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Abstract

Elites are subgroups of individuals within a society that have the ability and means

to influence, lead, govern, and shape societies. Members of elites are often well

connected individuals, which enables them to impose their influence to many and to

quickly gather, process, and spread information. Here we argue that elites are not

only composed of highly connected individuals, but also of intermediaries

connecting hubs to form a cohesive and structured elite-subgroup at the core of a

social network. For this purpose we present a generalization of the K-core algorithm

that allows to identify a social core that is composed of well-connected hubs

together with their ‘connectors’. We show the validity of the idea in the framework of

a virtual world defined by a massive multiplayer online game, on which we have

complete information of various social networks. Exploiting this multiplex structure,

we find that the hubs of the generalised K-core identify those individuals that are

high social performers in terms of a series of indicators that are available in the

game. In addition, using a combined strategy which involves the generalised K-

core and the recently introduced M-core, the elites of the different ’nations’ present

in the game are perfectly identified as modules of the generalised K-core.

Interesting sudden shifts in the composition of the elite cores are observed at deep

levels. We show that elite detection with the traditional K-core is not possible in a

reliable way. The proposed method might be useful in a series of more general

applications, such as community detection.
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Introduction

Almost universally, across cultures and times, societies are structured in a way that

a small group of individuals are in the possession of the means to influence, shape,

structure, lead, and govern large proportions of entire societies. These selected

minorities form the elites. The definition and characterization of an elite is a

highly multidimensional and debated problem [1–5]. It incorporates considera-

tions about wealth, experience, fame, influence over other individuals, role in

societies, clubs, parties, etc. In any case elites can not be defined per se, but only

within the context of a social system, which are superpositions of various time-

varying social networks, so-called multiplex networks (MPN) [6–8]. These

networks represent interactions between individuals as links of different types

such as communication, trading, friendship, aggression, etc., see Fig. 1a. It seems

natural that elites have to be defined through their location within these MPNs.

Indeed, one would generally expect that members of elites are characterized by a

large connectivity [9] in the various networks of the MPN, which enables them to

Fig. 1. Extracting the core of a Multiplex System. (a) Representation of multiplex network (MPN) composed
of several layers of different relations among nodes. (b) A MPN consisting of two link-types orange and blue,
and (c) its intersection graph obtained by keeping those links that are present on both networks. (d)
Comparison of the K-core, left and the generalised K-core, right algorithms, when applied to the intersection
graph: while the K-core iteratively removes those nodes whose degree is lower than K, (leading to the K-
core), the GK -core iteratively removes nodes whose degree is lower than K which are not connected to more
than one node whose degree is equal or higher than K. We highlight the connectors (blue) and the hubs
(orange). Although connectors nodes may have a low degree, they play a role in keeping the overall
connectivity at deep levels of network’s organization.

doi:10.1371/journal.pone.0112606.g001
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exert their influence on a large number of other individuals. A large connectivity,

paired with a strategic position within the MPN, also allows them to collect,

process, and spread information that is of relevance to them [10]. In this view

elites are ‘core-communities’ that, to a certain extent, organise the whole topology

of social interactions in a social system [9]. It is further intuitive that elites are not

simply a collection of highly connected individuals, but communities of

individuals densely connected (a cohesive subgroup) containing hubs and maybe

other individuals playing functional roles within such elite structure. Moreover,

relations among elite members are not incidental: they are defined at the same

time at multiple levels, spanning from personal and commercial relationships to

information exchanges. The cohesiveness of this group can be achieved by means

of direct relations among the elite members or by means of intermediaries,

individuals who, although not very connected themselves, establish and

coordinate the relations between well connected elite members [11]. We refer to

these intermediaries as connectors.

Given the above considerations, the question arises if one could identify the

elite members of a given society from its MPN only by topological means. The

identification of cohesive subgroups at the core of social networks has a history of

decades and includes the K-core decomposition [12–14], the clique identification

[15, 16] or the rich club analysis [17], among other general methods of cohesive

subgroup identification [18, 19]. In general, these decomposition schemes are

focused on the features of the organization of hubs. However, to adequately

describe the organization of a social system, one might think of alternative

definitions of ‘core’, taking into account other functional properties of nodes than

just their degree. In the spirit of our definition of elites, connectors should be

included in the definition of a core. The heart of this paper is to suggest a

generalization of the K-core algorithm that naturally takes the ‘functionality’ of

connectors into account, and thus allows to detect cores which are composed of

hubs together with their connectors. The generalised K-core is obtained by an

iterative method inspired both by the so-called K-scaffold [20, 21], and the K-core

[12, 14]. Specifically, the generalised K-core (GK -core) is the maximal induced

subgraph whose nodes either have a degree larger or equal than K or connect two

or more nodes with a degree larger or equal to K , see Fig. 1b and methods for

details. We will show that GK -cores isolate the elite communities much more

reliably than the traditional K-cores. Moreover, as we shall see, K-cores and GK -

cores show substantial differences in their composition and architecture.

The quantitative exploration of structural patterns in real social systems is

usually hard or even impossible due to poor data availability and due to factors

that escape experimental control. Virtual societies such as those formed in

Massive Multiplayer Online Games (MMOG) [22] offer an excellent opportunity

to avoid these complications and allow for the first time a fully quantitative and

empirical understanding of social systems under controlled conditions. Log-files

of these games provide complete datasets where practically all actions and

interactions of all avatars in the games are recorded. MMOGs provide a unique

framework to test quantitative hypotheses and formulate entirely new questions
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on social systems. Data then can provide answers at unprecedented levels of

precision in the social sciences. In this paper we will use data from the MMOG

society of the game ‘Pardus’ (http://www.pardus.at) [23], an open-ended online

game with a worldwide player base which currently contains more than 420,000

people. In this game players live in a virtual, futuristic universe where they interact

with other players in a multitude of ways to achieve their self-posed goals. A

number of social networks can be extracted from the Pardus game, leading to the

first realization of an entire MPN of a human social system. The MPN consists of

the time-varying communication, friendship, trading, enmity, attack, and revenge

networks. These networks are tightly related and mutually influence each other as

it has been systematically explored and quantified in [7, 23–28]. Here we focus on

networks representing cooperative interactions, namely, friendship (F), commu-

nication (C) and Trade (T). Our social system is therefore given by the MPN

M(t)~M(V , EF|EC|ET , t), being EF , EC and ET the sets of links defining a

friendship relation, a communicative exchange or a commercial relation,

respectively. To ensure the relevance of our results, we will filter the players to rule

out the non-active ones. Specifically, we will build the nets over the most active

players ‘Artemis’ universe of the game, which leads us to a set of 2000{2500
players.

It is not a priori clear which link type of the MPN or which combination of

links is most relevant for elite detection. A communication link between two

individuals might signal an occasional interaction, whereas if a communication

link is paired with a trade link, this might be an indication for a much stronger

relation between them. For this purpose we derive four more networks, the

intersections among levels of the MPN, see Fig. 1a,c and methods. In these

networks a link exists if it is present in two or three of the MPN layers. For these

intersection graphs, we formally write GFC~GF
T
GC, GFT~GF

T
GT ,

GCT~GC
T
GT and GFCT~GF

T
GC
T
GT . The links of these networks, often

called multi-links [29], encode strong relationships among individuals, for they

connect players interacting in more than one type of relation. The strongest links

in this sense are those in GFCT , a graph which we refer to as the structural backbone

of the multiplex system. The identification of elite structures and core

organization is based on the 3 networks of the MPN and their associated four

intersection graphs.

The core organization of G will be explored explicitly by computing the

sequence of GK -cores, the so-called GK-decomposition sequence, which amounts

to a ‘russian doll’ decomposition of the networks,

:::(GK(G)(GK{1(G)(:::(G2(G)(G:

The behavior of this sequence of nested levels of networks (either seen in terms of

the statistical properties of their graphs, or from their social composition) is

essential to identify the elite organization and the elite structure of our virtual

social system. When compared to the traditional K-core, we will see that the GK -

core provides a much more detailed picture of the nested community structures.

Elite Structure Identification by Means of a Generalized K-Core
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Data from the ‘Pardus’ game enables us to test and compare the quality of the

identified core and to see to what extend it relates to properties that are expected

for an elite. For every player we have a record of wealth, leadership role in local

organizational structures, and importance in leadership as measured by a ‘global

leadership index’. Local organizational structures are clubs, societies and political

parties, in which players organise; we know which player has a leading role in that

local organization which can be president, treasurer or application master. The

global leadership index is a status index that is assigned to each player (visible to

all the others) which increases when special tasks (missions) are fulfilled. Such an

index is an indicator of the potential influence of the player on decisions affecting

the whole ‘faction’ it belongs to. A faction would correspond to a country in the

real world. In its current state, the game extends over a universe containing three

factions, which are politically independent and lead by their respective elites.

A final word of caution is needed, in relation to the significance of the data

shown here. Since there is no formal/topological definition of elite in a given

multiplex society, we adopted the position of showing the averages of the

indicators of social relevance of the different core subgraphs we isolate. We

checked the position of the topologically isolated sets of nodes within the raw rank

of social performance of all players under study. However, an elite is not just a list

of the best performers but a cohesive social structure. Therefore, rigorous

indicators of statistical relevance would imply the assumption of meaningful null

models. This is undoubtedly extremely interesting, but it is an issue going far

beyond the scope of this paper. Instead, we adopted the position of giving

relevance to our results by confronting them the the ones obtained by means of

the K-core, the standard core extraction mechanism, originally designed to extract

the network substructure of the most influential individuals in a given society.

Results

We extract the mentioned seven networks from the Pardus data, in the same way

as described in [7, 23]. Our analysis is performed over the three networks GF ,GC

and GT obtained from the most active players in two time spans of sixty days,

t1~796{856 and t2~1140{1200 in units of days since beginning of the game. A

link between two players in the layer GF exists if at least one player recognises the

other as ’friend’ in the whole studied period. Likewise, a link between two players

in the layer GC exists if at least one player has sent a message to the other in the

studied time span. Finally, a link between two players in GT exists if there has been

at least one commercial transaction between these two players within the studied

time span. The set of players that will define the set V of the MPN obtained from

the period 796–856 contains 2422 players, whereas the set of players defining the

MPN of the period 1140–1200 comprises 2059 players. Chosen players are those

who are active in at least all three levels of the MPN during all the studied periods.

The periods have been chosen using two criteria i) The periods are chosen far

away enough from the starting of the game, to ensure that the social structure of

Elite Structure Identification by Means of a Generalized K-Core

PLOS ONE | DOI:10.1371/journal.pone.0112606 December 26, 2014 5 / 19



the virtual society achieved certain degree of maturity and ii) The comprised time

spans do not contain ‘war’ periods, which may introduce an extra source of noise.

The results of the two time periods under study show a remarkably similar

behaviour. Therefore, throughout this section we will mainly show the numerical

values of the time period 1140–1200, for the sake of readability. In the

supplementary material the reader can find a systematic analysis of the two

periods under study.

The backbone exhibits high levels of clustering

The statistical analysis of networks shows remarkable degree of clustering at all

levels of description. In the period 1140–1200, the average degrees for the various

layers of the MPN are hkiF~18:15, hkiC~16:15, and hkiT~33:12 and the

clustering coefficients are remarkably high if we take into account these

connectivities: CF~0:235(0:037), CC~0:235(0:06), and CT~0:354(0:04).

Numbers in brackets correspond to the expected value of the clustering coefficient

in an ensemble of random networks having the same size and degree distribution

than the real ones, see methods and S1 File. The intersection networks show a

slight decrease on the number of nodes (see Table S1,S2 in S1 File) and smaller

average degrees: hkiFC~6:27, hkiFT~5:21, hkiTC~7:05, and most pronounced,

hkiFCT~3:89, as expected. Although the average degree is lower than in the

MPNs, the clustering coefficients still show remarkably high values, especially

when compared with the randomized values, CFC~0:198(0:020),

CFT~0:249(0:009), CTC~0:297(0:017), and CFCT~0:197(0:006). The persistence

of the clustering coefficient, even for GFCT , where the expected C for the

randomized case almost vanishes, indicates that the mechanism of triadic closure

[30–33] plays an important role in the dynamical formation of the backbone

structure in social systems.

The GK-sequence

We compute the GK-decomposition sequence (see S1 File for details) and observe

the following trends. We generally observe long GK- decomposition sequences.

The length of the decomposition sequence is the largest value of K for which GK -

core is not empty. For the different networks GFCT ,GFC,GFT ,GCT ,GF ,GC and GT ,

these limit values are found at K~27,38,32,42,88,111 and, again 111, respectively.

In Fig. 2a the size of the giant connected component (GCC) [34] along the GK -

decomposition sequence is shown for the GF network (black) -In a little abuse of

notation, we refer to the GCC as the set of nodes that from a connected

component significantly larger than the others, if there exist any. In our case, the

GK-cores generally show a single connected component. We observe that the GK -

decomposition sequence is longer than the one expected by chance, see Fig. 2a,

(red). The situation for the traditional K-core is different, with a behaviour

similar to the one expected by chance in all studied subgraphs, see Fig. 2d.

Further, the evolution of the size GCC of the GK -cores shows plateaus followed by
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abrupt changes, which may depict different levels of core organization. On closer

inspection, we find that often these changes signal the collapse of a cluster, which

forms a cohesive community at certain level K , and which is completely absent at

level Kz1. The structure of the GK-core just before a collapse represents one

organizational level which is replaced by a deeper one, maybe with different

topological and social characteristics. We observe that the length of the

decomposition sequence strongly depends on the size of the network, a feature

probably due to the power law degree distribution they exhibit. As shown in [21]

for generic sequences of nested subgraphs, the depth of the decomposition

sequence diverges for this kind of networks.

The evolution of the average degree hki along the decomposition sequence for

the GF network is seen in Fig. 2b (black). We find significant differences between

the social networks and their randomized counterparts (red). In most cases one

observes that the average degrees along the decomposition sequence first increase

with K , revealing a phenomenon which resembles the so-called rich club [17].

Here, elements of the GK-core tend to be more connected among themselves than

would be expected by chance. We find an exception in the GT network where there

are no significant differences between the real average degrees and those obtained

after randomization. This increasing trend usually peaks and stops at deep levels,

followed by a slight decrease at the deepest levels, see Fig. 2b. The increase is

absent in standard models of random graph like the Erdös Rény [34] and

Barabási-Albert [35] networks, see Fig. S1 of the S1 File. This means that the

particular structure of the social network determines the functional form of this

curve. Since the randomized ensembles also show an increasing trend of

connectivity through the sequences, see Fig. 2b (red), one might expect that the

degree distribution is partially responsible of the observed increase. Furthermore,

the presence of high clustering could also be responsible for an additional increase

Fig. 2. Evolution of the topological indicators along the GK -decomposition sequence for the GF level of the MPN of the period 1140–1200. In a) we
have the evolution of the size of the GCC of the GK -core of the net (black) and its randomized counterpart (red). In the box inside the figure we highlight the
evolution of the size of the GCC of the GK -core at high K-levels, where flats regions followed by sudden decreases are observed. b) Evolution of the average
degree of the GK -core (black) and its randomized counterpart (red). c) Evolution of the average clustering coefficient of the net (black) against its randomized
counterpart (red). Finally, in d) We plot the evolution of the GCC of the K-core of the net in terms of K (black) against its randomized counterpart (red).
Observe that, for this latter plot, there are no significant statistical differences on the behaviour of the real graph when compared to the randomized one. The
results for the random counterpart of the net have been obtained from an ensemble of 25 randomized versions of GF , see text and methods section.

doi:10.1371/journal.pone.0112606.g002
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of the connectivity of the cores, thus explaining the deviation from their

randomized counterparts.

Finally, the evolution of the clustering coefficient displays two clearly

differentiated regions: At low and medium stages of the decomposition sequence

it shows a more or less constant behaviour, followed by an increase at later stages

of the sequence. This latter increase may also be the footprint of a rich-club

phenomenon in the networks under study. It is worth to observe that along the

decomposition sequence, the real values of the clustering coefficient are at least

one order of magnitude higher than the expected by chance. In Fig. 2c we display

the evolution of the clustering coefficient along the decomposition sequence for

the GF network.

Identification of characteristic K-levels and core communities

through the M-core

In the previous section we pointed out that the evolution of the size of the GK -

core throughout the decomposition sequence eventually displays sudden

decreases, and that such sharp decays might be related to massive collapses of

communities the core. Such change might reveal different levels of core

organization. How to identify such crucial levels and, therefore, communities

inside the GK -core? We assume that the cohesiveness of such communities leads

to a high degree of transitivity between them, i.e., that the clustering coefficient

inside such communities is exceptionally high. This intuition is supported by the

extremely high clustering coefficient values found in the system under study, as we

reported above. Moreover, we assume that the degree of transitivity between

communities is very low namely, that connections between members of different

communities are performed by simple links or by means of connector nodes.

Under such defining assumptions of core community, the recently introduced M-

core [36] plays a crucial role. The M-core is the maximally induced subgraph in

which each link participates at least in M triangles. Therefore, the application of the

M-core with M~1, M~2 over the GK -cores will remove those links (and maybe

some nodes) which do no participate in a highly clustered structure, eventually

acting as bridges between communities. The unconnected components that may

emerge from the application of the M-core (M~1,2) to the GK-core will be the core

communities of our graph at level K , see Fig. 3a,b, methods section and S1 File for

a detailed information. For the sake of readability, let us refer to the M-core of the

GK-core as M(GK). As long as K increases, the number of components of M(GK)

(M~1,2) may fluctuate, thereby identifying different organizational levels within

the core of the network. Such fluctuations, if any, will define different levels of

core organization. In general, the deepest cores of the networks under study

display only a single component, and we will put our focus on the last K by which

M(GK) (M~1,2) contains more than a single component. We will refer to this

level of organization as the characteristic K-level of organization. It may happen

that such a level does not exist, then we will conclude that for this network and

under our assumptions, the GK-core does not change dramatically its structure

Elite Structure Identification by Means of a Generalized K-Core
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throughout the values of K . The rationale behind the definition of this

characteristic level is clear: we want to study the structure of the core before the

last reorganization, for it may contain many topological and properties absent in

the deepest one. As we shall see, this methodology is able to perfectly identify core

communities in our system, see Fig. 3a,b. It is worth to emphasise that

randomized versions of the nets under study always display a single component

and no communities –and, thus, no characteristic K-levels– can be identified.

With the characteristic GK-core and the deepest GK-core, we have two snapshots

of the core organization, presumably depicting different structural features. The

former represents a core structure which vanishes at deeper levels, the latter shows

how the elements at the deepest level of description are organised. For the

networks corresponding to the period 1140-1200, GFCT ,GFC,GFT ,GCT ,GF , we got

the following characteristic K-levels: K~13,37,23,38 and 5 respectively. GC and

GT did not show any characteristic level. The networks obtained out of the

intersection of MPN levels display a clearer core community structure and thus

relevant characteristic levels can be identified. In the case of GF , the characteristic

level is found at a very low K , so its statistical relevance is lower than the

characteristic K-levels reported for the intersection nets.

The GK-core and the elites of the social system

We can now characterize the individuals populating the cores of the various

networks with a series of quantitative social indicators in the ‘Pardus’ society.

These measure status, competence, social leadership, relevance and success of

various kinds. In particular we use the following indicators, and we indicate how

they appear in Table 1: Experience (h Expi, in the table. Numerical indicator

accounting for the experience of the player), Activity (hActi in the table. Number

of actions performed by the player), Age (hAgei in the table. Age in units of days

after the player joined the game), Wealth, (hWealthi numerical indicator

Fig. 3. National elites define topological communities at deep levels. The composition of the GK -core in terms of nations reveals that the multiplex
system is organised around the elites of the three existing nations, whose members are depicted with different colours (see text for the use of colours). We
have a) the characteristic GK for GFCT, where we find that the K-critical level is located at K~13 b) after the application of the M-core (M~1), three
components appear isolated, to be identified as the three communities composing the GK -core. Such communities are almost uniformly populated by
members of the same nation. In c) we have the deepest GK -core, which contains members of only one nation. Interestingly, the composition of the deepest
K-core of the GFCT , K~7, d), is absolutely different from the composition of the deepest GK -core of the same net, located at K~26, showing interesting
qualitative differences between these two approaches of core extraction. All pictures belong to the period 1140–1200.

doi:10.1371/journal.pone.0112606.g003
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accounting for the wealth of the player within the game), Fraction of leaders

(FracL, in the table. Fraction of players who are leaders in some aspect in a given

subgroup of the society at the local level), and Global leadership (hGlobLi in the

table. Numerical indicator evaluating the degree of leadership of the player). For

detailed information about the definition of these indicators, see S1 File. We

finally checked the gender composition, the fraction of male/female players in the

core. We classify the nodes in the core whether they are a hub or a connector, and

Table 1. Social indicators of the isolated groups of nodes.

hExpi hActi hAgei hWealthi gComp FracL hGlobLi N

GFCT

Char. GK 7:72|105 5:69|106 1:02|103 9:84|107 0:885 0:195 10:7 87

Hubs 1:01|106 6:86|106 1:08|103 1:23|108 0:933 0:4 11:4 15

Deep. GK 9:78|105 5:96|106 1:09|103 1:14|108 0:962 0:154 11:3 26

Hubs 5:69|105 7:39|106 1:2|103 3:03|108 1 1 12 2

Deep. K-Core 7:18|105 6:23|106 1:09|103 1:4|108 0:889 0:111 11 9

All Net 4:86|105 3:88|106 857 4:87|107 0:875 0:165 7:64 1303

GFC

Char. GK 8:47|105 5:72|106 1:04|103 7:69|107 0:884 0:207 9:41 121

Hubs 1:32|106 6:96|106 1:15|103 1:24|108 0:778 0:333 12:6 9

Deep.GK 8:07|105 5:59|106 1:01|103 6:37|107 0:882 0:235 8:69 85

Hubs 1:53|106 6:84|106 1:13|103 7:26|107 0:714 0:143 12:7 7

Deep. K-Core 9:4|105 6:03|106 1:01|103 6:66|107 0:882 0:329 9:5 76

All Net 4:69|105 3:72|106 842 4:35|107 0:871 0:154 7:4 1600

GFT

Char. GK 8:48|105 5:77|106 1:05|103 8:94|107 0:892 0:169 10:6 83

Hubs 1:34|106 7:37|106 1:13|103 1:8|108 0:889 0:333 12:1 9

Deep. GK 9:2|105 5:87|106 1:11|103 1:1|108 0:935 0:194 11:3 31

Hubs 5:69|105 7:39|106 1:2|103 3:03|108 1 1 12 2

Deep. K-Core 7:18|105 6:23|106 1:09|103 1:4|108 0:889 0:111 11 9

All Net 4:76|105 3:77|106 869 4:46|107 0:872 0:143 7:56 1660

GF

Char. GK 1:9|105 1:88|106 608 1:86|107 0:86 0:0457 6:08 328

Hubs 5:05|105 4|106 925 4:65|107 0:87 0:155 7:61 1585

Deep. GK 7:57|105 5:34|106 1:05|103 5:96|107 0:877 0:175 7:33 171

Hubs 1:39|106 6:68|106 1:15|103 7:8|107 0:6 0 12:8 5

Deep. K-Core 1:0|106 6:12|106 1:08|103 6:83|107 0:88 0:253 9:11 83

All players 4:3|105 3:5|106 841 3:96|107 0:87 0:12 7:51 2059

We show the scores for the cores of the GFCT , GFC, GFTand GF networks. ‘Char. GK ’ refers to the connectors of the Characteristic GK , ‘Hubs’ below it refers to
Hubs of the Characteristic GK . ‘Deep. GK ’ refers to the connectors of the Deepest GK . ‘Hubs’ below it refers to Hubs of the Deepest GK . Deep. K-core refers
to the nodes of the Deepest K-core. ‘All net’ refers to all players belonging to the net whose results for the different cores is shown immediately above.We
highlighted in boldface the two highest average score for each indicator.

doi:10.1371/journal.pone.0112606.t001
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present results accordingly. We also computed the scores obtained by the

members belonging to the deepest K-core, of each studied graph. In Table 1 we

show the scores from four networks GFCT ,GFC, GFT and GF , see S1 File for Tables

with all social indicators over core subgraphs obtained from all networks

belonging to the two periods under study.

The combination of the filtering provided by the intersection plus the GK-core

extraction clearly identifies the structured groups of players having the highest

indicators of social performance and influence. Although, as we pointed out

above, there is no null model for an elite detection, one can analyse how relevant

are the nodes of the topologically isolated graphs within the collection of raw

values of performance indicators belonging to all players of our MPN. Indeed, let

us rank all players of the MPN with respect to their performance in a given

indicator and then take the 10% best performers of such indicator. Then, to check

if the nodes of our subgraphs are among the best performers we compare the

actual number of members which belong both to a given GK-core and to this top-

10% set of players against the expected number of players belonging to the GK-

core who also belong to this top-10% set. What we observe is that, both for wealth

and global leadership, the actual number of players of a given GK-core which

belong to the set of top-10% best performers scales up to 5 times the expected

one, which shows that there is a strong relation between good performance within

the society and being member of the GK-core. In Fig. 4 we show the ratio between

the actual number of members of theGK-core belonging to the top-10% against

the expected value. We show the evolution of such ratio for the two periods under

study for global leadership, Fig. 4a, Wealth, Fig. 4b, Activity, Fig. 4c, and

Experience, Fig. 4d. All plots show an increasing trend which stops around the

characteristic K-level. Beyond this, the trend flattens and becomes stable, due to

the very tiny variations suffered by the GK-core at these levels, until it completely

collapses.

In table 1 we highlighted in Boldface the two highest average scores for the

following sets of nodes: Connectors of the GK-core at the characteristic K-level,

Hubs of the GK-core at the characteristic level, Connectors of the deepest GK -core,

Hubs of the deepest GK-core and the scores of the players of the whole network.

We show the results for GFCT ,GFC,GFT and GF for the period 1140-1200. In tables

S1 and S2 of the S1 File the reader will find an exhaustive analysis of all the nets

belonging to the two periods under study. Interestingly, the highest scores of a

given network are not necessarily found at the deepest level of the decomposition

sequence, but are usually found in the identified characteristic K-level, as seen in

Table 1 in Experience in GFCT and Wealth in GFC. This happens even though the

number of players belonging to the characteristic K-level is substantially larger

than the number of players populating the deepest GK-core.

We finally check if the membership to the connector set of a GK -core implies a

distinction with respect to those players whose connectivity patterns are

comparable. Specifically, we refer to individuals having the same degree than a

given connector but not being members to the connector set of GK . Suppose that

an individual vi is a connector in the characteristic K-level of GFCT , (K~13, for

Elite Structure Identification by Means of a Generalized K-Core
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the period 1140-1200) with a degree in the GFCT network of ki. Now take all

individuals in GFCT whose degree is equal to ki but who do not belong to the

characteristic GK of this net. We observe that the relative performance of

connectors with respect to those associated non-connectors of same degree is

about 20{40% higher, in particular: hExp:iGK
=hExp:inot{GK

<1:42,

hAct:iGK
=hAct:inot{GK

<1:3, hAgeiGK
=hAgeinot{GK

<1:2 and hWealthiGK
=

hWealthinot{GK
<1:3. These results point to the fact that to belong to the GK-core

structure increases the chances of having high scores of social performance. In

some cases, we observe that the performance of connectors of the deepest GK-core

is still higher than the one exhibited by the members of the

Fig. 4. Overabundance of members of the GK -core in the set of the top-10% best performers of the game. In these plots we show the evolution along
the GK -decomposition sequence of the quotient between the actual number of members belonging to the GK -core which also belong to the set of the top-10%
best performers of a given indicator against the expected number of them in case they are spread randomly. On top we have the results for the period 756–
856 and at the bottom we have the results for the period 1140–1200, both for the GFCT networks of their respective periods. We plot this ratio for a) Wealth, b)
Global leadership, c) Activity and d) Experience. All of them show an overabundance of members of the GK -core, showing an intrinsic relation between
better social performance and deep GK -core membership. It is worth to observe i) the clear overabundance of members of the GK -core within the set of the
top 10% in any indicator and ii) the change of the trend after the characteristic K-level, which is K~16 for the GFCT of the period 796–856 and K~13 for the
period 1140–1200.

doi:10.1371/journal.pone.0112606.g004
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K-core, see, for example, hExp:i for GFCT in Table 1 and S1 File. Therefore,

connectors, although in general they perform worse than hubs in the GK-cores,

could constitute a secondary elite, which presumably takes advantage of the

knowledge of the underlying net of relations defining the dynamics of the social

system.

GK-core clusters identify national elites/sharp reorganization at

deep levels

We finally look at the national composition of the cores. Players usually belong to

one of three ‘factions’ existing in the game, which are the equivalent of countries

or nations. These nations are labeled as ‘nation 1’, ‘nation 2’ and ‘nation 3’,

associated to colours red, green and blue, respectively, in Figs. 3 and 5. Players

shown in black are not associated to any nation. Over all the population of the

Artemis universe, the fraction of players in each nation is 0:34, 0:27 and 0:21, for

nations 1{3, respectively. Players not associated to any nation represent a

fraction of 0:13 of all players.

Along the GK-decomposition sequence of all studied networks, the nation

composition of the GK -cores displays two well differentiated regions. At lower

levels of K , the national composition of the GK -core is close to the one

corresponding to the whole society. At high K-levels, GK -cores are populated only

by members of a single nation. The shift between these two qualitatively different

core organizations is abrupt, and occurs right after the characteristic K-level. This

behavior can be clearly seen in Fig. 5a,c, where we plot the evolution of the

national composition of GK -cores along the GK-decomposition sequence of GFCT

belonging to the two periods under study. The evolution of the national

composition of the K-core also show a similar behaviour, although less abrupt

and only at the very late stages of the K-core-decomposition sequence, see

Fig. 5b,d.

The application of the M-core (M~1) over the GK-core shows that the elites of

the three nations are clearly identified as clusters at the characteristic K-level. This

can be seen in Fig. 3a,b, where we have the GK-core GFCT at the characteristic K-

level and the M(GK). As we can see, the proposed method combining the GK-core

and the M-core perfectly identifies three communities belonging to the three

existing nations. Interestingly, the cohesion of the entire core structure across

nations is assured only by connectors. At deeper K-levels, only members of one

nation populate the GK -core, forming a compact cluster with no community

differentiation, see Fig. 3c. The deepest K-level of the K-core is also populated by

individuals belonging all of them to the same nation, see Fig. 3d. It is worth to

remark that, against intuition, the national cluster isolated by the deepest K-core

differs completely from the one isolated by the deepest GK-core. Finally, it is

worth to mention that 10 of the 13 identified hubs of the characteristic GK -core of

GFCT have a specific leadership role, whereas only 1 of the 9 members of the

deepest K-core does.

Elite Structure Identification by Means of a Generalized K-Core
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Discussion

The aim of this study was to propose a topological method to detect the elites in a

social system. We define elites not only as the set of highly connected individuals

within a society, but as the set of highly connected ones together with their

connectors in a network whose links depict multiple relations, like personal,

communication or trade ones. Those elites are, presumably, strategically located at

the core of the multiplex system defined by the society. To identify the elite cores,

we suggest an algorithm that is similar in spirit to the traditional K-core, but that

leads to entirely different compositions of the resulting core, which we called the

generalised K-core. As a test system we used the human society of players of the

MMOG Pardus, which not only provides the networks of various social

interactions [7, 23–27], but also contains quantitative information of how

individual players perform socially within the society in terms of leadership,

wealth, social status among other skills, in which elite members are expected to

Fig. 5. Sharp transitions at the core organization of social networks. The value at K~1 belongs to the
composition of the society at the time period under study. On top a) we have the nation composition of the GK -
core and c) the K-core as a function of K for the GFCT network corresponding to the period 796–856. At the
bottom b) we have the nation composition of the GK -core and (d) the K-core in terms of K for the GFCT network
corresponding to the period 1140-1200. Colours depict the different nations. As long as K increases, the
composition of the cores in terms of nationalities is more or less stationary, with values close to the ones we
find in the whole system. At certain K -right after the characteristic K- an abrupt change is observed a) for the
and b), and the composition of the cores becomes uniformly populated by only one nation. The same
phenomenon is observed when looking at the K-core decomposition sequence, although less pronounced.
Notice that the deep GK -cores isolated the same nation cluster in both periods (the ‘red’ nation), whereas the
K-cores didn’t.

doi:10.1371/journal.pone.0112606.g005
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score exceptionally high. We find that elite structures are formed by hubs

connected either directly or through connectors, generally at deep levels of the

core (large K). Hubs of these core subsystems display the highest scores on social

relevance, and this is especially true for the backbone network and for the

networks obtained out of the intersection of two levels of the MPN, specifically, of

friendship and communication levels, and of friendship and trade levels. In

addition, we could show that connectors within the GK-core perform consistently

worse than hubs, however, we collected evidence pointing to the fact that

connectors clearly socially outperform individuals (matched for their degree) that

are not part of the GK -core. This indicates that connectors could constitute

something like a ‘secondary’ elite within the system, taking advantage of the

knowledge they have of the underlying network of social relationships. In terms of

national composition and core community structure, we have seen that a

combined strategy including the use of the recently introduced M-core and the

GK-core clearly detects the clusters belonging to the elites of the three nations

present in the game, thereby providing a new tool for community detection

focused on the core properties of the net. Reorganization of the national

composition of the cores happens in sharp bursts, rapid changes which are the

footprint of the collapse of clusters within the core from one level K to another. In

all performed analysis, it is worth mentioning the low performance of the K-core,

when compared to the GK -core to identify those leading subsets of individuals.

We finally point out that, in spite of their low average degree, in all of the studied

networks we found a remarkable level of clustering, which we attribute to the

process of triadic-closure that seems to be a major driving force in the dynamics

of social network formation [7, 30–33].

The presented results suggest that the subgraphs isolated by means of the GK -

core actually correspond to the way elites interact and define cohesive subgroups.

In more general terms, further works could explore the role of connector nodes in

terms of information flow within networks or their presumably relevant role when

a dynamical process is defined over the network. It is reasonable to think that the

combination of both low connectivity and their role of hinge between clusters

may provide them a predominant role in terms of dynamic organization within

the network. The proposed method could lead to a wide range of more general

applications, such as network visualization or as a community detection

algorithm.

Materials and Methods

Randomisation of Networks

Random ensembles of a given network G have been obtained after a rewiring

process which keeps the degree of each node invariant. For a real network G, we

created 25 randomized versions by applying the rewiring operation 100 times the

number of links of G.

Elite Structure Identification by Means of a Generalized K-Core

PLOS ONE | DOI:10.1371/journal.pone.0112606 December 26, 2014 15 / 19



Intersection of different levels of the multiplex system

We formally refer to multiplex networks (MPNs) asM, and to single graphs as G.

In a multiplex graph, M, the set of nodes V~fv1,:::,vng can be connected by

different types of relations or links E~fEa1 ,:::,EaMg, Eak~fei(ak),:::,em(ak)g. The

whole multiplex is thus described by

M~M(V , Ea1|:::|EaM):

Let E’~fEai ,:::,Eakg, E’5E, be a subset of the overall type of potential relations

that can exist between two nodes, thereby redefining the concept of link as a

collection of relations that relate two given nodes, instead of a single type of

relation. We define the E’-intersection network, GE’ as

GE’~G V ,
\

Eai
[E’

Eai

0
@

1
A:

In this network, links connect those pairs of nodes which are connected through,

at least, links of type Eai ,:::,Eak .

The generalised K-core

The generalised K-core subgraph, GK(G) of a given graph G is the maximal

induced subgraph in which every node is either a hub with a degree equal or

higher than K , or a connector that – regardless of its degree – connects at least 2
hubs with degree equal or higher than K . It can be obtained through a recursive

pruning process. Starting with graph G we remove all nodes vi [ G satisfying that:

(1) its degree is lower than K and (2) at most one of its nearest neighbors has a

degree equal or higher than K . We iteratively apply this operation over a finite

graph G until no nodes can be pruned, either because the GK -core is empty or

because all nodes which survived the iterative pruning mechanism cannot be

removed following the above instructions. The graph obtained after this process is

the generalised K-core subgraph. Note that, for any finite graph, there exists a K�

by which even though GK�=1, (VKwK�) GK(G)~1. We refer to GK�(G) as the

deepest GK-core of the network G, see S1 File for the algorithm.

The standard K-core is obtained by means of an iterative algorithm like the one

shown above. The step of the algorithm consists in removing nodes whose degree

is lower than K . This is performed iteratively until there are no more nodes to

prune, see S1 File.

Finally, the M-core is obtained by means of an iterative algorithm like the ones

shown above. The step of the algorithm consists in removing links participating in

less than M triangles. Again, this is performed iteratively until there are no more

nodes to prune, see S1 File.
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Identifying levels of organization at the core

The definition of level of organization is based on the presence of highly clustered

communities in the GK -core and its eventual collapse when K increases.

Specifically, given a graph G:

N Compute its GK -core

N Compute its M-core with M~1 over the GK -core and check if the subgraph

contains more than a single component. If not, compute the M-core (M~2)

over the GK -core and check if it contains more than a single component.

N Components of the M(GK) are the core communities at level K of the GK -core.

N If the M(GK) with M~1,2 contains a different number of components than

M(GKz1) (M~1,2), K is a characteristic level of organization.

Throughout the paper we have been focused on the characteristic level of

organization defined by the largest K by which M(GK), (M~1,2) contains more

than single component. At deep levels, all the studied M(GK)’s contain only a single

component. Furthermore, it may happen that GK itself contains more than a

single component. This does not change the algorithm for characteristic K-level

identification.

Supporting Information

S1 File. Rigorous definition of the algorithms. Study of the behaviour of

standard models of networks. Systematic analysis of the topological properties

studied in the main text through all networks under study. Table S1 and Table S2

of average social indicators for all the studied subgraphs for both periods under

study.

doi:10.1371/journal.pone.0112606.s001 (PDF)

S1 Data. Data used to generate the results of the paper. Includes: A table of

indicators of social performance for each player in each period under study and

the three networks of the multiplex system for each period under study.

doi:10.1371/journal.pone.0112606.s002 (ZIP)
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