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PREFACE 

The equitable sharing of the benefits arising from planned development 
is a subject of lively contemporary debate. One of the tasks being carried 
out by tllc System and Decision Sciences Area of the International 
Institute for Applied Systems Analysis (IIASA) concerns the treatment of 
planning and redistribution problems in ways that can provide some 
guidance to  decision makers in the formulatiol~ of economic policy. 
This report examines the first part of a study undertaken to  assess the 
redistributive leverage provided by different instruments of  planning. 
It is devoted specifically t o  the analysis and computation of optimal 
redistributive policies in small, general equilibrium models of economic 
planning. 
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1 INTRODUCTION 

The recent interest in redistributive welfare economics has prompted 
its practitioners to inquire how governments might further their dis- 
tributional goals in economics characterized by the unavailability of 
lump-sum transfers varying from one household to another. It is not 
surprising that commodity and income taxes and subsidies have featured 
prominently in that discussion; an exploration of their redistributive 
aspects was initiated by Diamond and Mirrlees (1 97 1 ) and Mirrlees 
(1 97 1 ), and was continued by Atkinson (1 973), Feldstein ( 1  972a; 1972b; 
1973), Mirrlees (1 975; 1976), Diamond (1 975), Atkinson and Stiglitz 
(1975), and Stern (1976). These contributions to the literature on linear 
taxation illustrate that, in general, it is impossible to arrive at explicit 
expressions for optimal linear tax rates and, therefore, to derive a con- 
venient mnemonic for linear tax policy. The substantial extension of 
policy options allowed by nonlinear taxation makes more explicit state- 
ments about marginal tax rates possible. See Mirrlees (1976). 

This report takes as its point of departure the observation that 
significant analytical advances with the tax equations are unlikely. It 
would therefore seem worthwhile to calculate optimum tax structures 
under alternative assumptions about individual preferences, abilities, 
and social attitudes towards inequality. Such an approach could provide 
an indication of tax rates and accounting prices for project evaluation. 
It can also be used to calculate optimal deviations from marginal cost 
pricing in public utilities or to compute optimum trade taxes and sub- 
sidies in an international model. It allows us to dispense with the assump- 
tion of constant shadow prices which has been used recently in the 
literature on this subject. It can also throw some light on the important 



choice of direct versus indirect tax instruments and, more generally, on 
the efficiency of alternative fiscal packages in securing specific redis- 
tributive ends. Clearly, a representation of an economic system as abstract 
as the Walrasian general equilibrium model cannot be used directly to  gen- 
erate precise recommendations for this or that government regarding tax 
rates and shadow prices. The present analysis should instead be viewed as 
a systematic attempt t o  isolate some of the more important determinants 
of redistributive policies and to  focus on their consequences in a way untu- 
tored intuition alone cannot hope t o  imitate. 

The standard optimum redistributive tax problem is presented in 
this report as a nonlinear programming problem. It is solved by successively 
combining a parametric linear program with a recent computational 
algorithm developed by Scarf. (The actual version of Scarf's algorithm 
used in this report is the variant devised by Merrill(1972) and expounded 
by Kuhn and MacKinnon (1 975). Shoven and Whalley (1973) have used 
Scarfs algorithm to  compute equilibrium in the presence of fixed taxes. 
The analysis presented in this report differs considerably from theirs 
because the choice of tax structure is endogenous to our model.) Scarfs 
algorithm has been used by Hansen (1969), Scarf (1973), and Hansen and 
Koopmans (1 972) to  solve concave programming problems. It is therefore 
worth underlining those respects in which the procedure adopted here 
represents a formal advance over earlier work in this area. 

To begin with, optimization exercises in the welfare economics of 
the second best, of which our problem is a special case, are formulated 
normally as nonconcave, nonlinear programs. Since we cannot rely on 
concavity arguments and their associated regularity conditions to  con- 
struct a proof of convergence, we have introduced a constraint qualifi- 
cation which ensures that Scarfs algorithm identifies solutions to  the first- 
order necessary conditions for optimality and which, most conveniently, 
lends itself t o  an intuitive economic explanation. Secondly, the labeling 
rule for a vector that fails to satisfy the constraints of the nonlinear pro- 
gram is not the standard Hansen-Scarf rule. The reason for this will be 
explained in Chapter 4; but to anticipate that discussion, the procedure 
uses a single column label that is a suitable convex combination of all the 
constraint gradient vectors rather than a number of constraint gradient 
column labels equal to the number of constraints in the programming 
problem. Thirdly, our formulation of the optimum tax problem allows the 
government to  manipulate two sets of control variables: consumer prices, 
and public production levels. Since the computational burden of Scarfs 
algorithm increases considerably with the dimensionality of the space 
on which the search for a solution is executed, we have applied that 



algorithm to  the unit simplex of consumer prices alone. Production levels 
and shadow prices corresponding to  any consumer price vector are gener- 
ated by the use of a parametric linear program. Although dimensionality- 
reducing linear programs were introduced in Scarf (1 973) to  help solve 
certain types of general equilibrium models in conjunction with the Scarf 
algorithm, they have not, to the authors' knowledge, been employed in 
the solution of nonlinear programming problems using that algorithm. 
Furthermore, the linear program used in this report is amenable t o  econ- 
omic interpretation. Finally, labeling rules for nonlinear programs in the 
spirit of Scarf and Hansen do not need t o  be well defined when applied to  
optimum tax-price problems at the frontier of the unit simplex of con- 
sumer prices. This report therefore introduces and discusses economically 
meaningful boundary conditions that explore this difficulty. 

Chapter 2 sets out the basic general equilibrium model used in this 
work. Chapter 3 describes the computational algorithm for the optimal 
tax problem. In Chapter 4 we demonstrate that, under certain regularity 
conditions, the algorithm locates approximate solutions to  the first-order 
conditions characterizing a tax optimum. Two numerical examples are 
presented in Chapter 5 ;  the economies they illustrate are characterized 
respectively by (a) households differing in the efficiency of labor sup- 
plied, identical Stone-Geary utility functions, linear production, and no 
income taxation; and by (b) households differing as in (a) above, iden- 
tical nonhomothetic CES utility functions, and linear production. The 
parameters chosen in the first example for the linear expenditure system 
are those estimated for the United Kingdom by Lluch and Powell (1975); 
the numbers in the nonhomothetic CES example are, however, not based 
on data for any real economy. These exercises provide an indication of 
the performance of the algorithm and of the tax rates implied by alter- 
native social welfare functions and efficiency distributions. Chapter 6 
discusses possible extensions of the basic model. Finally, an appendix 
t o  the report treats boundary problems, discussing in detail specific tech- 
nical features and providing economic interpretations. 



2 THEMODEL 

This chapter outlines the basic general equilibrium model and the principal 
assumptions to  be used in the sequel. The presentation parallels that of 
Diamond and Mirrlees (1 97 1). 

Diamond and Mirrlees (1971) effectively assume that every house- 
hold is endowed with every commodity. Later in this report we shall 
assume likewise for expository convenience. The assumption is, however, 
not satisfied by the numerical examples given later in Chapter 5;  the 
appendix demonstrates how the labeling rules may be modified in its 
absence. 

Vector ordering notation is as follows: a 2 b implies ai 2 bi for all 
i ;  a 2 b implies a 2 b but a f b; a > b implies ai > bi for all i. 

2.1 HOUSEHOLDS 

The economy comprises H households, indexed by h. There are n com- 
modities. Let 

Xh : n-dimensional vector of "full" endowments of household h 
qT : ( q ,  , . . . , qn ) a vector of consumer prices 

q ,  + , : poll subsidy unchanging across households 

All vectors are column vectors and T denotes transpose operations. Then 
the full income of household h, Mh , defined as the value of its endowment 
plus transfer income, may be written as 

T Mh = q  ' .Zh  + q n + l  (2.1) 



Let x i  denote the vector of actual consumptions (of goods and leisure) 
of household h .  The budget constraint facing household h may then be 
written as 

-T 0 = -T 4 xh q . i h + q n + 1  = Mh. 

The government, however, finds it possible t o  levy taxes and subsi- 
dies on  market transactions rather than on  endowments. It  will therefore 
prove convenient for certain purposes to focus on a household's net 
trades, xh = x i  - Zh ; whence the above reduces to  

The problem is one of choosing the most preferred consumption vector, 
x: , from the admissible consumption set, Ch , subject t o  (2.2). 

The following assumptions are made about the typical household: 

(a.1) Ch is closed, convex and bounded below. 
(a.2) The preference ordering is continuous. 
(a.3) The preference ordering is strictly convex, i.e., if x i  is pre- 

ferred t o  o r  indifferent with x i ,  x i  # x i  and 0 < a < 1, then 
(1  - a ) x i  + ax; is preferred t o  x i .  

(a.4) There is no  satiation consumption in Ch . 

Under assumptions (a. 1) and (a.2) a continuous utility function, 
uh (xh ), is known t o  exist (cf. Debreu, 1959). Household h can therefore 
be taken to  maximize uh (xh ) subject t o  (2.2); assumptions (a. l )-(a.3) 
ensure that when the solution to  that maximization problem, xh(q), is 
defined, it is defined uniquely where 

as a (n + I )-dimensional vector of consumer prices augmented by a poll 
subsidy. Since net trades are homogeneous of degree zero in consumer 
prices and the poll subsidy, we can normalize these variables to lie on 
the (n + I )-dimensional unit simplex, Sn + ,  , defined by 

where en +, is a (n + I )-dimensional vector containing "1 " everywhere. 
Next we define an indirect utility function: 



On noticing that "full" income defined in (2.1) is a function of q ,  Mh (q), 
we can define the set 

where r) is an arbitrarily small positive number. Let 

Assumptions (a.1)-(a.3) guarantee that,  in circumstances where Ch is 
bounded, xh(q)  and therefore vh (q) are defined and continuous on Dh 
for all r) > 0 (cf. Debreu, 1959). It is next assumed that 

(a.5) vh (q) and xh (q) are differentiable continuously on Dh for all 
r) > 0 whenever Ch is bounded. 

2.2 PRODUCTlON 

The technology is described by a list of m constant returns t o  scale 
activities; it is assumed for convenience that all production is controlled 
by the government. Let 

A :  (n x m)-dimensional activity matrix 
y  : m-dimensional nonnegative vector of  activity levels 

The production possibility set is then given by 

G = {g = A y l y 2  0). 

G is thus a convex polyhedral cone with the origin as vertex. It is taken t o  
satisfy the following assumptions: 

(b. 1 ) -a C G, where is the n-dimensional nonnegative orthant.  
(b.2) There exists no  vector y 1 0 such that  g = Ay > 0.  

Assumption (b.2) ensures the existence of a strictly positive vector 
r  > 0 such that r T ~  5 0 (cf. Gale, 195 1 ). Let 

the vector of aggregate net trades of households. 



Define 
F = { X  E G13q ES,,, such that X = X(q)). (2.5) 

E = { q E D J X ( q ) $ A y  forsome y~ 0). (2.6) 

We can now state the following: 

LEMMA 2.1. Under assumptions (a. 1 )-(a. 3), (b. 1 )  and (b. 2 )  

( i )  F is bounded.? 
(ii) E is closed. 

Proof: Boundedness of F is proved in Diamond and Mirrlees (1971 1. 
Closure of E can be proved, as in Diamond and Mirrlees (1971), once it 
has been observed that X(q)  is continuous on E. 

2.3 GOVERNMENT 

The government's planning problem is one of choosing consumer prices, 
a poll subsidy, and public production t o  maximize social welfare, subject 
t o  the constraint that aggregate excess demand be nonpositive in every 
market. If, as will be seen, such an optimum is realized as a price-taking 
equilibrium, the (weak) assumption that not  all consumer prices are zero 
at  equilibrium allows us, by Walras' Law, to  omit any reference to  the 
government's budget constraint in the statement of the planning problem. 
It is natural t o  think of the difference between consumer prices and the 
producer prices, which will be associated with optimum production as the 
vector of commodity taxes-cum-subsidies; it is worth noting that the 
inability of the government t o  levy lump-sum taxes and subsidies varying 
across households causes this t o  be an exercise in "second best" welfare 
economics. 

The government is assumed t o  possess a social welfare function 

where 

(c.1) W is differentiable in (vl , . . . , vH), 
(c.2) W is increasing strictly in some qk (k  = 1, . . . , n + 1). 

Thus, if W is individualistic (i.e.,(aW/avh ) > 0 for all h ) ,  the nonsatiation 
assumption (a.4) ensures that assumption (c.2) is satisfied for k = n + 1, 

t ~ s s u m ~ t i o n s  (a.2) and (a.3) are not needed for part (i) of Lemma 2.1. 



i.e., increasing the poll subsidy must increase social welfare for an indi- 
vidualistic social welfare function. 

Formally, the government has t o  select q and y in order t o  maximize 
V(q) subject t o  

A y - X ( q ) > = O  

4 E S n + ,  

y > o .  

If Lagrange's method of undetermined multipliers can be used t o  solve 
this problem, we may write the Lagrangian as 

where p is the n-dimensional vector of shadow prices and v is the Lagrange 
multiplier. This formulation leads to  the following first-order conditions: 

where primes denote derivatives; thus 

V1(q): gradient vector of V 
Xf(q) :  Jacobian matrix of X? 

and each inequality bears the relation of complementary slackness with 
the corresponding variable appearing in brackets on the right. 

Clearly, under certain regularity conditions, every solution to the 
planning problem satisfies assumptions (2.8)-(2.10). The converse, 
however, fails t o  hold because the Langrangian (2.7) is not concave in 
q.  Thus there is no guarantee that a computational procedure locating 
solutions to  the necessary conditions for optimality can solve the govern- 
ment's planning problem. 

The first-order conditions indicate the possibilities of decentralization 
in this economy. First, equation (2.9) is a standard no-positive-profit-at- 
shadow-prices condition for a linear technology: p is a vector of producer 
prices facing the public sector. Second, the earlier discussion leading t o  
the derivation of the household demand functions xh (q) shows that,  poll 
subsidy apart, the government may deal with households through the 
consumer price system alone. Third, equation (2.1 0 )  is a market clcarance 
condition. Finally, equation (2.8) provides first-order necessary con- 
ditions for an optimum tax structure. 

t ~ h e  typical element in V q ( q )  is V ; ( q ) ,  the derivative of V  with respect to the ith consumer price. 
The element in the ith row and the jth column in X r ( q )  is denoted by X i i ( q )  and represents the 
derivative of the aggregate net trade in good i with respect to the consumer price of good/. 



3 THE COMPLTTATIONAL PROCEDURE 

A recent computational algorithm developed by Scarf is used t o  execute 
a structured search on the unit simplex of consumer prices. In order to 
apply Scarf's algorithm, a specific (n + 1)-dimensional column vector b 
must be associated with each element of a fine grid of vectors q l ,  . . . , qk 
on the unit simplex. The labeling rules of the Hansen-Scarf type, which 
are aimed at  locating solutions t o  the first-order necessary conditions for 
optimality, may not be well defined for vectors q l ,  . . . , qk or for the 
boundary of the unit simplex. This matter, t o  which every general equil- 
ibrium treatment needs t o  pay some technical attention, is explored in 
the appendix. The exposition of the main argument in the text is con- 
siderably simplified by assuming that 

(d. 1) Ch is bounded above for all h ,  
(d.2) Zh > O  for all h .  

It is easy to  construct examples of economies not satisfying (d.1) when 
certain consumer prices go to  zero. An excess demand function may well 
exhibit discontinuities as parts of the boundary of the consumer price 
simplex, if (d.2) is not satisfied. Thus (d.1) and (d.2) are considerably 
weakened in the appendix, but  at the cost of a more elaborate treatment. 

Meanwhile, we concentrate on the implications of the assumptions 
made above. Assumptions (a.1) and (d.1) imply that Ch is bounded. Since 
the set of feasible allocations, F, is bounded, the bound on Ch can be 
chosen such that it contains all feasible allocations. Assumption (d.2) 
ensures that there exists an q > 0  such that qT x x i  > q for all h and for 
all q  E . With that choice of q ,  Dh = for all h .  It then follows 
from the discussion in Section 2.1 and from assumption (a.5) that vh(q) 



and xh ( q )  are differentiable continuously on the entire unit simplex, 
Sn+, . So, therefore, are V ( q )  and X(q). 

We are now in a position to  describe the rules used to associate each 
element of the grid q l ,  . . . , qk with a ( n  + 1)-dimensional column vector 
b. 

RULE 1. For the vectors q in which at least one element is zero, b is 
given by 6j, where 6j  containsa I in the jth place and zeroes elsewhere and 
where j is the index o f  the first zero element in q. 

RULE 2. For all q E Sn+,, we calculate X(q), the vector o f  aggregate 
net trades. Two cases need to be distinguished: 

f i )  If X(q) satisfies the feasibility requirement Ay - X(q) 2 0, 
then b is defined as [en+, + V1(q)]. 

fiil I f  X(q) fails to satisfy one o f  the market clearance inequalities, 
say the jth, then b is defined as [en+, - ~ ' ( ~ 1 ~  pl . 

The test of feasibility and the producer prices required by such a 
rule of association is furnished by the linear programs: choose p to  
maximize pT x (q) subject t o  

p T ~  S 0 (3.3) 1 

The dual program is: choose ( y ,  z)  to minimize z subject to 

Ay + ze, 2 X ( q )  

y 2 0. (3.5) 

The statement following assumption (b.2) in Section 2.2 ensures that the 
set { p  E S,, l p T ~  i 0) is nonempty. Since X(q) is continuous on the com- 
pact set Sn+, , solutions to the above programs exist. The solution to the 
primal program yields a producer price vector; equation (3.4) is, again, a 
normalization permitted by homogeneity of degree zero of the supply 
response in producer prices. The dual program seeks to minimize the 
largest deviation between net trades arising at prices q and the supply 
response Ay which, in turn, is supported by p. Inequalities (3.5) pro- 
vide the test of feasibility demanded by the rules of association given 
above. 



We now establish a useful preliminary result which shows that the 
labeling under Rule (2) (ii) is continuous. Towards this end, we define 

M(q) = max {pX(q)Ip E L); q ESn.1. 
P 

LEMMA 3.1. T(q) is an upper semicontinuous mapping from Sn+, to L. 

Proof Since L, being a subset of the n-dimensional unit simplex, is 
compact, upper semicontinuity of the mapping T is equivalent to  closed- 
ness of its graph. The latter is easily proved as fol1ows.t Consider a 
sequence (qV, p U )  in the graph of the correspondence T tending to 
(q*, p*). Clearly 

> pTx(qv ) ( p V  lTx(qV = for all p in L. 

Since X(q) is continuous on Sn+, , the above inequality may be written in 
the limit as 

( P * ) T ~ ( q * ) ~  p T ~ ( q * )  for all p i n  L. 

Thus (q*, p * )  is in the graph of T, showing that the graph is closed. 
The rules of association lead to a matrix B whose columns corres- 

pond to  the grid vectors q l ,  . . . , q k .  That is, 

q '  q 2  . . . q n + l  qn+2 . . . qk 

0 b1,n+2 

The theorem underlying Scarfs algorithm may now be stated as 
follows (Scarf, 1973). 

t ~ e  are grateful to an anonymous referee for pointing out that this result follows from the more 
general Maximum Theorem; see, for example, Berge (1959). 



THEOREM 3.1. Let be associated with the jth column of the matrix B. 
Assume that the set of nonnegative solutions to the equations Bw = en+, 
is bounded. Then there exists a primitive set qJ1, . . . , qJn + 1 such that the 
columns j l ,  . . . , jn+, form a feasible basis for Bw = en+ (i.e., these equa- 
tions have a nonnegative solution, where Wj = 0 for j Z j l ,  . . . , ,%+I). 

This theorem may be used t o  solve our problem if it can be shown 
that the boundedness condition on whichit relies is satisfied here. Toward 
this end, recall assumption (c.2) of Section 2.3. Consider the kth row of 
the B matrix. The nonslack entries in this row contain either [ 1 + Vk(q:)] 
elements or 

elements. Vk(q) is, of course, positive. Since the pi are bounded and the 
Xik are continuous in q (i = 1, . . . , n), clearly the sums 

are bounded as q varies over the unit simplex. We therefore choose the 
units in which the goods are measured such that 

where the supremum is taken over Sn+, . This ensures that all nonslack 
entries in the kth row of the B matrix are positive, guaranteeing that the 
set of nonnegative solutions to  Bw = en+ ,  is bounded. 



4 A PROOF OF CONVERGENCE 

This chapter demonstrates that, provided a certain regularity condition 
is satisfied, the final primitive set where columns form a feasible basis for 
Bw = en+,  defines an approximate solution to  the first-order necessary 
conditions for a linear tax optimum. We begin by imposing the following 
condition. 

Regularity condition (R). There does not exist a pair of price vectors 
( p ,  q )  where p satisfies the program (P) such that p T ~  2 0 and 

where each inequality in (4.1) bears the relations of complementary 
slackness with the corresponding variable appearing in brackets on the 
right. 

The economic implication of this condition, which will be seen to 
play a role analogous to that of the constraint qualification in nonlinear 
programming, will be examined later in this chapter. Its introduction at 
this stage allows us to state and prove the following theorem. 

THEOREM 4.1. The computational procedure o f  Chapter 3 converges 
to  an approximate solution to the first-order necessary conditions (2.8)- 
(2.10) for a linear tax optimum, provided that the regularity condition ( R )  
is satisfied. 

Proof The rules of association allow the equation Bw = en+, to  be 
written as 

t1t should be noted that homogeneity implies q T  x ~ ' ( q ) ~ p  = 0. The inequality in (R) can there- 
fore be strict only for an element corresponding to a zero consumer price. 



where positive w, elements corresponding to  columns arrived at using 
rule (3.1 ) (respectively (3.2)) have been renamed Aj (respectively pj). 

Imagine now the consequences of employing an increasingly finer 
sequence of grids. As the grid size approaches infinity in the limit, the q 
vectors become everywhere dense on the (n + 1 )-dimensional unit simplex 
and all vectors of the final primitive set approach the vector q .  A more 
formal presentation of this type of argument is given in Hansen and 
Koopmans (1972) and is therefore not repeated here. Since all partial 
derivatives have been assumed continuous, all functions of q in (4.2) 
approach subsequential limits. Furthermore, the p vectors are constrained 
to  lie in the unit simplex. Hence corresponding t o  each ( p l )  subsequence 
tending t o  q ,  there will exist a (pi) subsequence tending t o  pi, where the 
superscript j on the subsequential limit indicates that the limit approached 
depends on the path followed by the producer price sequence. Finally, 
it should be noticed that the weights Aj and h, being elements of a closed 
bounded set, also tend to  ij and bj respectively. 

With this fine grid covering the simplex, (4.2) becomes 

where f i  = ziXi and where upper semicontinuity of the T(q) mapping 
defined in Lemma 3.1 ensures that the p^j may be interpreted as producer 
price vectors. 

It needs to  be shown that the subsequential limits to  which the 
computational procedure converges satisfy the first-order conditions 
(2.8)-(2.10) for the government's planning problem. Accordingly, the 
proof presented below argues (a) that all the unit entries in (4.3) may be 
eliminated; (b) that it is possible to generate an "average" producer price 
vector, i.e., one without the superscript j ;  and (c) that columns of the type 
defined by (3.1) are included in (4.3), i.e., f i  # 0. This last argument 
allows us t o  claim not only that limiting values of the variables are feasible 
solutions but that they satisfy the first-order conditions (2.8) for 
optimum linear taxation as well. 

Step I .  Premultiplying (4.3) by q T ,  we have 

fi[qTen+l + q T ~ r ( q ) l  + C fij[qTen+l - ( ~ j ~ x ' ( ~ ) ~ ) ~ j ]  = ~ j ~ e , + ~ .  
i 



Because of the homogeneity of degree zero of the indirect social welfare 
function and all aggregate net trades in the q variables and because these 
variables lie on the unit simplex, the above equation may be reduced to 

The expression (4.3) may now be simplified to 

Step 2. We next construct a weighted average of all the limiting pJ 
producer price vectors appearing in (4.5), the weight being that associated 
with the column in which that pi vector appears, i.e., Pi.  Such an average 
is well defined only if the proposed weights are not all zero. Suppose, 
therefore, that f i ,  = 0 for all j. Then, from (4.4) and (4.5), 

But this contradicts assumption (c.2) that V is increasing strictly in at 
least one of its arguments; the supposition that f i j  = 0 for all j is there- 
fore false. 

Consider the vector 

where f i  = Zifii. Clearly b is a convex average of the subsequential limits 
bi ; since each p i  supports the production vector A j  generated by the para- 
metric program (P), so must b .  One is therefore entitled to regard ; as a 
vector of producer prices. 

The equations (4.5) may now be written as 

where 

(i) the kth row above is an equality if qk  > 0 
(k = I , . .  . , n +  1). 

(ii) f i  > 0 implies A j  1 X(q). 
(iii) f i  > 0 implies that there exists a j such that 

A i j  5 Xi (q) where Ai is the jth row of A 
and where 

f i + p  = 1. (4.9) 



The statements in (4.8) follow directly from the rules of association (3.1) 
and (3.2) that have been applied to  the system (4.7). 

The existence of the average price vector p of (4.6) is dependent on 
our demonstrating that fii # 0 for all j and, therefore, that fi = C.fi. is 

I 1. 
positive. Before going on to  the final step of the proof, it is worth noting 
an important implication of this result. On the one hand, statement (iii) 
of (4.8) asserts that ic > 0 implies Aij, 2 Xi(q) for some j .  Inspection of 
the parametric program (P), on the other hand, shows that i < 0 implies 
Aj, > X(q) or, alternatively, that Aij, 2 Xi(q) for some j implies i 2 0. 
Since by the duality theorem of linear programming applied to (P), 
.i! = 5 T ~ ( @ ) ,  the statements (4.8.ii) and (4.8.iii) allow us to  deduce that 
fiTx(@) > 0, a fact that plays an important role in the following step. 

Step 3. This part of the proof ensures that f i  # 0. For, in that case, 
statement (ii) of (4.8) and the complementary slackness relations of 
linear programming applied t o  the program (P) imply that (2.10) is 
satisfied. Second, statement (i) of (4.8) shows that (2.8) is satisfied if one 
defines u = b/X. Finally, the very construction of the program (P) ensures 
that (2.9) is also satisfied. 

The argument f i  # 0, like the proof of the Kuhn-Tucker theorem of 
nonlinear programming, fails to  hold in the absence of certain regularity 
conditions. Suppose, to  the contrary, that = 0. Then from (4.7) and 
(4.9) 

But this violates the regularity condition (R) when one remembers that it 
has already been proved that pTx(q) > 0. This establishes that > 0 and 
proves Theorem 4.1. 

The rest of this chapter discusses the regularity condition (R) used 
in the proof of the convergence theorem. The regularity condition (R) 
states that whenever the value of aggregate net trades is nonnegative at 
producer prices, there exists a direction of movement in either consumer 
prices or the poll subsidy; this direction decreases the value of aggregate 
net trades measured at the producer prices prevailing before that 
movement. 

The meaning of the regularity condition (R) might become clearer 
on examining its implications for tax revenue. Summation over the 
household budget constraints qSTxh = q,+l yields qSTx = Hq,+, . Define 
the vector of commodity tax rates, '7 = -p ,  the first n components 
of t = q -p .  Since p T x  = (q" - llTx = (Hq,+, - n), the budget 



deficit, (R), states that there does not exist a pair of price vectors (p ,  q )  
such that [X1(q)l Tp 2 0 (q 2 0)  whenever the budget deficit is non- 
negative. 

A somewhat sharper implication of (R) becomes available if, in 
keeping with many recent contributions to  optimum tax theory, one 
assumes that producer prices are constant, so that changes in tax rates are 
reflected completely in consumer prices. In that case 

and (R) postulates that there does not exist a pair (p ,  q )  such that 
(a/at)[Hq,+, -TTx1 2 0 (q>O) whenever [Hq,,, -TTxl 2 0 (q>O). 
The regularity condition (R) may therefore be interpreted as follows: 
whenever the government is not running a net budget surplus, it can 
always use the tax controls at its disposal to  reduce the size of its budget 
deficit. To assume that such an option is available to the government is 
to assume away Edgeworth's so-called tax paradox (where no tax change 
can increase revenue); but we do  not impose the condition except when 
the budget deficit is nonnegative. Analogous "constraint qualifications" 
have been employed by previous authors, e.g., Diamond and Mirrlees 
(1 97 1) and Green (1 975). We should like to emphasize that the assump- 
tion of constant producer prices does not underlie our statement of the 
regularity condition (R) or, indeed, the analysis in the rest of this report. 
It is made in this paragraph merely to allow a convenient interpretation 
of (R) by focusing on its implications for tax revenue. 

Finally, the algorithm is able to locate points satisfying only the 
first-order necessary conditions for an optimum. Our analysis therefore 
represents a generalization of standard treatments of nonlinear pro- 
gramming using Scarfs algorithm insofar as those treatments appeal to 
concavity properties. The first-order necessary conditions do not, how- 
ever, guarantee even a local maximum to our planning problem. Conse- 
quently, we terminate the algorithm by checking the second-order 
conditions. (This checking involves "smoothing" of the production set.) 

The Scarf algorithm will accordingly be started from different 
corners of the unit simplex in the numerical examples of Chapter 5 in 
order to  help locate a number of local maxima. The values of social welfare 
will be noted in each of these cases in order to arrive at the best solution 
by means of the computational procedure. But, there is no guarantee 
that the procedure will find the global maximum; furthermore, it is 
theoretically possible for the algorithm to  fail to discover any local 
maxima at  all. 



5 NUMERICAL EXAMPLES 

This section presents two numerical examples which indicate the algor- 
ithm's performance while, at the same time, point to the magnitudes 
of tax rates implied by the recent literature. The examples differ 
with respect to  the utility function assumed for households as well as in 
the fact that the first example draws on data relating t o  demand patterns 
in the United Kingdom. The choice of functional forms in each case is 
motivated by a desire t o  avoid a large number of parameters. 

5.1 STONE-GEARY UTILITY FUNCTION 

A typical household maximizes 

subject to  

where 

Pi: marginal budget share for commodity i ( i=  1 ,  . . . ,  n )  
ri: "subsistence" consumption on commodity i 

The budget constraint (5.2) requires comment. Since (5.1 ) is the utility 
function common to  all households (identical tastes), it is assumed that 
households differ only with respect to  the efficiency of labor hours put 
in. Thus 



-xhn : number of hours worked by household h 
(h = . , *) -hxhn : number of efficiency hours worked by h 

qi: consumer price of commodity i (i = 1, . . . , n - 1 ) 
q, : efficiency wage rate 

The reader will have noticed that no lumpsum subsidy is allowed in (5.2). 
The example therefore excludes the possibility of progressive income 
taxation which would be characterized by an exemption level and a 
proportional rate of tax both above and below this level. This is because 
a linear income tax renders commodity superfluous as an instrument of 
redistribution in an economy where households have identical Stone- 
Geary utility functions and differ only in wages received per physical 
hour of effort. (Such a result is to be found in Atkinson (1977).) The 
example is therefore interesting for economies where, for administrative 
reasons, the government may resort only to  commodity taxes and subsidies. 

The production side of the economy was kept as simple as possible 
in this example. There are eight consumer goods, each produced by the 
one factor of production-labor at constant returns to scale. Thus relative 
producer prices were constant. 

The parameters of the utility function were selected to  reflect demand 
patterns in the United Kingdom. The units were chosen to each represent 
one U.S. dollar's worth of output or  labor input at  1970 prices. The param- 
eters that refer t o  consumer goods are taken from the estimates of Lluch 
and Powell (1 975), with modifications designed to ensure that the demands 
never become negative. Parameters pertaining to  the labor-leisure choice 
were chosen so as to produce a labor supply elasticity of - 0.19, which 
was the central value used by Stern (1976), and a labor supply of 1,725, 
which was the approximate per capita gross national product in 1959. The 
average labor endowment in efficiency units (some of which would be con- 
sumer as leisure) implied by these requirements was 3,070. This inclusion 
of the labor-leisure choice illustrates the additional flexibility that can be 
gained by using numerical methods. By way of contrast, analytical methods 
employed by Deaton (1975) required the simplicity that is provided by 
assuming a fixed labor supply. The parameters are shown in Table 1 .  

The calculations were carried out using a social welfare function 
of the form 

l H  
W = - 1 ( u h y  when p f 0 

P h = l  

H 

= 1 log (uh) when p = 0. 
h  = 1 



TABLE 1 Parameters of the linear expenditure system. 

Leisure 0.547 0 
Food 0.054 405 
Clothing 0.031 86 
Housing 0.1 16 41 
Durables 0.034 27 
Personal care 0.014 6 
Transport 0.126 0 
Recreation 0.030 46 
Other services 0.048 0 

Different degrees of aversion to  inequality can be generated by 
altering the value of p from utilitarianism when p = 1 to Rawlsiam 
"maximum" as p tends to minus infinity. 

The distribution of the efficiency index was assumed t o  be log- 
normal and different degrees of skill dispersion were obtained by varying 
the value of the standard deviation of the logarithms (a). 

Tables 2 and 3 show the results yielded by this model. It is always 
possible, by appropriate normalization, to  choose a zero tax rate on one 
commodity. In Tables 2 and 3 there is no tax on labor. Table 2 shows the 
effect of varying the degree of inequality aversion (p)  while keeping the 
skill dispersion constant (at a = 0.39). As expected, both the tax rates 
on luxuries and the subsidies on necessities increase with the degree of 
inequality aversion. 

Table 3 shows the effect of varying the skill dispersion (a) while 
keeping the degree of inequality aversion constant (at p = 0). 

As one might expect, the rates of tax and subsidy increase with the 
degree of skill dispersion. 

TABLE 2 Tax rates for different degrees of inequality aversion 
(percentage). 

p = l  p = o  p = - 1  p = - 5  

Food -8.7 -18.4 -25.4 -43.8 
Clothing -1.6 - 3.8 - 7.2 -18.7 
Housing 5.4 11.6 17.9 39.3 
Durables 2.8 6.8 10.8 17.1 
Personal care 1.5 6.8 12.7 29.6 
Transport 6.4 14.4 24.1 73.7 
Recreation 1.1 2.2 3 .O - 1.8 
Other services 5.5 13.3 22.9 70.7 



TABLE 3 Tax rates for different degrees of skill dispersion (percentage). 
- 

o = 0.3 o = 0.39 o = 0.5 

Food -11.9 -18.4 -27.3 
Clothing - 2.2 - 3.8 - 7.3 
Housing 7 .O 11.6 19.7 
Durables 3.9 6.8 11.5 
Personal care 3.2 6.8 13.9 
Transport 8.3 14.4 26.6 
Recreation 1.6 2.2 2.8 
Other services 7.6 13.3 25.4 

5.2 NONHOMOTHETIC CES UTILITY FUNCTION 

In this section we assume that households possess nonhomothetic CES 
utility functions, that a second factor of production is introduced, and 
that there are only two consumer goods. The data used in this example 
are not based on estimates for any real economy. 

The nonhomothetic utility function is of the form? 

n 
x ~ ~ ~ - ~ ~ i ~ y  1 f o r d  f 0 

n 

1 Di(10g (xi) - ei log (u)) - 1 for d = O 

where Di, ei > 0, and d < 1. 
The advantage of this utility function is that it provides a role for 

both income and commodity taxes. In our example, d was given the value 
0.5, implying an elasticity of substitution of 0.5. The values of D and e 
are given in Table 4. 

The second factor of production can be regarded as a capital good. It 

TABLE 4 Values for D and e. 

Luxury 0.3 0.8 
Necessity 0.7 1.2 
Leisure 0.5 1 .O 

t~ convenient account of the properties of nonhomothetic CES functions can be found in Hanoch 
(1975). We are grateful to Nick Rau for bringing this paper to o w  attention. 



TABLE 5 Production activities. 

Luxury 0 .O 0 .O 6 .O 8 .O 7 .O 
Necessity 4 .0 3.5 0 .0 0 .0 0 .0 
Labor -9.0 -10.0 -11.0 -17.0 -12.0 
Capital -5.3 - 5.0 - 2.0 - 2.0 - 2.0 

was assumed that the capital good was owned by the government and that 
the ratio of the quantity of capital to  total labor time (work plus leisure) 
was 1: 12. Thus the mean of the log-normal efficiency distribution in 
this case was 12. Production was represented by five activities, as shown in 
Table 5. 

The results from this model are summarized in Tables 6 and 7, 
which correspond to Tables 2 and 3.  In this case the necessity was chosen 
as the good on which there would be no tax. The lump-sum is given in 
terms of the quantity of the necessity that it can buy. It is worth noting 
that a positive income tax (tax on labor) implies a smaller consumer price 
than a producer price, while a positive commodity tax implies a larger 
consumer price than a producer price. 

The results in Table 6 are interesting in that, although they show the 
expected pattern of increased luxury tax with increased aversion to  
inequality, the income tax rate is actually negative. This superficially 
paradoxical result appears because, although the consumer price of labor 
is lower after the imposition of the taxes, the producer price of labor 
has fallen considerably more as a result of the shift in the pattern of 
demand. 

This fact is confirmed by Table 7 ,  where it can be seen that an 
increase in skill dispersion has reduced the tax on labor - an apparently 
paradoxical result. However, the consumer price of labor was virtually 
unchanged. The reason for the differences between movements in taxes 
and consumer prices is the change in producer prices that results from the 
change in demand patterns. This example, therefore, underlines the impor- 
tance of allowing for producer price variations when calculating optimum 
tax rates, even though the sparseness of the set of activities might be re- 
sponsible for the particularly large changes in producer prices that are ob- 
served here. 

The behavior of producer prices is summarized in Table 8, where 
the necessity is chosen as numeraire. 

The examples given here were started from all the comers of the 



TABLE 6 Tax rates for different degrees of inequality aversion. 

Labor -263% -26 1 % -259% -261% 
Luxury 74% 79% 80% 90% 
Lump-sum 0.43 0.43 0.43 0.44 

TABLE 7 Tax rates for different degrees of skill dispersion. 

Labor 
Luxury 
Lump-sum 

TABLE 8 Producer prices. 

o = 0.3 o = 0.39 

Capital 0.000 0.658 
Labor 0.444 0.058 
Luxury 0.762 0.286 
Necessity 1 .OOO 1 .OOO 

simplex and, in each case, the solutions obtained were identical. Thus, 
the underlying nonconvexities do not appear to have caused any serious 
problems in these cases. 

An indication of the algorithm's efficiency can be obtained from the 
fact that the examples in Section 5.1, with a final grid size of 1,000, 
terminated in approximately 4 minutes while those in Section 5.2 ter- 
minated in approximately 20 seconds, both of which were run on the 
IBM 370/158 computer. Other experience with the Scarf algorithm and 
with linear programs suggests that the computation time will increase 
in proportion to the number of activities and in proportion to  the fourth 
power of the number of commodities. 

These calculations illustrate the sensitivity of tax rates to alternative 
combinations of the various parameters. No particular significance 
attaches to  the actual numbers presented here. 



6 CONCLUSIONS 

This report has presented a technique for computing optimum linear 
redistributive policies in a general equilibrium framework. Its performance 
in the case of linear taxation has been illustrated by two numerical 
examples. The basic model employed here is rich enough to  permit nu- 
merous extensions. Three such extensions, which are being pursued at 
length in a sequel to  this report, are restricted taxation, government ex- 
penditure, and the computation of shadow prices for public projects. But 
it is interesting to  sketch the approach used. 

The assumption that the government can tax every commodity in 
the economy ignores political and administrative considerations. Thus, t o  
quote one example, it might be impractical t o  suggest differential taxation 
on different types of labor. We shall therefore assume that the set of all 
commodities is partitioned into preselected groups, that all elements of a 
group must be taxed at an ad valorem rate common to that group, and 
that the government may choose group tax rates optimally. The intro- 
duction of these constraints alters the planning problem in certain ways. 
Since consumer prices are restricted to  bearing a particular relationship 
with producer prices, the government can no longer use commodity taxa- 
tion to mimic the effects of quantitative controls on private production. 
This usually implies the desirability of aggregate production inefficiency 
and calls for a distinction between private and public production on the 
one hand and consumer prices, shadow prices, and private producer prices 
on the other. These considerations lead to modifications in the rules of 
association described in Chapter 3 .  

A second extension we should like to  explore consists in placing 
greater emphasis on the consequences of government expenditure. The 



analysis so far has considered a purely redistributive government. It would 
therefore be instructive to examine the effects on the optimum redis- 
tributive tax structure and on the lumpsum grant of the existence of 
alternative vectors of government requirements which are fixed a priori 
and which represent a prior charge on the revenue. Such an extension is 
easy to do: the feasibility condition for such an economy requires that 
production be sufficient to meet both public and aggregate private net 
demand for goods and services. Similar exercises in optimum income tax 
models have been carried out by Atkinson (1 973), Feldstein (1 972c), 
and Stern (1976). 

Finally, the algorithm developed in this report can be used to 
compute shadow prices for public sector projects. We should therefore 
like t o  compare the results of applying this general equilibrium procedure 
with the partial equilibrium methods that are used typically in this area. 
This comparison will make use of data from a less developed country 
and will highlight the effect of the government's redistributive values on 
the system of accounting prices. 

In conclusion, two facts should be borne in mind during the course 
of further work with the tax algorithm. First, the lack of concavity of the 
tax program in the control variables prevents our computational pro- 
cedure from being certain of finding a global optimum. Second, the 
applicability of optimum tax computations depends on both the adequacy 
of available specifications of economywide general equilibrium models, 
and the reliability of data for the degree of heterogeneity within the 
population. Parallel research on specification of optimum income tax 
models suggests that the difficulties to  be overcome in these areas are not 
inconsiderable. (See Stern, 1976). 





It was assumed in the text for expository convenience that 

(d.1) The consumption set, Ch , is bounded above for all h. 
(d.2) The vector of full endowments, Zh ,  is strictly positive for 

all h. 

Neither of the assumptions is satisfied by the numerical examples of 
Chapter 5. This appendix therefore dispenses with (d.1) and (d.2) and 
modifies the rule of association for vectors q l ,  . . . , qk on the boundary 
of the unit simplex. Certain boundary conditions are introduced to 
ensure that the final primitive set does not include any of the boundary 
labels; the discussion is concluded with an examination of their economic 
significance. 

The rules of association used in the text are well defined for all q 
in Sn+, such that qi 1 E (i = I ,  . . . , n + 1) where E is a small positive 
number. This guarantees that "full" income, Mh , is above the minimum 
possible for all h and ensures that net trades are bounded above. Hence, 
by assumption (a.5), vh (q) and xh (q) are differentiable continuously for 
all h whenever qi 1 E (i = 1, . . . , n + 1 ); so also are V (q) and X (q). 
We enlarge the above set by removing any restriction on the domain of 
variation of q,+, , the poll subsidy, and define 

where E is an arbitrarily small positive number. We now make the follow- 
ing assumption: 

f we should like to thank an anonymous referee for emphasizing to us the importance of boundary 
problems. 



Assumption 1.  jTh > 0 for all h.  
In other words, n o  household has a zero vector of "full" endow- 

ments. This assumption, which is much weaker than (d.2) is satisfied by 
the numerical examples given in this report. It implies that every house- 
hold's "full" income is above the minimum possible in the set s,*. V(q) 
and X(q) are therefore differentiable continuously in S,* and the rules 
of association in the text are well defined there. Difficulties can there- 
fore arise only within the set defined by 

S,,, = {q E Sn+, Iqi =< e for some i; i = 1 . . . , n)}. (A.2) 

In order to anticipate subsequent discussion, elements in S,,, will 
be given labels corresponding to  elements to  be specified in S,* ; we should 
then like to exclude these boundary labels from the final primitive set. 
Such a procedure is justified provided that a solution to  the redistributive 
tax problem does not actually lie in S,,, . This requires a more careful 
examination of that set. Towards that end, let us recall the set E defined 
in (2.6), 

E = {q E DIX(q) 5 Ay for some y 2 0)  

where D is given by (2.4); let us then define 

Z = { q E S , + , ( X ( q ) _ I A y  f o r s o m e y 2 0 )  

as the set of feasible price vectors, so that E = Z f l  D. 
Clearly, S,,, = [ S , , ,  f l  El  U [S,,, f l  EC 1 . We may then postulate 

the following assumption. 
Assumption 2. S, , ,  f l  E = @. 
On noting that E = Z f l  D, we may paraphrase the above as follows. 

Price vectors in S,, , lead t o  the realization of, at most, one of two possi- 
bilities: (i) net trades are producible, or (ii) "full" incomes of all house- 
holds exceed a small positive number. The assumption is satisfied by the 
numerical examples given in the text for low enough values of e, since 
S,,, f l  Z = @ in both cases. The economies treated in this appendix 
(by way of contrast with those analyzed in the text) therefore call for 
modifications to the Scarf-Hansen labeling procedure at  the boundaries 
of the unit simplex. 

Assumption 2 implies that S,,, C EC where EC is the complement of 
E in S, + , . Furthermore, Lemma (2.1) asserts that E is closed in Sn+, ; 
when EC is open and for any point in S,,, there exists a nontrivial neigh- 
borhood in EC (= ZC U DC).  

We are now in a position to  modify, where necessary, the rules of  
association (3.1) and (3.2) of the text to  take account of boundary prob- 
lems. No changes are made for q E S,*. For q C S;, we find the element 



q* in S; that is closest in Euclidean distance to q with q,*+, = qn+,  . We 
assign to q the label q* ,  which is obtained by means of the rules (3.1) and 
(3.2) of the text. We can easily check that the extended labeling both 
preserves boundedness of solutions to  Bw = en+, and satisfies the upper 
semicontinuity argued in Lemma 3.1. 

It remains t o  show that the final primitive set does not include any 
of the boundary labels introduced above. Toward this end, we introduce 
two boundary conditions whose economic significance is explored later in 
the appendix. 

DEFINITION. An indirect social welfare function is said to exhibit 
minimal consideration (MC) toward all households provided that there 
exist small positive numbers q, e such that whenever a vector q leads to 
the full income of some household being no greater than q(0 < Mh (q) < q 
for some h) and 0 < qi =G e for some i (i = 1, . . . , n), any small price change 
6q (where 6qTen + = 0)  with 6qi = > 0) for all i = 1, . . . , n for which 
q i S e a n d  with 6qi=-Pqi(P>O)foral l i=I , .  . . , n  forwhich q i > e a n d  
i = n + 1 will have the property that 6 q T ~ ' ( q )  > 0. 

Boundary condition (B). For all e sufficiently small, there does 
not exist a pair of price vectors (p,  q )  where q E (S,,, n S;) and p satis- 
fies the program (P) such that p T ~ ( q )  2 0 and 

6qTx'(q)T(p) 2 0 

where 6q (GqTen+ 1 = 0)  is a vector with the property 6qi = qi (LY > 0) 
for all i = 1, . . . , n for which qi 5 E and 6qi = - pqi (0 > 0) for all 
i =  1 , .  . . , n f o r w h i c h q i > ~ a n d i = n  + 1. 

We can now state and prove the following theorem 

THEOREM. Assume 

(i) that the indirect social welfare function V(q) extends minimal 
consideration (MC) to all households 

(ii) that the boundary condition ( B )  is satisfied. Then the final 
primitive set whose columns form a feasible basis for Bw = 

en+, does not include any of the labels introduced by the 
extended labeling rule of this appendix. 

Proof: Choose e and q to  suit those that are defined in (MC) and (B) 
and suppose to the contrary that the final primitive set includes labels 
introduced for S,., . Equation (4.2) then becomes 



where h* and p,? are subsequential limits, q*  is the nearest point in S,* 
to  q with q,*+, = qn+, and the p* j  solve the parametric program (P) 
with X(q) = X (q*). Premultiplying (A.4) by q *  and exploiting, as before, 
homogeneity of degree zero of the indirect social welfare function and 
aggregate net trades, we obtain 

whence (A.4) becomes 

Assume first that h* > 0. This implies, from statement (4.8.ii) of 
the text, that X(q*) is feasible, i.e., q* E  Z. Since q* E  ZC U DC,  then 
q*  E  D C  , i.e., Mh (q*) \( q for some h.  The (MC) condition may then be 
invoked. Premultiply (A.5a) by the 6qT introduced in the definition of 
(MC). Let L  be the set of indices for which the inequalities in (A.5a) 
are strict, where L  is a proper subset of ( 1 ,  . . . , n + I). Then qr = 0 for 
1 E L  and the extended labeling rule ensures that qf = E for all 1 E  L  from 
1 to n and 6q; = aq; > 0. The multiplication therefore preserves the 
sense of the inequalities in (A.5a), and we have i 

since 6qTen+, = 0. Since X(q*) is feasible, it follows from the para- 
metric program (P) that Ej = ( ~ * j ) ~ ~ ( q * )  is nonpositive for all j .  If 
Ej < 0, statement (4.8.iii) of the text implies that pi*= 0 for all j. (A.6) 
then reduces to 

which contradicts (MC). Hence Ej = 0 for all j .  Condition (B) may there- 
fore be used and 6qT in (A.6) chosen to be that which satisfies both (MC) 
and (B). But (MC) implies that h*6qTv'(q*) > 0; whence (A.6) shows 
that 



But this contradicts (B). Hence the supposition that X* > 0 is false. 
Since X* = 0 ,  p; > 0 (for some j), then equations ( A S )  become 

Since $ > 0 for some j, then statement (4.8.iii) of the text and the 
parametric program (P) together imply that Ej = ( P * ~ ) ~ x ( ~ * )  2 0 for all 
j. Now premultiply (A.5a) by a aqT introduced in (B). As before, the 
inequalities are preserved and we obtain 

But this once again contradicts (B). Thus, the final primitive set cannot 
contain any of the boundary labels introduced in this appendix and the 
theorem is proved. 

The rest of this appendix is devoted to  a discussion of the boundary 
conditions introduced above. We begin with the notion of minimal con- 
sideration. The condition has force when certain households are at or  are 
near starvation level, presumably because the post tax returns to  their 
endowments are very low. Minimal consideration asserts that any propor- 
tional increase in the consumer prices of goods with a very low price, 
together with a proportional decrease in other consumer prices and in the 
poll subsidy, improves social welfare. An increase in the prices of low- 
priced goods and services can be expected to  benefit improvident house- 
holds because Assumption 2 guarantees that no household has zero 
endowments. The condition is a weak one and we imagine that a society 
that cares about redistribution would find it appealing. 

The boundary condition (B) requires that any price change of the 
above kind made when certain prices are very low and the value of aggre- 
gate net trades are positive at producer prices must decrease the value of 
those trades at those same producer prices. This interpretation follows 
from the observation that, for small changes 6q, 

s q T ~ ' ( q ) T p  = [X(q + hq) - X(q)l Tp. 



The boundary condition (B) is therefore related in spirit t o  the regularity 
condition (R). It applies only for q belonging t o  S,, ,  fl S,*. But within 
that area it is not possible to  postulate the existence of a direction of 
movement which reduces the value of aggregate net trades at pre-change 
producer prices. Any change leading to a proportional increase in all 
consumer prices which are equal to  E and to a proportional decrease in all 
other prices and in the poll subsidy must indicate the existence of a 
direction. If, pursuing analogous interpretations as in the case of (R), 
producer prices are now assumed constant, the condition (B) postulates 
that, starting from S, , ,  n S,* proportionate changes in consumer prices 
of the kind described must be accompanied by an improvement in the 
government's budget deficit whenever that deficit is nonnegative. The 
changes contemplated here might typically include reduction of a subsidy 
on a final good whose price is very low. Or, to  choose another example, 
they might involve a reduction in the rate of a high income tax to improve 
an after-tax wage which has become very low. Under these circumstances, 
the claim that the budget deficit will improve is not an unreasonable one. 

Finally, the poll subsidy, q,+ ,  , has received special treatment 
throughout this appendix because the condition (B) could not be regarded 
as reasonable if the increases in components of  q considered included 
increases in the poll subsidy. 
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