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Abstract

Almost universally, wealth is not distributed uniformly within societies or economies. Even though wealth data have been
collected in various forms for centuries, the origins for the observed wealth-disparity and social inequality are not yet fully
understood. Especially the impact and connections of human behavior on wealth could so far not be inferred from data.
Here we study wealth data from the virtual economy of the massive multiplayer online game (MMOG) Pardus. This data not
only contains every player’s wealth at every point in time, but also all actions over a timespan of almost a decade. We find
that wealth distributions in the virtual world are very similar to those in Western countries. In particular we find an
approximate exponential distribution for low wealth levels and a power-law tail for high levels. The Gini index is found to be
g~0:65, which is close to the indices of many Western countries. We find that wealth-increase rates depend on the time
when players entered the game. Players that entered the game early on tend to have remarkably higher wealth-increase
rates than those who joined later. Studying the players’ positions within their social networks, we find that the local position
in the trade network is most relevant for wealth. Wealthy people have high in- and out-degrees in the trade network,
relatively low nearest-neighbor degrees, and low clustering coefficients. Wealthy players have many mutual friendships and
are socially well respected by others, but spend more time on business than on socializing. Wealthy players have few
personal enemies, but show animosity towards players that behave as public enemies. We find that players that are not
organized within social groups are significantly poorer on average. We observe that ‘‘political’’ status and wealth go hand in
hand.
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Introduction

The richest 1% own nearly half of all global wealth. The richest

10% claim about 86%, so that 90% of the world’s population have

to share the rest [1]. Wealth is not distributed evenly across nations

or economies. The inequality of wealth is a strong driving force in

human history and has been given much attention ever since the

onset of economics. The definition of wealth is not straight forward

and varies widely across history and schools of thought. Adam

Smith uses the word stock for the personal possessions and regards

everything except material goods as per se worthless [2]. Wealth is

defined by Thomas R. Malthus as ‘‘those material objects which

are necessary, useful, or agreeable to mankind’’ [3, p. 28], and by

John S. Mill as ‘‘all useful or agreeable things which possess

exchangeable value’’ [4, p. 10]. Alfred Marshall in his definition

includes immaterial goods, such as personal skills, as long as they

can be transferred [5]. To accumulate wealth, income must exceed

the needs for immediate survival [2,4,5], which implies that a

society living at the subsistence level is basically egalitarian, since

no-one can accumulate wealth. As soon as societies produce a

surplus, social stratification arises [4,6–8], and universally leads to

an unbalanced distribution of wealth [9].

The quantitative study of personal wealth distributions begins

with Vilfredo Pareto [10], who observed that the tails of wealth

distributions in a variety of datasets follow a power-law,

p(w)*w{a. Pareto thought that this power-law appears univer-

sally across times and nations. Indeed it is found in an impressive

number of data, including ancient Egypt, medieval Hungary,

present day Europe, USA, Russia, India, and China [11–19]. We

present a collection of data in Tab. S1 in the SI. For these

countries the power-law exponents range from 0:7 to 2:44.

Datasets containing both the bulk of the population and the richest

show a double power-law [20]: while exponents dealing with the

richest, like [14–17], are close to (sometimes below) 1, exponents

describing the bulk of the population, like [11,12,18] are found to

be around 2. In Pardus, the extremely rich class is absent. The

power-law exponent 2:46 found in Pardus is at the high end of

exponents describing the moderately rich.

Empirical data of wealth distributions is a non-trivial issue, the

main difficulty being to obtain correct wealth data of individuals

[5,21]. Most countries have an income tax, only a few employ a

wealth tax. Out of the 158 countries and territories listed in [22],

149 levy tax on income, only seven on wealth. Income tax data can

be used to generate income distributions to study wealth-increase
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and re-distribution dynamics of the low- and medium income

classes. Sometimes income has been used as a proxy for wealth

[23–27], with the problematic assumption that income is

approximately proportional to wealth plus human capital [28].

Income of the richest is often not reflected in income tax data,

since their wealth increments are usually not related to salaries, but

are usually due to capital gains. Therefore the tail of the

distribution is often not seen in tax-based data: wealth distribution

data poses a challenge to this day.

In this work we are primarily interested in wealth distributions,

and attempt for its explanation in terms of behavioral and network

aspects. Data on wealth distributions is obtainable from countries

imposing a tax on wealth, like Sweden [29,30] (abolished in 2007

[22]), surveys on wealth [11], adaptions of data on inheritance tax

[12,31], the size of houses found in an excavation [13], the

number of serfs from a historical almanac [14], and top-rich

rankings in magazines [15–17]. In Fig. 1 A the wealth distribu-

tions for the UK in 2005 and Sweden in 2007 are shown. Both

exhibit a power-law tail, whereas the bulk of the distribution is

better described with an exponential (inset). There is evidence that

in many economies the wealth distribution for low wealth levels

follows an approximate exponential function [12], whereas the tail

follows an approximate power-law [10–18,20]. Consumption can

not sustainably drop below the minimum income needed to exist.

To avoid the consequences of consumption below the minimum

income needed to exist, many modern countries provide welfare.

This leads to the situation that a significant fraction of the

population can have practically no wealth (for example 24% of

Swedish households had negative or zero net wealth in 1992 [32]),

but very few have income below the minimum that is needed to

exist. A number of models have been suggested to understand the

features of empirical wealth distributions and relate them to

appropriate mechanisms. While power-law distributions can be

understood by a multiplicative re-distribution processes that favors

the part of the population that are wealthy enough to hold

substantial financial assets, the bulk of the distribution can be

understood by relatively simple exchange models. The first models

to explain a power-law income distribution (in most cases the tail)

were brought forward in [33]. A model incorporating both

proportional growth and exchange was suggested in [34]:
dwi

dt
~Ei(t)wi(t)zJ Sw(t)T{wi(t)ð Þ. Here wi(t) is the wealth of

individual i at time t, J is a coupling constant and E is a random

variable with mean 0 and finite standard deviation s independent

of i and t. The model has a stable solution with an asymptotic

power-law for large w with a power exponent of a~1z
J

s2
. In

[21,35], a Fokker-Planck equation was proposed for the income

distribution. It leads to an income distribution that behaves like an

exponential for small and mid-range incomes, and as a power-law

for the highest incomes. The interpolation between the bulk and

the rich is different from the one in [34]. The model has been

extended to capture a second power-law for the super-rich [36].

To understand the exponential distribution of the bulk, simple

additive wealth exchange models can be used. For example in [37]

at each time step t, a pair of agents i and j is chosen randomly, and

exchange an amount Dw of money, so that wi(tz1)~wi(t)zDw,

and wj(tz1)~wj(t){Dw. To avoid agents with infinite debt, a

minimum (negative) wealth is imposed so that the exchange only

takes place if wj(t)§wminzDw. The exponential distribution has

been used to describe the (bulk of the) wealth distribution of the

UK and income distributions of the UK, the USA [12], and

Australia [38]. Extending the additive exchange model by only

allowing exchange between agents that are neighbors in a network

instead of all possible pairs results in a wealth distribution that

follows the degree distribution of the network, possibly generating

a power-law tail [39]. A similar mechanism has been suggested for

the productivity of firms instead of wealth [40]. Adding a savings

propensity l to the simple exchange model [37] means that agents

use only a fraction (1{l) of their wealth for exchange,

Dw~(1{l) E(wi(t)zwj(t)){wi(t)
� �

. Here E is a random variable

between zero and one. This leads to a Gamma distribution of

wealth P(Www)!wlexp(bw) [41], with b a constant. If this

savings propensity is drawn from an uniform distribution over

0,1½ �, a distribution with a power-law tail follows [42]. Another

model that leads to the Gamma distribution is derived from

the concept of social stratification. The model is given by wi(tz1)
~wi(t)zdZwj(t){(1{d)Zwi(t), wj(tz1)~wj(t)z(1{d)Zwi

(t){dZwj(t), where individuals i and j are chosen randomly at

each step, Z[½0,1� is a random variable, and d is a binary random

variable, zero or one [28]. The resulting function has been used to

fit income distributions of the UK and USA [25]. There are

several models of multiplicative wealth growth [43],

wi(tzt){wi(t)~Ei(t)wi(t), that lead to log-normal cumulative

distributions, P(Www)~
b

w
ffiffiffi
p
p exp {(b( ln w{w0))2

� �
. Models

of this kind have been used to describe income distributions

[23,24]. Other functions that effectively interpolate between

an exponential in the low wealth regime and a power-law tail,

include the Tsallis distribution (q-exponential), p(w)~

(2{q)l½1{(1{q)lw�
1

1{q, which has been applied to the distribu-

tion of income in Japan, UK and New Zealand [26], with q*1:1.

Another generalization of the exponential function, P(Wwŵw)

~expk({bŵwa)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zk2(bŵwa)2

q
{kbŵwa

� �1=k

, with ŵw:w=SwT,

a,bw0, and k[½0,1), has been fitted to income distributions of

Germany, Italy, UK [27], Australia, and USA [44].

It was hitherto impossible to directly study wealth of individuals

as a consequence of social performance indicators, positions and

roles within social networks, or behavioral patterns. However, in

the context of massive multiplayer online games (MMOG) there

exists an opportunity to study the origin of wealth of individuals as

a function of their position within their social networks and

behavioral patterns. In this paper we use data from the MMOG

Pardus, where people live a virtual life in synthetic (computer

game) worlds [45]. The essence of MMOGs is the open-ended

simultaneous interaction of thousands of players in a multitude of

ways, including communication, trade, and accumulation of social

status. The number of ‘‘inhabitants’’ of some of these virtual

worlds exceeds the population of small countries: World of
Warcraft, started in 2004 and currently the biggest MMOG

worldwide, has about 7.7 millions of paying subscribers as of June

2013 [46]. Production and trade between players is a common

feature of many MMOGs, and can create a complex and highly

structured economy within the game. Although all goods produced

and traded are virtual, the economy as such is real: players invest

time and effort to invent, produce, distribute, consume and dispose

these virtual goods and services. Virtual goods produced in some

MMOGs can be traded in the real world for real money, which

then allows to measure hourly wage and gross national product of

a MMOG [47]. In some MMOGs, entire characters (avatars) are

traded for money in the real world, which allows to quantify

‘‘human capital’’, such as skills, influence on others, leadership,

etc. Economical and sociological data are easily accessible in

virtual worlds in terms of log-files, and have become a natural field

for research [48–56], even allowing economical experiments [57].
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The particular dataset of the Pardus game comprises complete

information about a virtual, but nevertheless human, society. We

have complete knowledge of every action, interaction, communi-

cation, trade, location change, etc. of each of the 40,785 players at

the time resolution of one second. The society of the Pardus game

has been studied extensively over the past years. Social networks

have been quantified with respect to their structure and dynamics,

revealing network densification [58], corroborating the ‘‘weak ties

hypothesis’’, and showing evidence for triadic closure as driving

mechanism for the evolution of the socially positive networks

[50,51]. The empirical multiplex nature of the social networks

allows to quantify correlations between socially positive interac-

tions, and between various types of interactions [52]. Mobility of

avatars, as studied within the Pardus world, shows striking

similarities to human travel in the real world [53]. Timeseries of

actions in the Pardus game have been used to quantify the origin

of good and cooperative behavior. It has been attempted to predict

actions of avatars, given the information of their past actions in

[54]. Social network formation dynamics within Pardus has been

used to demonstrate the existence of gender differences in the

social networking behavior of male and female avatars [55].

The MMOG Pardus
The MMOG Pardus provides a persistent synthetic world in

which thousands of players interact through their game characters

(avatars) which they control through their browser. Players tend to

identify with their characters [45], which allows us to write

‘‘player’’ for ‘‘the player’s character’’ in the following. The setting

of Pardus is futuristic. Every player owns a space ship to travel the

‘‘universe’’, which contains planets, space cities, natural resource

fields, and even space monsters. Players can explore the universe,

build production sites (factories), trade with each other, and fight

each other, or against monsters. Many players are driven by the

accumulation of ‘‘social status’’ by obtaining honors for certain

social achievements or by purchasing expensive items that serve as

status symbols. There is no overall goal in the game, and players

constantly define their own goals and roles. Pardus is free of

charge but requires a registration. In total, more than 400,000

players have registered since 2004. Pardus has an internal ‘‘unit of

time’’ called Action Points (AP). At every day every player has a

limited number of 5000 APs that can be spent. Different actions of

the player ‘‘cost’’ various amounts of APs.

The economy of Pardus. The input-output production

matrix of the economy and the variety of goods are pre-defined

within the Pardus framework. Goods are of uniform quality

(homogeneous). Consumables and equipment can be partially

substituted by other types of consumables and equipment, while

intermediate goods are needed for production in exact propor-

tions. There are five commodities that are natural resources, 19

serve as intermediate goods, and five are end-products, i.e.

consumables.

Although capital requirements to create production facilities are

low, there are barriers to entering production. Incumbents may

threaten or harm potential new entrepreneurs. Game rules set an

upper limit of production facilities for every single player. Many

players operate the maximum number of factories. Production

facilities in Pardus are fixed assets with infinite durability but can

not be sold. Investments into production facilities therefore

motivate incumbents to stay in the sector (exit barrier). While no

labor is needed for production itself, transport of raw materials and

intermediate goods requires effort and resources of the players.

Because of transport costs, facilities effectively only compete with

similar facilities which are close by. Together with sparse

distribution of production facilities, this leads to effective local

oligopolies.

A special kind of goods are various forms of equipment, i.e.

items like space ships or weapons. Equipment can only be

produced in special facilities which also act as warehouses and

selling points. Equipment is durable, but has a finite lifetime.

Maintenance applied to equipment can increase the lifetime.

When a player sells equipment after usage, it is scrapped. (Players

can own only a limited amount of equipment, resulting in an

incentive to sell from time to time.) Owners of production facilities

are completely free to set the price at which they buy their raw

Figure 1. Wealth distribution and Lorenz curve. A Cumulative wealth distributions for the United Kingdom, Sweden, and for the Pardus MMOG
on day 1200. (Data sources: [29,31]) People with negative wealth have been excluded. A power-law tail is visible. The exponent is determined with a
least-square fit to the richest 5% of the population. The bulk of the distribution, i.e. the richest 50% to 10%, can be fitted with an exponential function
P(Www)!exp(w=Tw) (inset). The poorest obviously do not follow an exponential distribution, while the richest 10% are the crossover region to a
power-law. B Lorenz curve of wealth in Pardus on day 1200 (excluding newcomers and inactive players). For every alliance, a separate Lorenz curve is
calculated. The dashed blue curve represents the average of these single alliance Lorenz curves.
doi:10.1371/journal.pone.0103503.g001
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materials and sell their products. There are also non-player

facilities (belonging to the game itself) whose prices directly react to

local supply and demand within certain limits. The monetary

currency of Pardus is called credits. There is no banking system

and all transactions are payed and cleared immediately. There is

no inflation in the game.

The social groups in Pardus. Players can organize them-

selves within social groups for various purposes. Groups often

share the same interests, or are constituted as pirate groups,

exploration teams, self-defense units, etc. Usually groups do not

get larger than approximately 140 members. Pardus provides

administration tools for officially declared groups, which are then

called alliances. Alliances have a common cash pool which they

use for their goals, like defense or production. Often alliances are

created and used for economic purposes. Alliances can locally

coordinate production capacities to build up entire production

chains. For an optimal production chain, it is sometimes necessary

to increase the production capacity of a certain intermediate good.

This is often done by luring a new member into the corresponding

business, and by paying her for the construction of an additional

production facility.

Wealth of players. There are several ways for players to

obtain wealth: trading, collecting natural resources, producing

goods, working for hire (most common jobs are courier/teamster,

hunter, or bounty hunter), receiving donations or other payments,

an increase of the alliance funds (by payments from someone else),

and robbing or stealing.

We define wealth or ‘‘personal net-worth’’ of player i as the sum

of the value of his assets, i.e. liquidity (cash) vl,i, equipment ve,i,

share of alliance funds vaf ,i, and inventory vinv,i. The latter are the

commodities that are stored in player i’s production facilities and

in the space ship. Equipment are various in-game items like a

space ship or weapons. Each type of equipment can be bought

(new) at varying prices and sold (used) at a constant price. At non-

player facilities, equipment can be bought for twice the sell price.

To determine the contribution to the net-worth, we therefore take

1.5 times the listed sale price as the current ‘‘value’’ of each piece

of equipment. The values of the different types of equipment span

five orders of magnitude. The share of the alliance funds, if the

player is a member of an official group, is calculated by evenly

dividing the group’s cash pool to all members. Additionally, it is

discounted by a factor of two. Inventory is neglected, an exception

being those warehouses that are associated with the production of

equipment. Real estate, i.e. the production facilities, can not be

sold and therefore has no market value.

There are several ways to reduce wealth in the game:

consuming, paying for maintenance (either because of ‘‘natural’’

degradation or because of damage from a fight), investing into

production facilities or equipment, discarding goods, becoming

victim of theft or robbery, giving to fellow players or paying into

the alliance funds, a decrease of the alliance funds, or making an

adverse trade. In summary, the wealth of individual i at time t is

given by:

wi(t)~vl,i(t)zve,i(t)zvaf ,i(t)zvinv,i(t) : ð1Þ

In the following we use a series of measures that are necessary to

quantify wealth and performance of the avatars. To quantify

wealth we use wi(t) for the momentary wealth of player i at time t.
The age of a player is the number of days since the player entered

the game for the first time. We measure the cumulative activity of

a player by the total amount of APs he has ‘‘spent’’. We denote this

cumulative total activity by ai(t). The wealth-gain of player i we

denote by:

gi(t):wi(t)=ai(t) , ð2Þ

which is measured in credits per AP. gi(t) can also be seen as

efficiency at gaining wealth.

There are a number of achievement-factors in the game that

measure certain properties of players. The efficiency harvesting

natural resources is quantified (as a game feature) by the farming
skill of a player. Other performance related measures that players

can gain and lose over time, are the combat skill that quantifies

fighting skills, and the experience points (XPs), which keep a record

of fighting experience and other activities. Players may choose to

be member of a ‘‘political’’ faction, which sometimes engage in

large-scale conflict (war) against each other. The faction rank is a

measure of influence in one’s faction: above a certain threshold, it

grants the privilege to take part in the decision on war or peace. It

is attained through several specific activities. Some players regard

high combat skill, faction rank, or XP as their main goals in

Pardus.

Results

The wealth distribution
Figure 1 A shows the wealth distribution of Pardus in

comparison to the UK and Sweden. From the Pardus data, new

and inactive players have been excluded, see Methods. The bulk of

the (cumulative) distribution is compatible with an exponential

[12] with decay Tw~3:6|107 credits. The tail is best fitted with a

power-law with exponent a~2:46. Figure S1 in the SI shows that

the wealth distribution of Sweden is described well by an

exponential bulk and a power-law tail. For comparison Tab. S1

in the SI contains power exponents for several ‘‘real’’ countries.

Figure 1 B shows the Lorenz curve (see Methods) for the Pardus
society (black line). The closer the Lorenz curve is to the diagonal

(black dotted line) the more homogenous is the wealth distribution.

Uniform wealth distribution corresponds to the diagonal. Associ-

ated to this line is a Gini index [59] of g~0:653. For comparison

with ‘‘real’’ countries see Tab. 1. We further show the Lorenz

curve for all players that are not organized in any alliance (red

dotted line). These players generally operate individually, and

show a much more pronounced wealth inequality than the entire

society, the respective Gini index being 0:701. In contrast, the

Lorenz curve for the various alliances (the average over all

alliances with at least 5 members is shown as a dashed blue line)

indicates that people within the alliances tend to be much more

equal in wealth, when compared to the entire society. The Gini

index for the alliances is 0:495. The main reason for this higher

equality is the smaller fraction of poor players in alliances: while

79% of the total population and 92% of the richest 10% are

alliance members, only 28% of the poorest 10% are.

Evolution of the wealth distribution over time. The

average wealth in the Pardus society Sw(t)T grows over time.

Brackets indicate the average over all players present at time t.

The daily average change we denote by Dw(t):Sw(t)T{

Sw(t{1)T, and is presented in Fig. 2 A. We find that Dw(t)w0
on 83% of all days, and that the average daily increase of average

wealth is 2:42|104 credits. In Fig. 2 A it is visible that average

wealth increases less during war periods (gray shaded areas): the

average daily increase during the three war periods is 9:74|103,

3:22|103, and 1:26|104 credits respectively, against 2:64|104

credits in peace times. Figure 2 B shows the evolution of the

power-law exponent a. Its value is limited to a region between 2:14

Behavioral and Network Origins of Wealth Inequality
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and 2:55. After an initial steep rise in the first 150 days,

the Gini index g fluctuates between a maximum of 0:68 and

a minimum of 0:63, as seen in Fig. 2 C. A prominent feature

is a sharp drop of g from 0:67 to 0:65 on day 562

which corresponds to 2008/12/24. At this day, a ‘‘global’’ charity

event took place, where thousands of players donated cash for the

less wealthy. The inset indicates an exponential recovery,

g(t~561){g(t{561)!exp({(t{561)=tg) with decay time

tg~36:2 days, (black line). This indicates a remarkable stability

of the shape of the wealth distribution, as also seen in Fig. 2 D:

First, after dividing wealth by the average wealth on the

corresponding day, the distributions on two days which are more

than 1.5 years apart are very similar, see black curve (day 561) and

blue curve (day 1200, identical to Fig. 1 A). Second, after a

significant perturbation on day 562 (red curve, after voluntary re-

distribution of wealth from the rich to the poor as ‘‘Christmas

charity’’), the distribution quickly returns to its previous form

(green curve: one month after the redistribution). Comparing the

wealth distribution on various days by the Kolmogorov-Smirnov

statistic and the Jensen-Shannon divergence, we find a relaxation

time of about 16 days, see Fig. S2 in the SI.

For the timeseries of g and a we find clear anti-correlation, with

a Pearson correlation of r~{0:49 (p value v10{6, ignoring the

transient phase in the first 200 days and 2tg after the re-

distribution). The tail of the distribution is neither affected by the

charity re-distribution event nor by wars. An inverse relation for

the Gini coefficient and the power-law exponent has also been

observed for income in the USA [21], and is expected to a certain

extent. The data from Tab. 1 [21] yield r~{0:82 with a p value

0:001. Decreasing a means a more pronounced tail in the wealth

distribution, i.e. more extremely rich individuals, resulting in

higher inequality, and therefore a higher g.

Individual behavioral factors for wealth
Influence of total activity on wealth. We find a trivial

strong linear relation between the average wealth of a player and

her total activity, SwT~a:12:2{2:09|106, see Fig. 3. The

corresponding Pearson correlation coefficient is r~0:535 (p value

v10{6). Figure 4 shows the wealth timeseries of six cohorts of

players that joined Pardus during six different time periods.

Cohort 1 contains all players who joined on the first day, cohort 2

joined between day 2 and day 200, cohort 3 between day 201 and

400, etc. For each cohort we computed its average wealth from the

individual wealth timeseries of its members. For the sample, all

players present on day 1238 were used. Following a short initial

phase, average wealth increases almost linearly. Linear wealth-

increase means that players do on average not get better at gaining

wealth, i.e. they do not learn over time how to increase their

wealth faster. It is also not consistent with wealth increments

proportional to wealth as assumed by the Gibrat model, which

would instead lead to an exponential wealth-increase on average.

The slopes (i.e. wealth-increase rates) for the different cohorts are

different. We find these slopes to be 4.1, 3.6, 3.3, 3.2, 2.8, and 2.7

|104 for cohort 1 to cohort 6, respectively. We used a linear fit

omitting the first 60 days of each timeseries. This means that the

older the cohorts, the faster is their average wealth-gain. There are

two possible interpretations of this result. Either only the players

that are more efficient in accumulating wealth have stayed in the

game to become the old cohorts, or older players occupy the most

profitable trades, locations in the game, and younger players have

no chance to enter these market positions. We have checked the

first interpretation by including all players up to the end of their

lifetime, irrespective of whether or not they were present on day

1238, and found only a marginal effect, see Fig. S3 in the SI.

However, there is a relation between wealth and lifetime: the

richer a player is, the lower the probability that he will leave the

game, see Fig. S4 in the SI. Effects of war on wealth can be seen.

The wealth of various cohorts stagnates during war and sometimes

continues to grow with a slightly different slope than before. For

the younger cohorts, this effect is washed out due to their broad

range of entry dates.

Wealth and the actions of players. Pl;ayers can interact with

each other through trading with each others selling points,

municating, directly exchanging goods (making gifts), attacking,

placing bounties, marking each other as friend or enemy, or re-

moving one of these marks. (The direct exchange of goods is

called ‘‘trade’’ in [54,55] and is treated as the same as trade in 

[50]) Trading, communicating, making gifts, friendship mark-

ing, or removing an enemy mark are seen as cooperative

‘‘good’’ actions, while the remaining interactions are destructive 

or ‘‘bad’’. For every player i who is active on day 1200, we count

the actions performed since day 1170: the number of trades he 

initiated ntrade,i, the number of messages he sent 

number of gifts he made ngift,i, the number of attacks he did 

nattack,i, the number of bounties he placed nbounty,i, the 

number of other players he marks as friend nzfriend,i or enemy

nzenemy,i, the number of friend or enemy marks he removes,

n{friend,i or n{enemy,i. The total number of activities follows

as ntot,i ~ ntrade,izncomm,izngift,iznattack,iznbounty,iznzfriend,iz

nzenemy,izn{friend,izn{enemy,i. We only consider players with

ntot,iw0. For those we define the fraction of one type of action as

Table 1. Measures of wealth-inequality in Pardus compared to real-world countries.

country year unit Gini index g bottom 50% top 10% top 1%

Pardus 2010 all players 0.653 8.2 49.9 12.4

Pardus 2010 alliance players 0.495 16.7 35.4 4.6

Pardus 2010 Non-alliance players 0.701 3.1 62.3 20.2

China 2002 individual 0.550 14.4 41.4 –

France 1994 adult 0.730 – 61.0 21.3

Germany 1998 household 0.667 3.9 44.4 –

UK 2000 adult 0.697 5.0 56.0 23.0

USA 2001 family 0.801 2.8 69.8 32.7

Gini index g, and fraction of total wealth in % held by a fraction of the population. Real-world data is taken from [61].
doi:10.1371/journal.pone.0103503.t001
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Accordingly, we define the fraction of ‘‘good’’ actions as

fgood,i~
ntrade,izncomm,izngift,iznzfriend,izn{enemy,i

ntot,i

: ð4Þ

Figure 5 A clearly shows that the more a player trades

compared to his other actions, the higher is his wealth-gain. This

is no surprise, as trade is the main source of income in the game.

The average fraction of trade is 75.3%. Table 2 also shows a

strong positive partial correlation (see Methods) between trade

fraction and wealth. Figure 5 B shows that the more of a player’s

actions are attacks, the lower is his wealth-gain. This suggests that

revenue from attacks through robbery and bounty hunting does

hardly or not exceed the costs for repairing damage done by the

fight. There might be secondary damaging effects of aggressive

behavior, such as reduced willingness of others for trade. A third

explanation might be that attacks are sometimes carried out

Figure 2. Time evolution of the wealth distribution in the entire society. A Seven day moving average of the change of the average wealth
Dw(t). B Power-law exponent a(t), C Gini index g(t). D Scaled wealth distribution at four different days (rescaled by average wealth). Gray shaded
areas indicate periods of large scale war in the game. A ‘‘Christmas charity’’ event on day 562 led to a re-distribution from the wealthy to the poor,
resulting in a downward jump of the Gini index. The inset shows the exponential recovery to the previous level.
doi:10.1371/journal.pone.0103503.g002

Figure 3. Wealth as a function of activity a. The blue line shows
binned averages of wealth. The dashed line is a linear regression, with a
slope 12:2 credits/AP and a corresponding Pearson correlation
coefficient rw,a~0:535. Data are taken for all active players on day 1200.
doi:10.1371/journal.pone.0103503.g003
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without the intent to rob or to collect a bounty, but just for terror.

The average fraction of attacks is 1.7%. Table 2 shows a

significant negative partial correlation between attacks and wealth.

It can be seen in Fig. 5 C that players who communicate much

have lower wealth-gains. The main reason for this might be that if

a high fraction of the actions consists of sending messages, only a

low fraction of actions consists of trades: while trades are directly

influencing wealth, communication is neutral. Of course, the same

also applies to attacks. The average fraction of communication is

19.7%. Table 2 shows a significant negative partial correlation

between communication and wealth. Figure 5 D shows that a

higher fraction of ‘‘good’’ actions is connected to higher wealth-

gain. The average fraction of ‘‘good’’ actions is 97.5%. ‘‘Good’’

actions are mainly trades (which are on average 3/4 of all actions

and therefore an even higher fraction of ‘‘good’’ actions), while

‘‘bad’’ actions are mainly attacks (on average, 2.5% of all actions

are ‘‘bad’’ while 1.7% of all actions are attacks). Therefore, high

fgood,i means high ftrade,i and low fattack,i , both of which are

connected to high wealth-gain. The connection between high

fraction of ‘‘good’’ actions and high wealth-gain is a direct

consequence. The partial correlation in Tab. 2 also clearly shows

a positive partial correlation between the fraction of ‘‘good’’

actions and wealth.

Influence of achievement-factors on wealth. Wealth as

well as the achievement-factors, such as skills, XPs, and faction

rank, are strongly correlated with total activity. To exclude these

spurious correlations, partial correlation coefficients are calculated

(see Methods) and reported in the upper part of Tab. 2. We take

snapshots of the achievement-factors and of the wealth on days

240, 480, 720, 960, and 1200 respectively. Stars in Tab. 2 indicate

the significance level for the null-hypothesis that the given

Figure 4. Cohort wealth as a function of time. Cohort 1 (G1)
contains all players who joined Pardus on the first day. Cohort 2 (G2)
contains all players you joined between day 2 and 200, cohort 3 (G3) all
who joined between day 201 and 400, etc. Wealth wg,j(t) of cohort Gj at

time t is calculated as wg,j(t)~Swi t{t0,iz�tt0,j

� �
Ti[Gj

, where t0,i is the

date at which player i joined the game and �tt0,j:St0,iTi[Gj
is the average

cohort entry time. Gray areas mark times of war, dashed lines represent
linear fits omitting the transient first 60 days.
doi:10.1371/journal.pone.0103503.g004

Figure 5. Wealth-gain as a function of behavior. Behavior is quantified as the fraction of particular actions, such as A trades, B attacks, and C
communication, with respect to all actions performed by an individual. The blue line shows binned averages, the dashed line is the linear regression.
Data consist of all actions between day 1170 and 1200 and wealth-gain on day 1200.
doi:10.1371/journal.pone.0103503.g005
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coefficient is zero. A correlation model over all variables (see Tab.

S2 in the SI) does not yield improvement over the one-dimensional

regression of w on a as shown in Fig. 3. To examine possible

nonlinear relations between achievement-factors and wealth, in

Fig. 6 we show two-dimensional binned averages of wealth-gains

as a function of faction rank, XP, combat-, and farming skill. To

produce two-dimensional binned averages, players were sorted

into bins according to two achievement-factors. For every bin the

Table 2. Partial correlation coefficients for wealth controlling for total activity.

day 240 day 480 day 720 day 960 day 1200

Age {0:024 {0:043�� {0:037�� {0:040�� {0:064����

faction rank 0:157���� 0:104���� 0:112���� 0:107���� 0:085����

XP 0:189���� 0:077���� 0:002 {0:036� {0:056����

combat skill 0:063���� 0:004 {0:011 {0:036� {0:088����

farming skill 0:010 0:050��� 0:086���� 0:096���� 0:121����

ftrade 0:008 0:072���� 0:058��� 0:132���� 0:113����

fcomm: 0:011 {0:052�� {0:039� {0:112���� {0:098����

fattack {0:052�� {0:063���� {0:051�� {0:079���� {0:046��

fgood 0:042� 0:062��� 0:058��� 0:071���� 0:046�

ktrade
in

0:245���� 0:288���� 0:307���� 0:300���� 0:301����

ktrade
out

{0:026 0:025 0:037�� 0:069���� 0:122����

Ctrade {0:050��� {0:052��� {0:058���� {0:050��� {0:052���

ktrade
nn

{0:074���� {0:069���� {0:056���� {0:062���� {0:056����

kcomm:
in 0:054��� 0:035� 0:036�� 0:036� 0:099����

kcomm:
out 0:033� 0:026 0:034� 0:045�� 0:095����

Ccomm: {0:022 {0:012 {0:010 {0:012 {0:000

kcomm:
nn {0:032� {0:053���� {0:028� {0:041�� {0:024

kfriend
in

0:054��� 0:023 {0:027 {0:016 {0:016

kfriend
out

0:022 {0:009 {0:055���� {0:053��� {0:069����

Cfriend 0:030� 0:010 0:008 0:012 0:010

kfriend
nn

{0:040�� {0:035� {0:011 {0:007 {0:015

k
enemy
in

{0:079���� {0:077���� {0:083���� {0:087���� {0:029�

k
enemy
out 0:040�� 0:023 0:036�� 0:035� 0:025

Cenemy 0:017 {0:018 {0:007 {0:017 0:026

kenemy
nn 0:058���� 0:023 0:035� 0:051��� 0:029�

Data taken at days 240, 480, 720, 960, and 1200 after the beginning of the game. �p valuev0:05, ��p valuev0:01, ���p valuev0:001, ����p valuev0:0001.
doi:10.1371/journal.pone.0103503.t002

Figure 6. 2D binned averages of the wealth-gain as a function of achievement-factors. Colors represent the logarithm of the average
wealth-gain, log10 (g), over all players that fall into that bin. Blue corresponds to low, red to high values, empty bins are white. A XP and faction rank,
B XP and combat skill, C combat skill and farming skill. Data are taken every 240 days (see Methods).
doi:10.1371/journal.pone.0103503.g006
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average wealth-gain g (see Eq. 2) of all players in that bin is

determined and represented as the color of the bin. If no player

with a certain combination of achievement-factors is found, the

corresponding bin is empty, and the bin color is white.

From Fig. 6 and Tab. 2 we find the influence and significance

of the various factors:

Age is a significant factor (significance level below 1%) at four

out of the five time points. The negative coefficient seems to be in

contrast to the increase of wealth with age seen in Fig. 4. The

explanation is that total activity, which is most strongly correlated

with wealth, is limited by age. This induces the spurious

correlation between wealth and age seen in Fig. 4.

Faction rank is a significant positive factor for wealth with a

significance level below 0.01% for all days. High faction rank

means ‘‘political’’ influence in the game. Players that are in no

faction, i.e. less social, have the smallest possible value as faction

rank and are on average poorer. Figure 6 A shows that a high

faction rank correlates strongly with wealth-gain. We also see that

the non-empty bins suggest a strong correlation between XP and

faction rank.

XP is significantly positive for wealth on the first two sample

days with continually decreasing coefficient, changing sign on the

last two days. This might indicate that XP is positive up to a

certain extent, after which the goal of high XP starts to contradict

the goal of high wealth. In Fig. 6 A, the data from all five days are

combined, and the positive and negative correlations of XP cancel

and leave no significant effect of XP on wealth-gains.

Combat skill has a correlation with wealth similar to XP, see

Tab. 2. We see in Fig. 6 B that combat skill is approximately

proportional to the logarithm of XP. There is a significant fraction

of rich people with low combat skill of about 20. Figure 6 C shows

no correlation between combat skill and wealth-gains.

Table 3. Various properties of players versus their membership in alliances.

Average no alliance alliance

wealth w 4:83|106 1:66|107

age 299 447

total activity a 6:53|105 1:61|106

wealth-gain g 5:75 10:09

combat skill 20:9 31:4

farming skill 14:6 15:8

faction rank 3:65 5:81

All p values obtained from a two sample t-test and a Wilcoxon rank sum test are less than 10{6 . Data are taken every 240 days (see Methods).
doi:10.1371/journal.pone.0103503.t003

Figure 7. Wealth and other properties as a function of alliance size. We bin players according to the size of the alliance they belong to, and
show various properties as a function of alliance size: A wealth, B age, C wealth-gain, D combat skill, E farming skill, F faction rank. First bin are players
in no alliance, second bin are players in an alliance of size two. Clearly members of these smallest alliances show low wealth and achievement
measures. Also for the largest groups, lower levels are observable. Error bars denote the standard errors of these means (assuming Gaussian
distributions). The black dashed line shows the average over all players in an alliance with at least three members. Data are taken every 240 days (see
Methods).
doi:10.1371/journal.pone.0103503.g007
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Farming skill has a consistently positive and mostly significant

correlation with wealth. Farming skill is associated with the

collection of resources, which generates income. Figure 6 C also

suggests an association between high farming skill and high

wealth-gains.

The effects of groups on wealth: the value of being social
Players in Pardus organize within social groups that are called

alliances. At day 1200, 161 alliances with an average size of 23

members existed. Being a member of an alliance is a social

commitment. In Tab. 3 we collect the average values for several

features of players, depending on whether they are alliance

members or not. In general, alliance members are richer, both in

absolute terms and in terms of wealth-gains than non alliance

members. Members also have better skills and a higher faction

rank. In Fig. 7 we see that the size of an alliance has little influence

on wealth and other factors, except for players that are in alliances

with only two members. These are consistently poorer than the

players in groups with three or more members. Members of the

biggest alliances also have some indicators below average (dashed

line).

The effects of social networks on wealth
We use the trade, communication, friendship, and enemy

networks of Pardus (see SI), which are available for every day. For

every node (player) i we determine the in- and out-degree

(kin,i, kout,i), the nearest-neighbor degree knn,i, and its clustering

coefficient (see SI). We calculate partial correlations between

wealth and the network parameters controlling for total activity.

We collect the results in the lower part of Tab. 2. To elucidate the

dependence of wealth on various combinations of network factors,

in Fig. 8 we plot two-dimensional binned averages of wealth-gain

versus pairs of network properties. The results are:

Trade network. As expected, the trade network has the

strongest influence on wealth. Trade in-degree has a significant,

positive partial correlation with wealth. The in-degree is defined as

trade with a player’s production facilities and is therefore a proxy

for his production. Figure 8 A confirms the positive connection

between trade in-degree and wealth, while not showing any

influence of trade out-degree. However, Tab. 2 reports a positive

correlation between wealth and active trade with the production

facilities of fellow players, in agreement with the positive effect of

active trading shown in Fig. 5 A. Figure 8 B presents the

undirected degree of the trade network versus the nearest-

neighbor degree. The richest are found to have an intermediate

nearest-neighbor degree of about ktrade
nn *35{70, well below their

undirected degree. This means that they are selling to people that

are less connected in the trade network than they are themselves.

Table 2 shows a negative correlation between the nearest-

neighbor degree and wealth with a significance level below

0.01%. From Fig. 8 C we gather that high wealth-gain is made

with a combination of high degree and a relatively low clustering

Figure 8. Wealth-gain as a function of network properties. Color represents the logarithm of the wealth-gain, log10 (g), from blue (lowest) to
red (highest), empty bins are white. A trade in- and out-degree, B trade undirected degree and nearest-neighbor degree, C trade undirected degree
and clustering coefficient, D friend in- and out-degree, E enmity in- and out-degree, F enmity undirected degree and nearest-neighbor degree. Data
are taken every 240 days (see Methods).
doi:10.1371/journal.pone.0103503.g008
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coefficient, Ctrade*0:1. This means that rich players avoid cyclical

structures in their trading networks, which allows them to act as

‘‘brokers’’ between players that do not directly trade with each

other. The partial correlation coefficient between wealth and the

trade clustering coefficient is negative.

Communication network. Communication in-degree has a

significantly positive partial correlation coefficient. High commu-

nication in-degree means good access to information, which is

expected to be profitable. The Communication out-degree shows

positive partial correlation on most days. A player’s communica-

tion out-degree is the number of fellow players she tries to

influence. Since most communication links are reciprocal, and in-

and out-degree are therefore highly correlated, there might be a

spurious effect of the communication in-degree. The communica-

tion nearest-neighbor degree has a negative and mostly significant

partial correlation coefficient. This might indicate it is advanta-

geous to mainly converse with fellow players who are less informed

than oneself.

Friendship network. In Fig. 8 D the situation for the in- and

out-degrees for the friendship network is shown. It is visible that

players with high wealth-gain are those that are liked by more

players than they like themselves, kfriend
in wkfriend

out . Poor players

have marked fellow players as friends more often on average than

they have been marked. In Tab. 2, friendship in-degree hardly

shows any correlation with wealth, while friendship out-degree has

a significant negative correlation on all sampling days except day

240. This might indicate that time and resources invested into

friendship are missing for the generation of wealth.

Enmity network. We see that people with above average

wealth-gain are very rarely marked as an enemy by others, but do

mark others as enemies, see Fig. 8 E. Players who have been

marked as enemy by many others are generally poor. In

agreement with this finding, the enmity in-degree has a significant

negative partial correlation with wealth, while the enmity out-

degree has a weak significant positive correlation with wealth, see

Tab. 2. This suggests that players with high wealth-gain actively

invest in a good reputation. Finally, players with above average

wealth-gain have a high nearest-neighbor degree, see Fig. 8 F.

Table 2 reports (mainly) significant positive correlations between

wealth and the enmity nearest-neighbor degree. Players with high

enmity (in)degree are ‘‘public enemies’’ [50]. A high kenemy
nn means

that one is mainly the enemy of public enemies and that one has

few private enemies.

Discussion

We studied the economy of the virtual world of the MMOG

Pardus. We found that the wealth distribution in Pardus has a

similar shape like wealth distributions of ‘‘real’’ economies,

including an exponential bulk and a power-law tail. The power-

law exponent of Pardus is within the range of real-world power-

law exponents describing the moderately rich. The Gini index

shows that wealth is slightly more equally distributed in Pardus
than in many Western industrial countries. We observe that the

shape of the wealth distribution is stable: eventual external

perturbations exponentially relax to a stationary state. While the

total wealth in Pardus increases over time, large scale conflicts

hamper the creation of wealth. We found that an average player’s

wealth grows linearly with his total activity. As total activity is

limited by a player’s age (time in the game), wealth also increases

linearly with the age of a player. Linear increase suggests that

neither learning nor proportional growth (i.e. ‘‘rich get richer’’) are

dominant on a global scale. Players who entered the game earlier

have higher wealth-increase rates.

For the first time, we could observe the connections between

personal wealth and social behavior. We found that wealthy

players organize in social groups. A group size between three and

120 members appeared to be best for wealth and achievement-

factors. We found that wealthy players invest in their social

reputation by constructive actions. Personal wealth in Pardus is

connected to skills for collecting resources and high ‘‘political’’

influence, but not to combat skill and fighting experience.

Analyzing the trade network, we observed that wealthy players

trade with many others, while their trade partners trade with fewer

others, and hardly among each other. Taken to the extreme, the

wealthy organize their local trade network so that they are the hub

of a star-like network. In the friendship and enmity networks we

observed that the wealthy are well respected, and show animosity

– if at all – only towards public enemies.

Materials and Methods

Datasets
We study data from one of three game universes of Pardus,

Artemis. Days are counted from the opening of this server, day one

is June 12, 2007. For dataset 1, used for Figs. 1, 3, and 5, we

extract snapshot data on day 1200 since the opening of the game,

i.e. September 23, 2010. We selected only those players that have

been active in the last 30 days before day 1200. For dataset 2, used

for Fig. 2, we extracted data on every day and applied the same

filtering as for dataset 1, i.e. we excluded players whose last activity

was longer than 30 days ago. For dataset 3, used for Fig. 4, we

took the complete timeseries of all players that were in the game

on day 1238, which is the last day included in our database. For

dataset 4, used for Figs. 8 and 7 and Tabs. 2 and 3, we used

snapshot datasets separated by 240 days, starting at day 240. After

240 days, the autocorrelation function of wealth has decayed to

rauto~0:355, so the single data points can be treated as

independent. The data contain a daily snapshot of the friendship

and enmity networks, all players’ possessions, and alliance

membership. For the trade network, we draw a link on day t� if

a trade has taken place within the time range ½t�{60,t��. Players

who have only recently joined the game are naturally close to their

initial wealth and are therefore excluded from datasets 1, 2, and 4.

As a criterion for admitting a player to the dataset, we require that

the players have actively played for ten days, or more precisely that

they have spent at least 50,000 APs. Dataset 1 contains 3,245

players, dataset 2 contains 4,483,175 data points from 16,662

distinct players, dataset 3 contains 3,693 players, and dataset 4

contains 25,195 data points from 12,186 distinct players on 5

distinct days. Dataset 1 is a proper subset of dataset 2, and also of

dataset 4.

The power-law shown in Fig. 1 A was determined by a linear

least-square fit to the logarithms: For logP(W§w)~Apl{a log w,

Apl and a were determined minimizing
P

i:P(W§wi)ƒ0:05 D log P(W

§wi){Aplzalogwi D2. In a similar way the exponential in Fig. 1 A

was obtained by choosing Aexp and Bexp~{1=Tw minimizingP
i:P(W§wi)v0:5^P(W§wi)w0:1 D log P(W§wi){AexpzBexpwi D2.

Lorenz curve and Gini index
Let N be the number of players, and wi the wealth of player i,

ordered so that wiƒwiz1 V i[f1 . . . Ng. The Lorenz curve is

given by the coordinates
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Lx
j ~

j

N
, L

y
j ~

Pj

i~1

wi

PN
i~1

wi

,

and their piecewise linear connection. For complete equality,

wi~wjV i, j[f1 . . . Ng, wi cancels and Lx
j ~L

y
j , turning the

Lorenz curve into a straight line from (0,0) to (1,1).
Let A be the area under the Lorenz curve. The Gini index [59]

is defined as g:1{2A. It can be calculated from the data by

g~1{2

PN
i~1

(Nz1{i)wi

N
PN
i~1

wi

{
1

2N

0
BBB@

1
CCCA :

For complete equality, g~0, and for maximal inequality (wi~0

for ivN), g~1{
1

N
.

Correlation coefficients and partial correlations
Throughout the paper we report correlations by the widely used

Pearson’s correlation coefficient, calculated from data as [60]

rw,x~

PN
i~1

(wi{SwT)(xi{SxT)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

(wi{SwT)2 PN
i~1

(xi{SxT)2

s ,

where S:T denotes the average over all i. To determine the effect

of single factors on wealth while removing the effect of total

activity, we calculate partial correlations controlling for total

activity: For both wealth w and the studied factor x, the linear

regression on total activity a is calculated. The correlation between

residuals of these regressions is the partial correlation coefficient

r(w,x)=a [60]. Equivalently, r(w,x)=a can more easily be calculated as

r(w,x)=a~
rwx{rwarxaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1{r2
wa)(1{r2

xa)
p :

Supporting Information

Figure S1 Wealth distribution of Sweden from 1999 to
2006 with fits. Black triangles mark the data, the continuous

blue line is a power law fit with exponent as indicated, and the

broken blue line is an exponential fit with ‘‘wealth temperature’’ as

indicated. Data source: [30].

(EPS)

Figure S2 Comparison between renormalized wealth
distribution on day 1200 and on a varying second day.

Wealth is rescaled by the daily mean wealth Sw(t)T, The rescaled

distributions are compared by A the Jensen-Shannon divergence and

B the Kolmogorov-Smirnov statistic. [60]. Black curves fit the decay

of the perturbation by an exponential with decay time A tJS~15:7
and B tKS~15:2. Dotted black lines mark the previous level.

(EPS)

Figure S3 Cohort wealth as a function of time. Cohort 1

(G1) contains all players who joined Pardus on the first day.

Cohort 2 (G2) contains all players you joined between day 2 and

200, cohort 3 (G3) all who joined between day 201 and 400, etc.

Wealth wg, j(t) of cohort Gj at time t is calculated as wg, j(t)

~Swi t{t0,iz~tt0,j

� �
Ti[Gj (t), where t0,i is the date at which player i

joined the game and ~tt0,j: mini[Gj
t0,ið Þz maxi[Gj

t0,ið Þ
� �

=2 is the

average cohort entry time. Players are considered as long as they

are in the game, i.e. the sizes of the cohorts are not fixed, but may

decrease over time, Gj(t)(Gj(tz1) t§ maxi[Gj
t0,ið Þ

� �
. Gray

areas mark times of war, dashed lines represent linear fits omitting

the transient first 120 days. The slopes of these lines are 4.3, 3.5,

3.4, 3.6, 3.3, and 3.2 |104 for cohort 1 to cohort 6, respectively.

(EPS)

Figure S4 Probability to leave the game as function
of age and wealth. Every day except the last, players are

sorted into bins according to their current age and their

current wealth: Ntot(w,age)~
P

t # i : log10 (wi(t))[ log10 (w)�f
{dw, log10 (w)zdw� ^ t0,i[ t{age{dage,t{agezdage

� �
g, where

the ds denote half the bin size (and all other quantities as in the

caption of Fig. S3). In a similar way, we count players per bin that

are not in the game anymore the next day, Nleave(w,age). The

frequency (empirical probability) for a player with a certain

combination of wealth and age to leave the game is than

P(leaveDw,age)~Nleave(w,age)=Ntot(w,age). Color in the plot

denotes log10 P(leaveDw,age)ð Þ, bins with insufficient data, i.e.

Nleave(w,age)~0, are colored white. Only players who had

‘‘spent’’ at least 50,000 APs have been taken into account.

(EPS)

Table S1 Comparison of power law exponent a of the
Pardus wealth distribution to real world data.

(PDF)

Table S2 Linear regression model for wealth. Data taken

at days 240, 480, 720, 960, and 1200 after the beginning of

the game. �p valuev0:05, ��p valuev0:01, ���p valuev0:001,
����p valuev0:0001.

(PDF)

Data S1 Data as plotted in Figs. 1–8.

(ZIP)

Text S1 Definition of Network Properties.

(PDF)
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