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Abstract 16 

We develop a star-network of connections between a central city and peripheral 17 

villages and analyze the epidemic dynamics of a vector-borne disease as influenced by 18 

daily commuters. We obtain an analytical solution for the global basic reproductive 19 

number R0  and investigate its dependence on key parameters for disease control. We 20 

find that in a star-network topology the central hub is not always the best place to focus 21 

disease intervention strategies. Disease control decision is sensitive to the number of 22 

commuters from villages to the city as well as the relative densities of mosquitoes 23 

between villages and city. With more commuters it becomes important to focus on the 24 

surrounding villages. Commuting to the city paradoxically reduces the disease burden 25 

even when the bulk of infections are in the city because of the resulting diluting effects 26 

of transmissions with more commuters. This effect decreases with heterogeneity in host 27 

and vector population sizes in the villages due to the formation of peripheral epicenters 28 

of infection. We suggest that to ensure effective control of vector-borne diseases in star 29 

networks of village and cities it is also important to focus on the commuters and where 30 

they come from. 31 



3 

1. Introduction 32 

The role of host mobility in the epidemic dynamics of vector-borne diseases was 33 

not taken into consideration during the malaria eradication programs of the 1950s and 34 

1960s. This was cited as one of the reasons for failure of that program (Bruce-Chwatt, 35 

1968; Prothero, 1977). Since then there has been a substantial increase in the human 36 

population size, revolutions in transportation technologies and a sharp rise in 37 

urbanization. Poor levels of hygiene in most tropical cities has led to a rise in incidence 38 

of vector-borne diseases such as malaria and dengue (Knudsen and Slooff, 1992; Robert 39 

et al., 2003; Sharma, 1996). 40 

Concentration of most economic and social activities in cities has led to 41 

formation of mobility patterns of hosts between these central hubs and the surrounding 42 

villages. When hosts move between the central city and peripheral villages they form a 43 

network structure of contact between themselves and the vector populations of the two 44 

spatial places. Since malarial vectors have short maximum flight distances, such as 45 

about 691 metres per life time for Anopheles funestus and Anopheles gambiae (Midega 46 



4 

et al., 2007), it is effectively the host movements and their contact with stationary 47 

vectors that determine epidemic dynamics between two spatially separate localities.  48 

Commuters move back and forth between two subpopulations forming a 49 

connecting link that couples the epidemic dynamics of those subpopulations (Barrat et 50 

al., 2008; Colizza and Vespignani, 2008). This coupling forms a system of populations 51 

with semi-independent local dynamics, called meta-populations (Adams and Kapan, 52 

2009). An infection event at one spatial point could trigger a full-blown outbreak at 53 

another spatial point in this meta-population structure making the study of the role of 54 

connectivity important for disease control (Hanski and Gaggiotti, 2004; Hanski et al., 55 

1997; Keeling et al., 2004).  56 

Theoretical studies on vector-borne disease dynamics in interconnected 57 

populations have produced several useful results. For example, in meta-populations 58 

mobility leads to disease occurrence among connected patches and speeds up the time 59 

for disease to reach equilibrium in the system (Cosner et al., 2009; Hsieh et al., 2007; 60 

Torres-Sorando and Rodri'guez, 1997). Besides, for heterogeneous vector densities 61 

among patches the disease burden is determined by the patch with the largest vector 62 
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subpopulation and decreased with greater degree of mixing of host hosts (Adams and 63 

Kapan, 2009). While most studies do not elicit a specific network structure, we believe 64 

that geographical relationships between villages and cities are approximately structured, 65 

such as a star-like formation in most tropical cities (Briggs and Mwamfupe, 2000) and 66 

that host commute patterns are not random (Gonzalez et al., 2008).  We construct a 67 

simple star-network in which daily commuters connect  an arbitrary number of villages 68 

to a central city, and incorporate a vector-borne disease transmission epidemic model to 69 

understand the influence of meta-population parameters on the epidemic dynamics. . 70 

The most important parameter in epidemiology is the basic reproductive 71 

number, defined as the total number of infections resulting from a single infectious 72 

agent after its introduction into a totally susceptible population throughout the agent’s 73 

infectious period (Anderson and May, 1992; Arino and Van Den Driessche, 2003; 74 

Diekmann et al., 1990; Dietz, 1993; Shao, 1999). Because of the importance of the basic 75 

reproductive number in understanding infectious diseases epidemiology and guiding 76 

their public health interventions (Ferguson et al., 2006; Ferguson et al., 2003; Ferguson 77 
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et al., 2005), we derive this quantity explicitly and investigate how it can inform disease 78 

control decisions and about behavior of the epidemic. 79 

 80 

2. Model 81 

2.1. Epidemiological dynamics in homogeneous star network 82 

Network structure of host population assumed here is a star with daily 83 

commuters between the central node (city) and each of m  peripheral nodes (or villages) 84 

(Figure 1). 85 

For mathematical simplicity we assume that all peripheral populations have 86 

identical numbers of residents, mosquitoes and commuters to the city. This assumption 87 

is relaxed later. We also assume that infection dynamics of all peripheral populations are 88 

synchronized. The rate of movement of hosts is not affected by their disease statuses.  89 

We adopt frequency-dependent transmission in a susceptible-infectious-90 

susceptible (SIS) epidemic model for hosts (Anderson and May, 1992; Macdonald, 91 

1956; Ross, 1911) and a susceptible-infectious (SI) epidemic model for mosquito 92 

vectors because once infected they do not recover from infection. There is no vertical 93 
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transmission within the mosquito population; that is, newborns do not acquire infection 94 

from their parents. Susceptible mosquitoes are supplied by newborns. In this 95 

construction an infection of a susceptible host occurs through a bite by an infected 96 

mosquito, and an infection of a susceptible mosquito occurs through its bite of an 97 

infected host. There is no direct transmission between hosts or between mosquitoes. 98 

 The variables describing epidemic dynamics of the SIS model among hosts and 99 

the SI model among mosquitoes are as follows (see also Table 1). The number of 100 

susceptible and infected mosquitoes is denoted respectively by xu  and yu  in the central 101 

city (or urban area, and hence the subscript u), and by xr  and yr  in a peripheral village 102 

(or rural area, and hence the subscript r). On the other hand, the number of susceptible 103 

and infected hosts is denoted respectively by Xu and Yu  in the central city; by Xc  and 104 

Yc  in those hosts commuting (and hence the subscript c) from a peripheral village to the 105 

central city every day and staying in the city only during daytime; and by Xr  and Yr  for 106 

resident hosts who stay in a peripheral village for the whole day. 107 

During daytime in the city, there are  susceptible hosts and  108 

infected hosts (where m  stands for the number of peripheral villages as noted before), 109 
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and xu  susceptible mosquitoes and yu  infected mosquitoes. During nighttime, 110 

 people go back to their own villages, leaving only  in the city.  111 

In a frequency-dependent transmission we assume that mosquitoes bite hosts at 112 

a constant rate. Transmission is therefore sensitive to the number of hosts available to 113 

receive the bites. Infection dynamics are separated into daytime and nighttime 114 

dynamics. The people who commute to the city can be infected when being bitten by an 115 

infected mosquito in the city during daytime and when being bitten by an infected 116 

mosquito in the village during nighttime. Writing only dynamics for infected 117 

components (see Electronic Supplementary Material (ESM) for full ODEs) we have the 118 

following expressions for dynamics at any arbitrary point in daytime (time is measured 119 

in units of days) : 120 

 , (1) 121 

 , (2) 122 

 , (3) 123 

 , (4) 124 
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 ,  (5) 125 

where bd  is the rate at which a mosquito bites a host in daytime,  is the per bite 126 

probability that the disease is transmitted from an infected mosquito to a susceptible 127 

host and  is the per bite probability that the disease is transmitted from an infected 128 

host to a susceptible mosquito.  is the rate at which an infected host recovers (and 129 

becomes susceptible again) and D  is the mortality rate of adult mosquitoes. Also, 130 

Nu ,  Nc  and Nr  are the respective numbers of host residents in the city, commuters from 131 

a village and daytime village residents.  Mu  and Mr  are the respective numbers of 132 

mosquitoes in the city and in a single village. Therefore , 133 

, ,  and  are 134 

the numbers of susceptible hosts and mosquitoes in each compartment. The rate at 135 

which a particular host is bitten by a particular mosquito during the day in the city is 136 

 and is bd Nr  in one village.  137 

Nighttime epidemiological dynamics are derived similarly for any time point 138 

  as 139 

  (6) 140 
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  (7) 141 

  (8) 142 

   (9) 143 

  (10) 144 

where bn  is the mosquito biting rate at night. 145 

In the following sections we derive analytical solution for the global basic 146 

reproductive number R0  of the star network and investigate its sensitivity to key 147 

population and networks parameters relevant to disease control. 148 

 149 

3. Results 150 

3.1. Basic reproductive number R0 for the meta-population  151 

Linearization of epidemic dynamics (1)-(10) by assuming that infected densities 152 

are small near the disease-free equilibrium results into a system; 153 

 (13) 154 
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where  with T denoting vector transform, and 155 

 , (14a) 156 

 , (14b) 157 

where 158 

  . (15) 159 

The solution to equation (13) for  is given by  , where 160 

 . (16) 161 

In the ESM an equation for non-integer time point ( ) is shown, which is a bit more 162 

complicated but it does not affect the subsequent calculations of the basic reproductive 163 

number by assuming that infection starts at , as in the next generation matrix 164 

method we count the cumulative number of secondary infections toward . 165 



12 

Equation (16) is the averaged matrix for daytime dynamics and nighttime 166 

dynamics, which is possible because of linearization around the disease-free 167 

equilibrium. In the ESM the basic reproductive number is calculated using the method 168 

of next-generation matrix (Diekmann et al., 1990; Diekmann et al., 2010; Diekmann et 169 

al., 2012; Heesterbeek, 2000; Heesterbeek, 2002), which after rearrangement gives the 170 

expression for the basic reproductive number R0  for the whole system as 171 

  (17) 172 

where 173 

   (18) 174 

are the basic reproductive numbers of infection cycles for: city residents and city 175 

mosquitoes ( ), daytime commuters and city mosquitoes ( ), returning nighttime 176 
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commuters and village mosquitoes ( ), and non-commuting village residents and 177 

village mosquitoes ( ) (see Figure 2). See ESM for the derivation of (17)-(18). More 178 

important applications of the explicit formula (17) for whole system basic reproductive 179 

number is seen in sensitivity analyses discussed in the next sections. 180 

 181 

3.2. Sensitivity analysis of parameters to system basic reproductive number 182 

 Where should mosquito control be focused between the city and surrounding 183 

villages? 184 

In this section we show how the analytical results for the basic reproductive 185 

number obtained in the last section (equation 17) can be used to design the control 186 

strategy. This is based on the derivation of the dependence of the global basic 187 

reproductive number R0 on a given epidemiological or network parameters shown in 188 

details in the ESM. Here we choose the number of mosquitoes in a village and the city, 189 

M r  and Mu respectively as the target parameters for control of the vector-borne 190 

disease. We consider the relative impact on R
0
 of proportional changes in the mosquito 191 

populations of city or villages. Since R
0
 also estimates the effort required to control a 192 
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disease (Smith et al., 2007), we are hereby answering the question of where to focus 193 

control effort for a certain predetermined fractional reduction in R
0
 given a distribution 194 

of mosquitoes between the city and villages.(see ESM for full derivation). We obtain 195 

conditions when intervening in city will lead to more prevention of disease as  196 

  (20) 197 

From equation (20) we see that focusing control efforts in the city is more effective 198 

when . But if it becomes such that  then focusing 199 

control efforts in villages becomes more effective. Substituting equation (18) into 200 

equation (20) results into an expression for a critical value, denoted hereby by which 201 

is related to the ratio of mosquito densities in the city and villages as 202 

   if and only if , (21) 203 

where  204 

. (22) 205 
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or, by defining the proportions of city residents, ,  commuters, 206 

 , village residents, , of humans, 207 

 . (22)’ 208 

To see how the strength of connections between city and village through 209 

commuting affects the optimum mosquito control in city and villages,  we here fix the 210 

proportion of city host population, pu , and the number of villages, m  in (22)’, and 211 

allow the proportion of commuters, pc  (and hence village hosts, ), to 212 

vary so we can observe how varies with the proportion of commuters, pc . Since  is 213 

a threshold value, it divides the region into two, each with different implications to the 214 

focus of disease control as shown in Figure 3. In the region under the curve which 215 

corresponds to , focusing on the city is not effective in this case and 216 

therefore control efforts should be targeted to the surrounding villages. The region 217 

above the curve corresponds to  when focusing on the central city is more 218 

effective than focusing on the surrounding villages. From Figure 3 we observe that an 219 

increase in commuters to the central city makes infections more likely to occur in the 220 
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surrounding villages making focus of mosquito control there more effective. This is 221 

because in frequency-dependent transmission the efficiency of transmission depends on 222 

the possibility of one person being bitten by a mosquito in succession; one to receive an 223 

infection and second to pass it on (Keeling and Rohani, 2011). When more commuters 224 

move to the city, they leave a smaller number of people in the villages making vector-225 

borne disease transmissions more efficient than in the city. Since people in the city do 226 

not move, any increase in the number of hosts because of the incoming commuters 227 

serves to make the possibility of a mosquito biting a host in two successions less likely, 228 

lowering the infection risk.  229 

 230 

3.3. Epidemic occurrence with intensity of village-to-city connections  231 

3.3(a) Homogeneous case 232 

The host and vector meta-population structure we assume in this paper is quite 233 

simple: a star network with the central city and m  surrounding villages (Figure 1). 234 

However, we can ask several important questions about the effects of host population 235 

structure within this framework.  236 
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For subsequent analyses, we assume that the total nighttime populations of city 237 

residents, Nu , and the total nighttime villages residents, , are constant. 238 

Consequently, the total host population, denoted by , is also kept 239 

constant. The total mosquito population  is also kept constant. We 240 

assume, for simplicity, that the biting rates during day and night are the same: 241 

. The more general case of heterogeneous bite rates was also analyzed 242 

(see section 4 in ESM) and has similar results to the homogeneous case reported in this 243 

section. We introduce the fractions of city residents, pu , commuters, pc , and village 244 

residents, pr  in the whole host population as , ,  245 

and those of city and village mosquitoes as  and respectively. 246 

For example, we can change the fraction of commuters by increasing the number Nc  of 247 

daytime commuters while keeping the nighttime total population  constant, 248 

and ask how this changes the global basic reproductive number R0 .   249 

 We here examine whether or not increasing connectivity would increase R0250 

when metapopulation is nearly isolated. This could be answered by looking at the 251 

partial derivative of R0  with respect to pc  , , as  while keeping 252 
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constant. We find a paradoxical case where increasing connectivity 253 

(i.e., number of commuters) in the network decreases the basic reproductive number, 254 

lowering the possibility of disease occurrence (see full derivation in the ESM). This 255 

happens if the following condition is true, 256 

 , (23) 257 

or simply if  (as ). 258 

Equation (23) shows that a paradoxical region in which there is decreasing 259 

possibility of disease occurrence with increasing connectivity exists when the ratio of 260 

mosquitoes to hosts in the city exceeds the ratio of mosquitoes to hosts in the villages. 261 

This condition is shown graphically for homogeneous assumptions in Figure 4 (dark 262 

lines) which is for basic reproductive number R0 dependency on the whole range of 263 

proportion of commuters pc , and not just for . The paradoxical region is 264 

observed in panels b-d (dark line). The reverse is true when the mosquitoes to hosts 265 

ratio is higher in villages than in the city, that is . This condition 266 

holds in panel a of Figure 4. In frequency-dependent transmissions where the mosquito 267 

bite rate is assumed constant, the number of mosquitoes relative to that of hosts in a 268 
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given area is critical in determining whether infection will occur at all. In fact if there 269 

are more hosts than mosquitoes, as is the case in some temperate regions, the chances of 270 

an epidemic occurring are very slim indeed (Keeling and Rohani, 2011). However, 271 

whenever the mosquitoes to hosts ratio becomes larger than a critical level then an 272 

epidemic is will occur. The paradoxical region of decreasing basic reproductive number 273 

with increasing number of commuters to the city occurs because movement of hosts acts 274 

to reduce the efficiency of infection in the city by increasing the number of hosts 275 

relative to mosquitoes while at the same time the increased efficiency of transmissions 276 

in the villages not enough to compensate the decrease in the city. In the homogeneous 277 

case this paradoxical region becomes more pronounced with increasing mosquito 278 

density in the city (Figure 4d) because then more commuters are needed before the 279 

epidemic can start increasing again. The sharp rise in basic reproductive number at very 280 

high proportions of commuters is a direct artifact of frequency-dependency 281 

assumptions. That is when there are extremely small numbers of hosts left in the 282 

villages relative to the number of mosquitoes, making transmissions extremely efficient 283 

leading to the observed sharp rise in the values of the basic reproductive number. 284 
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 285 

3.3(b) Heterogeneous case 286 

Furthermore, we investigated the influence of heterogeneity in the number of 287 

hosts and mosquitoes in the villages on the behavior of the paradoxical region. We fixed 288 

the number of city hosts at 20% of the total population and assumed that all villages had 289 

the same proportion of commuters to the city. Keeping total host and total vector 290 

populations in villages constant, heterogeneity was introduced through random 291 

assignments of host and vector population sizes among a fixed number of villages using 292 

a uniform distribution in a simplex (see ESM section 5 for details). While in the 293 

homogeneous case all villages had the same numbers of hosts and vector populations, 294 

the randomization in the heterogeneous case produced villages with various sizes of 295 

human and vector populations. Field evidence suggests a high degree of clustering in 296 

mosquito populations among villages (Keating et al., 2005; Mbogo et al., 2003) and our 297 

purpose here was to imitate this heterogeneity using a simple probability distribution. 298 

Results are shown in Figure 4 with grey lines. 299 
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 Firstly, we observe that depending on the ratio of mosquitoes to hosts, 300 

heterogeneity can increases the basic reproductive number even for lower values of the 301 

proportion of commuters as seen in Fig 4a and 4b. With more mosquitoes in the 302 

destination this increase only occurs for higher proportions of commuters as seen in Fig 303 

4c and 4d. Random heterogeneity can result into some villages having higher numbers 304 

of mosquitoes than that of humans leading to a formation of peripheral epicenters with 305 

higher transmissions than in the homogeneous case. Also heterogeneity could result in 306 

some mosquito to host ratios becoming smaller in some villages than in the 307 

corresponding homogeneous case, but the existence of epicenters in villages with higher 308 

mosquito to host ratios outweighs in the net effect. This result has direct implications 309 

for surveillance systems, it is important to try to understand the demographic 310 

characteristics of surrounding villages both in terms of their host and mosquito 311 

densities.  312 

Secondly we observe that heterogeneity tends to narrow the paradoxical region. 313 

The paradoxical region depends on the relative densities of hosts and mosquitoes in an 314 

area. In this case we fixed the city host densities, then from the conditions for the 315 
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occurrence of the paradoxical region, that is when  only the 316 

second part of the inequalities is varying. Some of these variations are likely to make 317 

the second part of the inequality much closer to the first part in absolute size, or even 318 

reverse the inequality, narrowing the paradoxical region. Heterogeneity among host and 319 

vector populations in villages increases the importance of peripheral epicenters as 320 

sources of infection, narrowing the paradoxical region.  321 

 322 

4. Discussion 323 

We constructed a simple star network model of connections between a central 324 

city and an arbitrary number of surrounding villages. Then we incorporated a classic 325 

epidemic model for vector-borne diseases in order to understand the effects of 326 

connectivity as effected by daily commuters on the epidemic dynamics and disease 327 

control decisions.  328 

Through the method of next generation matrix we obtained an explicit 329 

expression for the basic reproductive number R0  of the system. A basic reproductive 330 

number is an important quantity in epidemiology because it has implications in planning 331 
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of public health interventions against infectious diseases by aiming to maintain its value 332 

below the threshold, which is unity (Anderson and May, 1992; Ferguson et al., 2006; 333 

Ferguson et al., 2003; Ferguson et al., 2005; Scherer and McLean, 2002). The behavior 334 

of the basic reproductive number can be more complicated at the threshold value; such 335 

as disease-free state being unstable even for  (Hadeler and Van den Driessche, 336 

1997; Van den Driessche and Watmough, 2000; Van den Driessche and Watmough, 337 

2002) or the threshold vanishing altogether as in complex networks (Barrat et al., 2008). 338 

However, it provides a good theoretical approximation for most practical purposes of 339 

disease control (Anderson and May, 1992). 340 

The primary goal of this research was to investigate explicitly the role that 341 

commuters play in affecting the behavior of an epidemic and the implications to disease 342 

control in a defined network structure. Based on the basic reproductive number, two 343 

questions were asked and answered; first one was on effects of commuters on the 344 

decision of where to direct disease control efforts between the city and villages when 345 

we aim to reduce a predetermined fraction of the basic reproductive number R
0
  and the 346 

second one was on the effects of commuters on the overall behavior of the epidemic. 347 
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In a meta-population it is not always obvious where to focus disease control 348 

strategies because of the unknown influence of commuters as well as relative densities 349 

of mosquitoes to hosts. Besides, the disease control decision is normally a function of 350 

many factors such as economic, humanitarian, clinical and even political factors. 351 

Different points of view can give different prescriptions for disease control. For 352 

example, from an optimal control perspective some studies suggest focusing on 353 

subpopulations with the lowest number of infected hosts (Mbah and Gilligan, 2011; 354 

Rowthorn et al., 2009). Our study prescribes from the perspective of effectiveness of 355 

infections as influenced by commuters. We find that the decision of where to focus 356 

control efforts is sensitive to the proportion of commuters and the relative mosquito 357 

densities in the city and villages but an increase in the number of commuters from the 358 

villages to the city makes focusing on the surrounding villages more effective in vector-359 

borne diseases. This is because when more and more people commute they make 360 

infections in the villages more effective thereby increasing chances of an epidemic in 361 

the whole meta-population.  362 
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We found that commuters can influence the epidemic dynamics by lowering the 363 

basic reproductive number in certain conditions. In frequency-dependent transmissions 364 

the effective ratio of mosquitoes to hosts is key in determining the occurrence of an 365 

epidemic. When this ratio is high in the city (and therefore higher basic reproductive 366 

number) any increase in the commuters to the city lowers the basic reproductive number 367 

leading to a paradoxical region. On the other hand, when this ratio becomes higher in 368 

the surrounding villages than in the city the paradoxical regions narrows down as 369 

commuting has weaker effect in this case. Particularly, for higher mosquito to host 370 

population ratios in the city heterogeneity in host and vector populations in villages 371 

increases the basic reproductive number and narrows the paradoxical region because of 372 

formation of peripheral epicenters with highly efficient transmissions. Therefore, 373 

understanding the demographic dynamics of villages in terms of its hosts and vectors is 374 

important for planning disease control. 375 

Our two results can be combined to inform disease control strategies. The first 376 

result emphasizes focusing control in the surrounding villages after determining key 377 

parameters which are commuters and the mosquito densities in city and villages; the 378 
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second results emphasizes on the surveillance of the surrounding villages in order to 379 

capture those epicenters of infections. It is well known that rural tropical Africa has 380 

more vector borne disease transmissions than the urban Africa because of the presence 381 

of large vector populations and ubiquity of breeding sites in the former (Walker, 2002). 382 

Recent theoretical and empirical studies have shown that movements of hosts between 383 

two spatial points such as from villages to central cities is responsible for persistence of 384 

vector-borne diseases in cities despite control strategies (Adams and Kapan, 2009; Le 385 

Menach et al., 2011; Wesolowski et al., 2012). Our study has pinpointed one possible 386 

way of how such movements affect disease control decisions and the behavior of the 387 

epidemic dynamics of vector-borne diseases.   388 

 389 

Acknowledgements 390 

E.A.M. thanks the Japanese government Monbukagakusho (MEXT) scholarship 391 

through the Japanese Embassy in Tanzania for financial support. We also thank the 392 

Centre for Promotion of Integrated Sciences (CPIS) of The Graduate University for 393 

Advanced Studies (SOKENDAI) for a partial support of this study. 394 



27 

 395 



28 

References 396 

Adams, B., Kapan, D. D., 2009. Man bites mosquito: understanding the contribution of 397 

human movement to vector-borne disease dynamics. PloS One 4, e6763. 398 

Anderson, R. M., May, R. M., 1992. Infectious diseases of humans: dynamics and 399 

control. Wiley Online Library. 400 

Arino, J., Van Den Driessche, P., 2003. The basic reproduction number in a multi-city 401 

compartmental epidemic model. Positive Systems, 818-820. 402 

Barrat, A., Barthlemy, M., Vespignani, A., 2008. Dynamical processes on complex 403 

networks. Cambridge University Press. 404 

Briggs, J., Mwamfupe, D., 2000. Peri-urban development in an era of structural 405 

adjustment in Africa: the city of Dar es Salaam, Tanzania. Urban Studies 37, 406 

797. 407 

Bruce-Chwatt, L., 1968. Movements of populations in relation to communicable disease 408 

in Africa. East African Medical Journal 45, 266. 409 



29 

Colizza, V., Vespignani, A., 2008. Epidemic modeling in metapopulation systems with 410 

heterogeneous coupling pattern: Theory and simulations. Journal of Theoretical 411 

Biology 251, 450-467. 412 

Cosner, C., Beier, J. C., Cantrell, R. S., Impoinvil, D., Kapitanski, L., Potts, M. D., 413 

Troyo, A., Ruan, S., 2009. The effects of human movement on the persistence of 414 

vector-borne diseases. J Theor Biol 258, 550-60, doi:S0022-5193(09)00075-7 415 

[pii]10.1016/j.jtbi.2009.02.016 [doi]. 416 

Diekmann, O., Heesterbeek, J., Metz, J., 1990. On the definition and the computation of 417 

the basic reproduction ratio R0 in models for infectious diseases in 418 

heterogeneous populations. Journal of Mathematical Biology 28, 365-382. 419 

Diekmann, O., Heesterbeek, J., Roberts, M., 2010. The construction of next-generation 420 

matrices for compartmental epidemic models. Journal of The Royal Society 421 

Interface 7, 873-885. 422 

Diekmann, O., Heesterbeek, H., Britton, T., 2012. Mathematical Tools for 423 

Understanding Infectious Disease Dynamics. Princeton University Press. 424 



30 

Dietz, K., 1993. The estimation of the basic reproduction number for infectious 425 

diseases. Statistical Methods in Medical Research 2, 23. 426 

Ferguson, N., Cummings, D., Fraser, C., Cajka, J., Cooley, P., Burke, D., 2006. 427 

Strategies for mitigating an influenza pandemic. Nature 442, 448-52, 428 

doi:nature04795 [pii] 10.1038/nature04795. 429 

Ferguson, N. M., Keeling, M. J., Edmunds, W. J., Gani, R., Grenfell, B. T., Anderson, R. 430 

M., Leach, S., 2003. Planning for smallpox outbreaks. Nature 425, 681-685. 431 

Ferguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., 432 

Iamsirithaworn, S., Burke, D. S., 2005. Strategies for containing an emerging 433 

influenza pandemic in Southeast Asia. Nature 437, 209-214. 434 

Gonzalez, M. C., Hidalgo, C. A., Barabasi, A. L., 2008. Understanding individual 435 

human mobility patterns. Nature 453, 779-782. 436 

Hadeler, K., Van den Driessche, P., 1997. Backward bifurcation in epidemic control. 437 

Mathematical Biosciences 146, 15-35. 438 

Hanski, I., Gaggiotti, O. E., 2004. Ecology, genetics, and evolution of metapopulations. 439 

Recherche 67, 02. 440 



31 

Hanski, I., Gilpin, M. E., ScienceDirect, 1997. Metapopulation biology: ecology, 441 

genetics, and evolution. Academic Press San Diego, California. 442 

Heesterbeek, J., 2000. Mathematical epidemiology of infectious diseases: model 443 

building, analysis, and interpretation. Wiley. 444 

Heesterbeek, J., 2002. A brief history of R0 and a recipe for its calculation. Acta 445 

Biotheoretica 50, 189-204. 446 

Hsieh, Y. H., van den Driessche, P., Wang, L., 2007. Impact of travel between patches 447 

for spatial spread of disease. Bull Math Biol 69, 1355-75, doi:10.1007/s11538-448 

006-9169-6 [doi]. 449 

Keating, J., Mbogo, C. M., Mwangangi, J., Nzovu, J. G., Gu, W., Regens, J. L., Yan, G., 450 

Githure, J. I., Beier, J. C., 2005. Anopheles gambiae sl and Anopheles funestus 451 

mosquito distributions at 30 villages along the Kenyan coast. Journal of Medical 452 

Entomology 42, 241. 453 

Keeling, M., Bjornstad, O., Grenfell, B., 2004. Metapopulation dynamics of infectious 454 

diseases. Ecology, evolution and genetics of metapopulations. Elsevier, 455 

Amsterdam, 415-446. 456 



32 

Keeling, M. J., Rohani, P., 2011. Modeling infectious diseases in humans and animals. 457 

Princeton University Press. 458 

Knudsen, A. B., Slooff, R., 1992. Vector-borne disease problems in rapid urbanization: 459 

new approaches to vector control. Bulletin of the World Health Organization 70, 460 

1. 461 

Le Menach, A., Tatem, A. J., Cohen, J. M., Hay, S. I., Randell, H., Patil, A. P., Smith, D. 462 

L., 2011. Travel risk, malaria importation and malaria transmission in Zanzibar. 463 

Scientific reports 1. 464 

Macdonald, G., 1956. Epidemiological basis of malaria control. Bulletin of the World 465 

Health Organization 15, 613. 466 

Mbah, M. L. N., Gilligan, C. A., 2011. Resource allocation for epidemic control in 467 

metapopulations. PloS One 6, e24577. 468 

Mbogo, C. M., Mwangangi, J. M., Nzovu, J., Gu, W., Yan, G., Gunter, J. T., Swalm, C., 469 

Keating, J., Regens, J. L., Shililu, J. I., 2003. Spatial and temporal heterogeneity 470 

of Anopheles mosquitoes and Plasmodium falciparum transmission along the 471 

Kenyan coast. American Journal of Tropical Medicine and Hygiene 68, 734-742. 472 



33 

Midega, J. T., Mbogo, C. M., Mwambi, H., Wilson, M. D., Ojwang, G., Mwangangi, J. 473 

M., Nzovu, J. G., Githure, J. I., Yan, G., Beier, J. C., 2007. Estimating dispersal 474 

and survival of Anopheles gambiae and Anopheles funestus along the Kenyan 475 

Coast by using mark-release-recapture methods. Journal of Medical Entomology 476 

44, 923. 477 

Prothero, R. M., 1977. Disease and mobility: a neglected factor in epidemiology. 478 

International Journal of Epidemiology 6, 259-267. 479 

Robert, V., MacIntyre, K., Keating, J., Trape, J.-F., Duchemin, J.-B., Warren, M., Beier, 480 

J. C., 2003. Malaria transmission in urban sub-Saharan Africa. The American 481 

Journal of Tropical Medicine and Hygiene 68, 169-176. 482 

Ross, R., 1911. The Prevention of Malaria. John Murray, London. 483 

Rowthorn, R. E., Laxminarayan, R., Gilligan, C. A., 2009. Optimal control of epidemics 484 

in metapopulations. Journal of The Royal Society Interface 6, 1135-1144, 485 

doi:10.1098/rsif.2008.0402. 486 

Scherer, A., McLean, A., 2002. Mathematical models of vaccination. British Medical 487 

Bulletin 62, 187-199. 488 



34 

Shao, Q. X., 1999. Some properties of an estimator for the basic reproduction number of 489 

the general epidemic model. Mathematical Biosciences 159, 79-96. 490 

Sharma, V., 1996. Re-emergence of malaria in India. The Indian Journal of Medical 491 

Research 103, 26. 492 

Smith, D. L., McKenzie, F. E., Snow, R. W., Hay, S. I., 2007. Revisiting the basic 493 

reproductive number for malaria and its implications for malaria control. PLoS 494 

Biology 5, e42. 495 

Torres-Sorando, L., Rodri'guez, D. J., 1997. Models of spatio-temporal dynamics in 496 

malaria1. Ecological Modelling 104, 231-240. 497 

Van den Driessche, P., Watmough, J., 2000. A simple SIS epidemic model with a 498 

backward bifurcation. Journal of Mathematical Biology 40, 525-540. 499 

Van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold 500 

endemic equilibria for compartmental models of disease transmission. 501 

Mathematical Biosciences 180, 29-48. 502 

Walker, K., 2002. A review of control methods for African malaria vectors. 503 

Environmental Health Project. 504 



35 

Wesolowski, A., Eagle, N., Tatem, A. J., Smith, D. L., Noor, A. M., Snow, R. W., 505 

Buckee, C. O., 2012. Quantifying the impact of human mobility on malaria. 506 

Science 338, 267-270. 507 

 508 

 509 



36 

Figure Legends 510 

Figure 1. A star-network with a central city and m  peripheral villages. Mobility 511 

patterns in the homogeneous assumption is such that daily commuters (shown by C in 512 

the figure) from surrounding villages connect the infection dynamics of all populations 513 

of villages with each other as well as with the city. Mosquitoes don’t move between city 514 

and village or between villages.  515 

 516 

Figure 2. Basic reproductive numbers for various infection cycles: In homogeneous 517 

assumption that m  village populations in the star network are identical in their resident 518 

and commuter host and mosquito population sizes, we derive individual basic 519 

reproductive numbers ( ) for four infection cycles in the network as shown: city 520 

hosts and city mosquitoes infection cycle ( ), daytime commuters and city mosquitoes 521 

infection cycles ( ), nighttime commuters and village mosquitoes infection cycle ( ), 522 

and village hosts and village mosquitoes infection cycle ( ). 523 

 524 
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Figure 3: Ratio of city-to-villages mosquito densities (M
u

/ M
r
)  as a function of the 525 

proportion of commuters, pc  from villages. When we change pc , the total nighttime 526 

populations are kept constant; the proportion of city residents  remains 527 

unchanged while the proportion of village residents, pr  changes with pcas 528 

.  (Parameters: , , , ) 529 

 530 

Figure 4. Dependence of basic reproductive number R0 on the proportion of commuters 531 

pc  that move to the city everyday in homogeneous assumption (solid black curves) and 532 

heterogeneous assumption (gray curves). The proportion of mosquitoes in villages qr  533 

differs for each panel such that in 4a, ( ); in 4b, ( ); in 4c, 534 

( ); and in 4d, ( ). Corresponding city mosquito densities can be 535 

obtained using the assumption that . The proportion of city residents is fixed 536 

at  and the proportion of commuters, pc , as well as that of village residents, 537 

, are changed simultaneously along the horizontal axis. 538 

(Parameters are: , , , and .) 539 
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