gupta et al. in prep.) 
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du
dt

(a) = ! "2 (u)
Ts (u)

n(u)µ c(a,# )g(#;u)d#
0

$

%         if c(a,# )g(#;u)d#
0

$

% > 0 and u(a) &[0,1)

                                                                        or c(a,# )g(#;u)d#
0

$

% < 0 and u(a) &(0,1]

          = 0                                                       otherwise,                                             (4)

 

 

with Ts  the average age at which the residents die, ! 2  the between individual variance 
of their offspring numbers, n  their equilibrium population size, µ  the (small) 
probability at a birth event of a mutation affecting u , and c  the (small) covariance 
kernel of the mutational steps, i.e., if x  denotes a mutational step in u , then 
 

         cov x(a)da
a1

a2

! , x(a)da
a3

a4

!
"

#
$

%

&
' = c(a,( )da

a3

a4

! d(
a1

a2

! .      (5) 

  
The form of the CE given above is the one for clonally reproducing organisms 

(the customary assumption in most of life history theory which, however, usually is left 
implicit). In Appendix A we briefly consider its extension to Mendelian diploids.  

Our formula for the CE is slightly more complicated than the one in Parvinen et 
al. (2012). The reason is that these authors did not consider local constraints on the 
strategy, whereas in our case 0 ! u(a) ! 1 . See Appendix B for further information.  
Another difference is that Parvinen et al. (loc. cit.) have set the factor ! 2  equal to 2, in 
keeping with the idea that for the i-models underlying the standard ODE models the 
distribution of the lifetime offspring number is geometric. Moreover, for standard ODE 
models Tr = Ts  and since the g  of Parvinen et al. corresponds to our g Tr =: f , the Ts  
in (4) cancels. Appendix C treats the corresponding considerations for the periodic 
ODE case. 

The equilibria of the CE are the so-called evolutionarily singular strategies (ess-
es). If these strategies are moreover (local) fitness maxima for the corresponding Eres  
then they are also evolutionary equilibria, to which we refer as (local) Evolutionarily 
Steady Strategies (ESS-es). (An alternative is that at an attracting ess the population 
starts to accumulate variation, so that it no longer stays quasi-monomorphic as is 
supposed in the derivation of the CE (on good grounds: Geritz et al. 2002; Geritz 2005; 
Dercole and Rinaldi 2008, Appendix B).) 
Another way to calculate ESS-es is to maximise the invasion fitness, or alternatively 
R0 , over umut  followed by setting u = umut = ures . It is here that Pontryagin’s maximum 
principle is encountered (e.g. Intrilligator 1971). This principle is derived by 
considering the differential equations for the i-states as constraints on their time 
development, and to extend the idea of Lagrange multipliers as encountered in finite 
dimensional optimisation problems to this case. The Lagrange multipliers then become 
functions of time, which can be shown to satisfy a set of differential equations, and for 
this reason are referred to as co-states. In Section 6 we give explicit expressions for the 
life history models described in the next section. 
 
3 Model ingredients  
 
Before we get to the specifics we first introduce some notational conventions in order 
to keep our formulas from becoming too unwieldy. 
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Conventions (i) [ ](a)  means that all functions written without argument between the 
[ ]  have the argument a . (ii) To avoid clutter we shall usually without special 
announcement hide the argument Eres . (iii) Similarly we shall often hide the argument 
umut  in expressions like P(a;umut )  for the probability that an individual survives till 
age a , or m(a;umut )  for its body size at that age. (iv) When we use the argument u , 
then u  stands either for umut  or ures , or, usually, for umut = ures = u , with the context 
making clear which is the case. (v) For a function of a single scalar variable we use a 
prime to indicate its derivative;  a superscript dot indicates a derivative for age. 
 
The two dynamical variables characterising an individual are (i) one i-state variable, to 
wit its body mass m , starting from a fixed birth mass m0 , and (ii) its probability P  to 
be still alive, starting from 1. The energy intake by an individual with body mass m  
equals e(m) . The strategy u  tells which fraction of this intake is used for reproduction 
while the remains are used for growth. The body mass just increases as (1! u)e(m) , 
while the birth rate is assumed to be some monotone function b  of the available 
energy,  (u,e)! b(ue) . Finally the energy allocation is assumed also to affect the death 
rate  d : (u,m)! d(u,m) . All three functions, e , b  and d , may depend in addition on 
the hidden argument Eres . For this model the average lifetime offspring number of a 
mutant strategy umut  equals 

R0 = Pb(umute(m))[ ](a)da
0

!

" ,       with      

        !m = (1! umut )e(m) ,  m(0) = m0 ,     !P = !d(umut ,m)P ,   P(0) = 1 .    (6) 
 
When we set umut = ures  we should have that R0 = 1  due to the special value of the 
hidden argument Eres = Eattr (ures )  of e , b  and d . 
 
4 Calculating the selection gradient from a fitness-returns argument 
 
Now think of how in the definition of the integral the function x  in (3) is 
approximated as the sum of a large number of short blocks, i.e., functions that are 
constant over a short time interval and zero elsewhere. To calculate g  we consider the 
fitness returns corresponding to such blocks. The fitness return r(a;u)  at age a  for 
umut = ures = u  is calculated conditional on the individual surviving till a . It should be 
interpreted as (!" )#1  times the effect on an individual’s expected present and future 
reproduction of increasing u  with a block of height !  and duration !  starting at a . To 
calculate the effect on R0  of such a block we have to take into account that only a 
fraction P(a;u)  of the individuals reaches that age and hence contributes to the effect. 
Hence 

       g =!Pr .        (7) 
 

We calculate r  from first biological principles, in the spirit of the marginal 
value theorem. Imagine an increase of the relative allocation to reproduction with an 
amount !  for a time ! ,  0 < !," !1 starting at age a . Let  !m  be the difference that this 
makes in m , and  !P  the difference that this makes in P . Between the ages a  to a + !  
(with u = ures  the allocation function to which we make the change) 
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!"m = (1! u) "e (m) !m ! #e(m) +O # 2( ) ,    !m(a) = 0 ,    

 
!"P = !d(u) !P ! "d (u)P# +O # 2( ) ,    

!P(a) = 0 .      (8) 

This leads to  

 !m(a + ! ) = "e(m(a))#! +O(#)O(! 2 ) +O(# 2 )O(! )  
   
!P(a + ! ) = " #d (u(a))P(a)$! +O($)O(! 2 ) +O($ 2 )O(! ) .     (9) 

 
From then onwards, where from now on we neglect the higher order terms, 
 

 !
"m = (1! u) "e (m) !m ,   !m(a + ! ) " #e(m(a))$! ,     

          
!"P = !d(u) !P ,   

!P(a + ! ) " # $d (u(a)P(a)%! .    (10) 
 
The immediate gain in offspring from this strategy change for an individual that 
already has survived till a  is 
 

!" #b (ue(m)e(m)[ ](a) . 
 
The future loss of offspring from this change in strategy for an individual that already 
has survived till a  is 
 

 
!
1

P(a)
!Pb ue(m)( ) + P "b ue(m)( )u "e (m) !m#$ %&

a

'

( () )d) . 

 

Since the equations for  !P  and  !m  are linear, this future offspring loss is also 
proportional to !" . So for the calculation of r  we can already at this stage divide both 
by !  and ! .  
Below we use that for ! > a + "  the differential equation for P(! ) P(a + " )  is the 
same as that for  !P  except for a difference in initial conditions. Let P̂(!;a)  and 
m̂(!;a)  be defined by  

 

    

dP̂
d!

= "d(u)P̂ ,  P̂(a;a) = 1 ,     
dm̂
d!

= (1" u) #e (m)m̂ ,  m̂(a;a) = 1 .  (11) 
 

P̂  and m̂  are functions of both !  and a . However, we shall from now on hide the 
latter argument. Using that P(! ) = P(a)P̂(! ) ,  

!P(! ) " # $d (u)P[ ](a)%& P̂(! )  and 

 !m(! ) " # e(m)[ ](a)$% m̂(! )  we find, on letting !  and !  go to zero, that  
 

r(a;u) = !b (ue(m))e(m)[ ](a)

             " P̂(# ) e(m(a)) !b ue(m)( )u !e (m)m̂ + !d (u(a))b ue(m)( )$% &'
a

(

) (# )d#

          = !b (ue(m))e(m)[ ](a)

             " e(m(a)) P̂ !b ue(m)( )u !e (m)m̂$% &'
a

(

) (# )d# " !d (u(a)) P̂b ue(m)( )$% &'
a

(

) (# )d#

 

           (12) 
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At an optimal u  (more in particular, an optimal umut  with in addition 
umut = ures = u , as is the case at an ESS) the return r  is 0  when 0 < u(a) < 1 , non-
positive when u(a) = 0 and nonnegative when u(a) = 1 . In the Section 6 we consider 
the determination of an optimal u  using Pontryagin’s maximum principle. It turns out 
that there is a detailed match between the results from the two approaches. However, 
where the Pontryagin argument applies only to an optimal u , the fitness return 
argument applies to any u = umut = ures . 

 
5 The other ingredients of the canonical equation 
 

To complete the CE we still need Tr , Ts  and ! 2 . The first two come easy. 
  

    Tr (u) = aP(a;u)b u(a)e(m(a;u))( )da
0

!

" ,     (13) 

   
 
Ts (u) = !a !P(a;u)

0

"

# da = P(a;u)
0

"

# da ,     (14) 

 
where we used that R0 (u;Eattr (u)) = 1 and that the probability density of the age at 
death a  is  ! !P(a;u) . 
To calculate ! 2  we have to be more specific about the microstructure of the 
reproduction process. The assumption that naturally leads to Formula (5) is that for an 
individual that is still alive the births come in a Poisson process with rate b(ue(m)) , or, 
slightly more generally, in clutches of average size C(u,e(m))  produced according to a 
Poisson process with rate b(ue(m)) /C(u,e(m)) ). We stick here to the first possibility. 
Then for a given age at death a  the total offspring number is Poisson distributed with 
mean !(a;u) := b u(" )e(m(";u))( )d"

0

a

# . The first moment of ! = !(a;u)  therefore is 

equal to  
    E! = R0 (u;Eattr (u)) = 1 .    (15) 

 

Hence !"
2 = E"2 #1 , with 

 

     
 
E!2 = " !P(a;u)!2 (a;u)da

0

#

$ = 2 !(a;u)P(a;u)b u(a)e(m(a;u))( )da
0

#

$ . (16)   

 
Finally, from the general rules for mixtures of distributions, 
 

      ! 2 = !"
2 +1 = E"2 .    (17) 

 
 
6 Calculating fitness maxima by means of Pontryagin’s maximum principle 

 
In contrast to the CE, Pontryagin’s maximum principle is textbook material. Hence we 
shall not give an explanation, but just proceed in the wake of one such textbook, to wit 
Intrilligator (1971) Chapter 14. In the notation of Intrilligator our model is represented 
as,  
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    x =
m
P

!
"#

$
%&

,    I
m
P

!
"#

$
%&
,u

!
"#

$
%&
= Pb(ue(m)) ,  J = R0 ,   f

m
P

!
"#

$
%&
,u

!
"#

$
%&
=
(1' u)e(m)
'd(u)P

!
"#

$
%&

. (18) 

 
with x  the state vector, J  the quantity to be optimised, calculated as the lifetime 
integral of I , and f  the right hand side of the differential equation for x . Pontryagin’s 
maximum principle then says that to maximise J  we should at each age maximise the 
so-called Hamiltonian, 

H = I + yf ,     (19) 
 

with y = y1, y2( )  the so-called co-state variables, where the latter satisfy the differential 
equations  

   
 
!y1 = !

"H
"x1

,        
 
!y2 = !

"H
"x2

,         y1(!) = y2 (!) = 0 .  (20) 

Written out 
 

H (m,P,u, y1, y2 ) = Pb(ue(m)) + y1(1! u)e(m) ! y2d(u)P , 
 

 !y1 = !(1! u) "e (m)y1 ! P "b (ue(m))u "e (m) ,          !y2 = d(u)y2 ! b(ue(m)) ,        

 !m = (1! u)e(m) ,           !P = !d(u)P , 
y1(!) = 0 ,      y2 (!) = 0 ,         m(0) = m0 ,        P(0) = 1 .  (21) 

 
J  is maximised by u  if and only if u(a)  maximises [H (m,P,u, y1, y2 )](a)  at any a . 

The equations for the co-state variables have the solutions 
 

y1(a) = y1,0 exp ! (1! u) "e (m)[ ](# )d#
0

a

$
%

&'
(

)*

                      ! P "b (ue(m))u "e (m)[ ](# )exp ! (1! u) "e (m)[ ](+ )d+
#

a

$
%

&'
(

)*0

a

$ d#

y2 (a) = y2,0 exp d(u)[ ](# )d#
0

a

$
%

&'
(

)*
! b(ue(m)[ ]

0

a

$ (# )exp d(u)[ ](+ )d+
#

a

$
%

&'
(

)*
d#

 

          (22) 
 
where y1,0  and y2,0  have to be chosen such that the terminal conditions 
y1(!) = 0 , y2 (!) = 0  are satisfied:  

 

        y2,0 = lima!"
exp # d(u)[ ]($ )d$

0

a

%
&

'(
)

*+
b(ue(m)[ ]

0

a

% ($ )exp d(u)[ ](, )d,
$

a

%
&

'(
)

*+
d$

-

.
/
/

0

1
2
2

, (23) 

 
with a similar expression for  y1,0 . 

Differentiating [H ](a)  for u(a)  gives 
 

     gH(a) :=
![H ](a)
!u(a)

= P "b (ue(m))e(m) # y1e(m) # y2 "d (u)P[ ](a) .  (24) 
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An ESS has gH(a)  equal to 0 for 0 < u(a) < 1 , nonnegative for u(a) = 1  and 
nonpositive for u(a) = 0 . Moreover, where gH(a) = 0  its derivative for u(a)  should be 
negative.  
 
7 Relating the results of Sections 4 and 6 
 
In this section we show that formulas (11) and (12) for calculating fitness returns (c.q. 
the selection gradient) and formulas (22) – (24) for the differential of H amount to the 
same.   

To enhance the similarity divide gH  by P  and set  !y1 = P
!1y1 ,  !y2 = y2  to get 

 

 rH(a) := P
!1gH(a) = "b (ue(m))e(m) ! !y1e(m) ! !y2 "d (u)[ ](a)  

with 

 !
"y1 = !(1! u) "e (m) !y1 ! P̂ "b (ue(m))u "e (m) ,        !y1(!) = 0 , 

 

 !
"y2 = d(u) !y2 ! b(ue(m)) ,        !y2 (!) = 0 ,   (25) 

 
which is to be compared with 
 

r(a) = !b (ue(m)e(m)[ ](a)

          " e(m(a)) P̂ !b ue(m)( )u !e (m)m̂#$ %&
a

'

( () )d) " !d (u() )) P̂b ue(m)( )#$ %&
a

'

( () )d)

 
with 

      

dP̂
d!

= "d(u)P̂ ,    P̂(a) = 1 ,     
dm̂
d!

= (1" u) #e (m)m̂ ,    m̂(a) = 1 .  (26) 
 
The natural guess is that we should try to identify  !y1  with 
 

    ŷ1 := P̂ !b ue(m)( )u !e (m)m̂"# $%
a

&

' (( )d(    (27) 

and  !y2  with 

ŷ2 := P̂b ue(m)( )!" #$
a

%

& (' )d' .    (28) 

 
The mathematical structure of both comparisons is 
 

– for fitness returns:    ŷ(a) = !(s)z(" )d"
a

#

$ ,    !z(! ) = "# (! )z(! ) ,   z(a) = 1 , (29) 

 

– for Pontryagin:                      !
"y(a) =! (a) !y(a) "#(a) ,      !y(!) = 0 .  (30) 

 
Working out the integrals gives 

 

       ŷ(a) = !(" )exp # $ (% )d%
a

"

&
'

(
)

*

+
,

a

-

& d"       (31) 

and 
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!y(a) = ! "(s)exp # ($ )d$

%

a

&
'

(
)

*

+
,

0

a

& d% + !y0 exp # ($ )d$
0

a

&
'

(
)

*

+
,  

with 

     
 
!y0 = exp ! " (# )d#

0

$

%
&

'
(

)

*
+ ,(- )exp " (# )d#

-

$

%
&

'
(

)

*
+

0

$

% d- = ,(s)exp ! " (# )d#
0

-

%
&

'
(

)

*
+

0

$

% d- . (32) 

Hence 

      

 

!y(a) = ! "(# )exp $ (% )d%
#

a

&
'

(
)

*

+
,

0

a

& d# + "(# )exp $ (% )d%
#

a

&
'

(
)

*

+
,

0

-

& d#

      = "(# )exp ! $ (% )d%
a

#

&
'

(
)

*

+
,

a

-

& d#.

    (33) 

  
Therefore indeed  !yi = ŷi .  
 In Appendix D we show that more generally the fitness return from a general, 
not necessarily small, short local change in u  after age a  multiplied with the 
probability that an individual survives till that age corresponds to H  as defined in 
Formula (21). 
 
8 Discussion 
 
Given the venerable history of Pontryagin’s maximum principle and its applications to 
life history theory it should raise no wonder that interpreting the co-states is not new. 
In particular, Jesus Alberto Leon already did so in the nineteen-seventies (Leon 1976; 
see also Perrin and Sibly 1993). However, in those days there was no CE around and 
hence no need to make a connection. Moreover, these early authors put forward the 
interpretation seemingly ex cathedra, and only post hoc and summarily related it to a 
marginal value argument, without showing the explicit connection made in our 
Sections 4 and 7. In particular, they did not consider “co-state variables” for other u  
than the optimal one. Precisely these “generalised co-state variables” occur as 
ingredients of the selection gradient. We therefore believe that our calculations 
genuinely add to our collective understanding of the mathematical structure of our 
world. 
On the practical side we put forward that even when one is only interested in 
calculating an ESS with the help of Pontryagin’s maximum principle, and has no 
particular interest in the evolutionary trajectories by which this ESS may be reached, 
running some discretised variant of the canonical equation may provide an effective 
computational implementation of that principle. 
 A second contribution of this note is that we carefully set up the CE for life 
history decisions. As it turned out, a few details had to be added to the exposition in 
Parvinen et al. (2012). In particular, it was necessary to extend the CE so as to be able 
to handle inequality constraints. In addition, there was the small detail of the 
appearance of an additional multiplicative factor accounting for the difference in the 
initial branching process that mutants have to get through before getting established 
compared to the linear birth and death process that appears in this role for ODE 
population models (c.f. Durinx et al. 2008).  
As a final point we note that the argument in Section 5, although this was not spelled 
out there, is exemplary of a more general principle. When we delve a little more deeply 
into the stochastic models for individual behaviour, as was necessary in order to 
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calculate ! 2 , it generally becomes clear how embarrassingly oversimplified such 
models tend to be. In our case it turned out that it was implicitly assumed that 
microscopically the production of young is coupled far more loosely to the energy flow 
to reproduction than seemingly is assumed at the deterministic macroscopic level. Real 
organisms first have to accumulate the necessary energy that then is transformed into 
the birth of a young, instead of randomly producing young on the basis of the 
instantaneous availability of resources. Therefore in reality the production of young 
usually is far more regular than Poisson (so that ! 2  is close to !"

2 ), and at a given time 
depends also on past energy availabilities. Hence the idea that the rate of offspring 
production at age a  is just a function b  of [ue(m)](a)  is at best only a rough 
approximation. One possible justification is that most of the time ue(m)  varies only 
slowly compared to the rate at which young are produced, and that if reproduction does 
occur spread out in time, no two individuals will be in the same phase of their 
reproduction cycle, so that at any one time the effective offspring production of the 
individuals that have a size close to the scalar m̂  may well be on average close to 
b ue(m̂)( ) . However, the modelling community is still a long way from proving any 
rigorous approximation theorems of this ilk. (See Heijmans and Metz (1989) for 
another possible justification, which, however, is less often applicable in a general life 
history context.) 
 Of course we also made other simplifying assumptions, like neglecting basal 
metabolism. However, these simplifications were only put in to ease the exposition, 
raise no deep mathematical issue, and hence can presumably be relaxed without great 
difficulty. 
  
Acknowledgments We thank Kalle Parvinen for a helpful discussion about the topics of this paper. This 
work benefitted from the support from the “Chaire Modélisation Mathématique et Biodiversité of Veolia 
Environnement - Ecole Polytechnique - Museum National d’Histoire Naturelle - Fondation X”. 
 
Appendix A: Mendelian organisms 
 
Most life history models implicitly assume clonal reproduction. Yet, by far the 
majority of organisms that are supposedly targeted by these modelling efforts are 
Mendelian diploids (c.f. Stearns 1976,1977). To help overcoming this awkward 
discrepancy we summarize here some results for the Mendelian case. (The underlying 
technicalities are the subject of another paper that the first author hopes to publish with 
another co-author.) 
 The first difference between the clonal and Mendelian cases is that the 
homozygote phenotype present after a substitution differs from the heterozygote 
phenotype that invaded. Since for small mutational steps the genotype to phenotype 
map is approximately additive, this leads to the appearance of an additional factor two 
(on the assumption that there are no parental effects) in the right hand side of the CE. 
 A more fundamental difference is that as a rule the gametes involved in sexual 
reproduction come in two types, macro- and micro-gametes. To keep the discussion 
simple we concentrate on the case where the sexes are separate, for otherwise we have 
to consider triple allocation targets, to growth, macro-gametes, and micro-gametes. In 
the case of separate sexes we simply have u = (uf ,um ) , with uf the allocation rule of 
the females, and um  the one of the males. These allocation rules in general will be 
evolutionarily coupled through mutational co-variances, but, except for a common time 
scaling with Tr

!1(u) , the selection gradients can be treated separately, as if we were 
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dealing with two coevolving species, with each of the sexes setting part of the 
environment, which now also includes fertilisation opportunities, for the other sex.    
This independence derives from the additive relation R0 = 1

2 Rf + Rm[ ] , with Rf  the 
average lifetime number of kids of a female and Rm  the average lifetime number of 
kids of a male (e.g. Metz and Leimar 2011, Gyllenberg et al. 2011). Similarly, 
Tr = 1

2 Tr,f + Tr,m!" #$ , where the additional indices f  and m  mean that the so indexed 
quantity, in this case the average age of the parent at the birth of its kids, is calculated 
conditional on the sampled individual being a female or a male. Hence, for S = f,m , 
 

     GS(u) =
!F

!uS,mut
(u;Eattr (u)) =

1
Tr,f (u) + Tr,m (u)

dRS
duS,mut

(u;Eattr (u)) .  (A1) 

 
The action of the derivative can again be expressed as an integral 
dRS duS,mut!" #$(u;Eattr (u))x = gS(a;u)0

%

& x(a)da , with the functions gS  calculated in the 

same manner as for the clonal model, with the hidden argument Eattr  in the functions 
bS  accounting for any differences in availability of fertilisation opportunities at 
different ures .  
Finally, Ts = qfTs,f + qmTs,m , with qf  and qm  the relative frequencies with which the 

sexes are born into the resident population, and ! 2 = 1
4 qf! f

2 + qm!m
2 + qf

"1 + qm
"1 " 2#$ %&  

(the latter formula also takes into account the random sampling of alleles during the 
offspring production by the heterozygotes). 
The upshot is that the males and females in any ESS-es satisfy separate Pontryagin 
maximum principles, with the coupling between the sexes appearing in the equations 
only through the influences the resident female and male strategies exert on Eattr .  

The fact that the fertilisation opportunities come as a component of Eattr  
inextricably entwines life history evolution with sex ratio evolution.  
  
Appendix B: How to deal with local constraints 
 
In principle the mutational covariance function is not constant over evolutionary time, 
but depends on the evolutionary history of the population. In particular, the distribution 
of mutational steps has to change near a constraint boundary so as to preclude 
overstepping it. There are various ways in which this change may happen. Most of 
these will make the distribution of the steps asymmetric, with close to the boundary 
steps towards the interior of the space of feasible strategies becoming more common 
relative to steps towards the boundary. However, the CE as given by Parvinen et al. 
(2012) is based on the assumption that the mutation distribution is symmetric. 
(Formulas for the non-symmetric case may be found in Dieckmann and Law (1996), 
Champagnat (2003) and Champagnat and Méléard (2011).) In our formula we have 
kept the form of the CE unchanged in the interior of the constraint set and only set the 
right hand side equal to zero where that movement would lead to the passing of a 
constraint boundary. The rationale for this ploy is the following. The CE is derived as a 
limit in which one lets a factor that scales the mutational steps go to zero. This means 
that at any distance from the constraint boundary eventually the effect of the constraint 
will no longer be felt, and if the mutation distribution would otherwise be symmetric, 
this symmetry would eventually be recovered for all resident strategies that are not 
located on the boundary. At boundary strategies, in the CE limit the movement 
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component in the outward direction has to drop to zero, since there the mutation 
distribution stays forever asymmetric, with its probability mass all located on the 
feasible side. In the limit the distribution of this mass contracts towards the boundary. 
Hence, on the natural assumption that the constraint does not affect movement parallel 
to the boundary, in the CE limit it does not affect the right hand side at a  where u(a)  
runs no risk of crossing its constraint boundary. On segments of the boundary where 
the nearby movement is towards that boundary the movement on the boundary 
becomes restricted to it by the covariance function abruptly becoming singular. In our 
case this corresponds to just setting the right hand side to zero at the indicated values 
of a . (In finite dimensional trait spaces the analogous condition is that on the boundary 
the movement component orthogonal to the boundary becomes zero whenever close by 
the movement is towards the boundary, while the movement component parallel to the 
boundary is a continuous extension of the movement component in that direction in the 
interior of the constraint set.) 
 
Appendix C: The canonical equation for periodic ODE population models 
 
The right hand side of the CE equals 
 

[rate at which mutants are produced] × average of [the effect of a mutation 
× a linear approximation for the probability that that mutant invades] 

 
On the assumption of small mutational steps and a symmetric mutation distribution the 
latter average gives 12  times the mutational covariance operator applied to the selection 
gradient, where the 12  comes from the fact that the linear approximation only applies in 
the half space where the invasion fitness is positive and is replaced by 0 where it is 
negative. The factor ! "2  in (4) comes from the lowest order term of the asymptotic 
expansion for the probability Q  that a mutant with a slightly positive fitness 
( 0 < F !1) invades. When births occur singly the individual-based models underlying 
ODE population models can for the initial phases of mutant invasion be approximated 
by a linear birth and death process. For constant environments the corresponding 
generation process is of Galton-Watson type with a geometric offspring distribution 
with mean R0 = b d  with b  and d = Ts

!1  the per capita birth and death rates of the 
mutant, while F = b ! d = (R0 !1) Ts . Hence the invasion probability equals 
Q = 1! R0

!1 = R0 !1+O (R0 !1)
2( ) . More in general, Q = 2! e

"2 ln(R0 ) +O ln2(R0 )( ) , 

with ! e
2  a measure for the average variability of the offspring production of the 

residents (for which R0 = 1 ), which in the case of a single birth state reduces to the 
variance of the offspring distribution ! 2  (c.f. Durinx et al. 2008). (! 2 = 2  for a 
geometric distribution with mean 1.) The rate at which mutants are produced equals the 
population birth rate times the per birth probability of a mutation. The factor n  in (4) 
appears by re-expressing the population birth rate B  of the resident as n Ts , based on 
the general consistency relation n = BTs . Below we consider the extension of these 
considerations to periodic environments; the further extension to general ergodic 
environments is treated in Ripa and Dieckmann (manuscript).  
 In the case of periodic environments we have to average both the number of 
births as well as the probability to invade over a cycle, where the first average is a time 
average and the latter average is over the distribution of births over the cycle.  
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 To calculate the invasion probability in dependence of the phase !  of 
appearance of a mutant during the environmental cycle, q(!) , we use the general 
formula for the invasion probability for linear birth and death processes with time 
variable parameters derived by Kendall (1948) 
 

  q(!) = 1

1+ e"r(t ;! )d(t)dt
!

#

$
    with    r(t;!) = b " d[ ]

!

t

# ($ )d$  . (A2) 

 
With time rescaled so that the period equals 1 , we then get 
 

      Q = q(!)w(!)d!
0

1

" ,    (A3) 

with     

   w(!) = b0 (!)e
r0 (! ;0)

b0 (" )e
r0 (" ;0)d"

0

1

#
    (A4) 

 
the probability distribution of the phase of the environmental cycle at which a mutant 
may be expected to appear, with b0  and d0  the periodic per capita birth and death rates 
of the residents and r0  defined as in (A2). 

The stationarity of the resident population implies that r0 (t +1;t) = 0 , i.e., 

b0 (! )d!t

t+1

" = d0 (! )d!t

t+1

"  (no per capita population growth over a full environmental 

cycle) as well as b0 (! )e
r0 (! ;t )d!

t

t+1

" = d0 (! )e
r0 (! ;t )d!

t

t+1

"  (the total births over a cycle 

matches the death toll over the cycle). More in general F = r(t +1;t) = r(1;0)  and 
 

         R0 =
b
d

     (A4) 

with  
          b := b(! )d!

0

1

" = b(! )d!
t

t+1

"  and d := d(! )d!
0

1

" = d(! )d!
t

t+1

"   (A5) 

 
(Bacaer and Guernaoui 2006), where in the periodic case R0  is defined as the 
dominant eigenvalue of the operator that gives the average number of newborns born at 
different phases of the cycle for mothers born at different phases.  

To calculate the derivative of Q  we introduce a scalar variable x  by which we 
parametrise a curve in the space of strategies passing transversally through the resident 
value at x = 0 , and write all the coefficient functions as functions of x , written as an 
index in the case of b , d  and r . As later on we also need the invasion probability and 
invasion fitness as a function of any mutant strategy, we will denote the maps from x  
to these two quantities as  

!Q  and  !F . With 
 

       M (x) := e!rx (t ;0)dx (t)
0

"

# dt     (A6) 

we can write 

           q(!; x) = 1

1+ e"rx (t ;! )dx (t)dt!

1

# + e"rx (1;! )M (x)
.   (A7) 
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From q(!; x)" 0  for x! 0  it follows that then M (x)!" . Hence 
 

           
!q
!x
(";0) = #er0 (1;" ) lim

x$0

%M (x)
M 2 (x)

    (A8) 

and 

    

 

!!Q (0) = "
b0 (#)0

1

$ d#

b0 (#)e
r0 (# ;0)d#

0

1

$
lim
x%0

!M (x)
M 2 (x)

.   (A9) 

 
To calculate the term after the limit sign we observe that 
 

  M (x) := e!rx (" ;0)dx (")
0

1

# d" + e!rx (1;0)M (x) .   (A10) 

Hence 

M (x) =
e!rx (" ;0)dx (")d"0

1

#
1! e!rx (1;0)

,    (A11) 

 

         

 

lim
x!0

"M (x)
M 2 (x)

=
# "!F (0)

e#r0 ($ ;0)d0 ($)d$0

1

%
,   (A12) 

and 

         

 

!!Q (0) =
b0 (")0

1

# d"

b0 (")e
r0 (" ;0)d"

0

1

# e$r0 (" ;0)d0 (")d"0

1

#
!!F (0) .  (A13) 

 
Hence away from local constraints the CE becomes 
 

    

ds
dt

(!) = 1
2
µ b0 (" )n(" )d"

0

1

#
b0 (" )

0

1

# d"

b0 (" )er0 (" ;0)d"
0

1

# e$r0 (" ;0)d0 (" )d"
0

1

#
c(!," ) f ("; s)d"

0

1

#

         = 1
2
µ

d0 (" )
0

1

# d"

n $1(" )d0 (" )d"
0

1

#
c(!," ) f ("; s)d"

0

1

# ,                                                (A14)

 

 
where s  now denotes the strategy, which in the seasonal flowering model of 
Dieckmann et al (2006) consists of a flowering intensity as a function of ! , and  
 

           f (!; s) = d[b - d](!)
dsmut (!)

s;Eattr (s)( ) .    (A15) 

 
Hence the n  in Parvinen et al. (2012) has to be interpreted as 
 

d0 (! )0

1

" d!

n #1(! )d0 (! )d!0

1

"
. 
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To see how (A14) compares with (4) we first observe that for periodically 
fluctuating populations there is no immediate counterpart for the equality n = BTs , so 
we substitute the latter in (4), while observing that the counterpart of B  in (A14) is 

b0 (! )n(! )d![ ]
0

1

" . After substituting f (!; s) = g(!; s) Tr (s)  in (A14) we then end up 

with the pairing 

2Tr
! e
2 =

b0 (" )0

1

# d"

b0 (" )e
r0 (" ;0)d"

0

1

# e$r0 (" ;0)d0 (" )d"0

1

#
.   (A16) 

 
To calculate Tr  we use F = b ! d  and R0 = b d  together with (1) to find  

 

           Tr = d0
!1 = b0

!1 .     (A17) 
Therefore 
 

! e
2 == 2

b0 (" )e
r0 (" ;0)d"

0

1

#
b0 (" )0

1

# d"

e$r0 (" ;0)d0 (" )d"0

1

#
d0 (" )0

1

# d"
= 2

er0 (" ;0)d0 (" )d"0

1

# e$r0 (" ;0)d0 (" )d"0

1

#
d0 (" )0

1

# d"( )2
. 

(A18) 
 
Appendix D: Re-deriving Pontryagin’s maximum principle from fitness-return 
arguments 

 
It is also possible to consider the fitness return for just any, not necessarily small, short 
change of u(! ) , ! "[a,a + # ) , say to u* , while leaving the rest of u  unchanged. If the 
duration !  of the change is sufficiently small, its impact in later life will be O(! ) , and 
hence its effect in later life can be calculated from the same linearised equations as 
before. We only do not linearise for the short period over which the perturbation is 
active. There we use 
 

 

d !m
da

=
dm*

da
!
dm
da

= (1! u*)e(m + !m) ! (1! u)e(m) = ! u* ! u( )e(m) +O(" ) ,    !m(a) = 0 , 

 

d !P
da

=
dP*

da
!
dP
da

= !d(u*)(P + !P) + d(u)P = ! d(u*) ! d(u)( )P +O(" ) ,     
!P(a) = 0 , 

(A19) 
 

since, thanks to the differentiability of the solutions of differential equations, in an 
interval of length !  there can occur only a change of at most O(! ) . This gives, on the 
reasonable assumption that u does not change dramatically on [t,t + ! ) , more in 
particular, there exists a K such that u(! ) " u(a) < K(! " a) , 
 

   !m(a + ! ) = "e(m(a)) u* " u(a)( )! +O(! 2 ) ,     

 
!P(a + ! ) = " d(u*) " d(u(a))( )P(a)! +O(! 2 ) .  (A20) 

 
(This may be compared with the earlier derived expressions for the case that 
u* ! u(a) = " :  !m(a + ! ) = "e(m(a))#! +O(!)O(" 2 ) +O(! 2 )O(" ) ,   !P(a + ! ) =  !d*(u(a)P(a)"#  
+O(!)O(" 2 ) +O(! 2 )O(" ) .) 
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Immediate fitness gain from this strategy change for an individual that already has 
survived till a : 

! b(u*e(m) " b(ue(m)#$ %&(a) . 
 
Future fitness loss from this change in strategy for an individual that already has 
survived till a : 

 
!
1

P(a)
!Pb ue(m)( ) + Pb* ue(m)( )u "e (m) !m#$ %&

a

'

( () )d) . 

 
On dividing by !  we get a fitness return 
 

r̂(u*,a;u) =

  b(u*e(m)) ! b(ue(m))"# $%(a)

  ! P̂(& ) e(m(t)) u* ! u(a)( ) 'b ue(m)( )u 'e (m)m̂ + d(u*) ! d(u(a))( )b ue(m)( )"# $%
a

(

) (& )d&

= b(u*e(m)) ! b(ue(m))"# $%(a) ! u* ! u(a)( )e(m(a)) P̂ 'b uE(m)( )u 'e (m)m̂"# $%
a

(

) (& )d&

                                                                     ! d(u*) ! d(u(a))( ) P̂b ue(m)( )"# $%
a

(

) (& )d&

= b(u*e(m)) ! b(ue(m))"# $%(a) ! u* ! u(a)( )e(m(a))ŷ1(a;u) ! d(u*) ! d(u(a))( ) ŷ2 (a;u)

= b(u*e(m))"# $%(a) ! u*e(m(a))ŷ1(a;u) ! d(u*)ŷ2 (a;u)

                                               ! b(ue(m))[ ](a) + u(a)e(m(a))ŷ1(a;u) + d(u(a))ŷ2 (a;u).

 

(A21) 
This suggests introducing 
 

H (u*,a;u) = P(a) b(u*e(m))!" #$(a) + (1% u
*)e(m(a))ŷ1(a;u) % d(u

*)ŷ2 (a;u) , (A22) 
 
so that 

        r̂(u*,a;u) = H (u*,a;u) ! H ((u(a),a;u)( ) P(a) .   (A23) 
 

 
H corresponds to the Hamiltonian from Pontryagin’s maximum principle. The change 
in R0  from adding x , x(t) dt

0

!

" < # , to u  equals P(a) r̂ u(a) + x(a),a,u( )da
0

!

" +O(# 2 ) . 
This way the Hamiltonian gets a meaning also for u other than the optimal one. 
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