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ABSTRACT

A correspondence is observed between a class of n-person
cooperative games and production functions with fixed, discrete
factor inputs. This correspondence motivates a simple way of
valuing the players (or factors): the players, or factor re-
presentatives, set prices on themselves in the face of a market
of buyers. A noncooperative price-setting game results for
which equilibrium prices always exist. Interpreted as a cooper-
ative game it always has a core, which reduces to the core of
the original game if the latter is nonempty. This concept was
originally applied to the problem of determining the relative
value of the players in a voting game when a market exists for
their votes.
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The Market Value of a Game

Consider a cooperative game, by which we mean a group of
individuals whose cooperation can produce valuable results. The
potential 'value' of the different possible subgroups of individ-
uals is assumed known. A fundamental problem is how to attribute

value to the individuals based on their contribution to coalitions.

It is customary to treat this problem axiomatically, regard-
ing the game as an entity complete in itself, played in isolation
from the rest of the universe [4,7]. Doubtless this is a con-
venient and reasonably correct assumption for many types of games.
However, there is a large class of games, including for example
many 'economic' types of games, for which this approach is in-
appropriate. These games are characterized by the feature that
the players' actions frequently have value to agents outside the

game and this value is completely transferable.

Examples of such games abound. A classic instance would be
any cooperative agreement among a group of individuals to produce
goods for an external market by a division of labor. A second
example is the control of production by oligopolies. Yet a third
is the class of political games, in which allocation decisions
to outside interest groups are made by certain coalitions of
decision makers. The latter is an example of a situation where
the players' (i.e., the politicians') actions actually have no
direct value, in and of themselves, to the players at all:
rather, they have value only to the constituents, who are out-
side the game. Of course, these constituents may in turn be

willing to compensate the players for their actions.

It will be shown that the existence of an external market
for a game has direct implications for the way the players can
be valued. The reason is that under various valuations there
will be an incentive for outsiders to buy control of particular

subsets of players on which profits can be made.



If the core of the game exists, and if the players act co-
operatively, then they can be consistently valued by any imputa-
tion in the core, and outside agents will not be able to make any
profits. If the core does not exist, however, then the players
cannot obtain the whole value of the game in the face of a market.
Assuming that the players cooperate, exactly enough profits will
be skimmed off by entrepreneurs to allow a core to exist on what
is left over. If the players act noncooperatively, then even more
may be skimmed off in pﬁre profits. In other words, the non-
existence of the core of a game means that positive profits can
be made by entrepreneurs, and that structurally there is a possi-~

bility for exploitation.

These results apply not only to the class of games mentioned
above, but to virtually any production function with discrete
factor inputs. Further, while it would be possible to treat the
external market as a part of an 'enlarged' game, a good deal of
flexibility is sacrificed in so doing: the essential role of the
game as production activity is obscured, and other important con-
nections with the outside universe such as opportunity costs are
also lost. A more fruitful approach is to focus on the game as
the entity of interest without forgetting the market "environment'

that conditions its behavior.

Let v be the characteristic function of a cooperative n-
person game in which payoffs are made to the players by agents
outside the game in return for valuable actions the players

perform. The set of players will be denoted by N = {1,2,...,n}.

v is assumed to satisfy the following two properties:
(1) v(s) > v(¢) =0 for all SCN ,

(2) v(SUT) > v(S) + v(T) whenever SNT = ¢ .



v may be thought of as a production function whose factor
inputs are the players. In the language of production theory,
condition (1) allows free disposal, and condition (2) allows

joint production.

Conversely, virtually any production activity whose inputs
are discrete in nature can formally be described by such a pro-
duction function v. If each factor is thought of as being
"represented" by a player (for example, its owner), then a co-
operative game is defined. This establishes a correspondence
between cooperative games and discrete production functions that

has important consequences.

Example 1. (Team Recruitment)

An example of a team recruitment problem is the following:
athletic managers are to recruit teams from a draft pool of
players in a sport. Each potential team has a box office value
dependiné on the individuals composing it. The value of two
teams taken together is at least the sum of their values taken

separately.

Another example would be the recruitment of performing
artists by booking agents. Consider the following simple numer-
ical example. A night-club owner wants to hire singers from a
"pool" consisting of a soprano (S), alto (A), and a contralto (C).

The values of the different combinations of players are

v(¢) =0
v(s) = 80 v(S5,A) = 900
v(A) = 50 _ v(S5,C) = 800
v(C) = 40 v(A,C) = 400
v(S,A,C) = 1000

Example 2. (Joint Resource Use)

Four countries A,B,C,D, border a sea that can be exploited
for commercial fishing. Each may establish controls on over-

fishing within its own territorial waters; however, because of



interdependencies, cooperation in setting controls leads to
greater productivity in the total size of the catch. Let v(¥)
represent the monetary value that a set & of countries can obtain

by setting policies together:

v(e) =0
v(A) = v(B) = v(C) =1, wv(D) =0

v(A,B) = 10 v({a,B,C) = 13
v(A,C) = 9 v(A,B,D) = 12
v(a,D) = 8 v(a,C,D) = 11
v(B,C) = 7 v(B,C,D) = 7
v(B,D) = 4

v(Cc,D) = 5 v(A,B,C,D) = 15

These examples are relatively simple; the structure of the
production function v may in reality be extremely complicated
combinatorially, reflecting complex substitution possibilities
between the factors. Hence the relative value of the factors is
not at all obvious. In fact, it will turn out that there may be
a multiplicity of valuations of the factors; nevertheless definite
bounds can be placed on the region within which all economically

plausible valuations must fall.

Two approaches may be taken. The first allows the market
participants outside the game to set prices by bidding on the
factors. The second views the external market as responding to
prices that are set by the players. The latter approach only
makes sense of course if the factors really are represented by
agents who can act to set prices; in other words, if the produc-
tion function really is a "game" rather than a collection of mute

factors.

It is the second approach that will be adopted in this paper.
However it can be shown that a natural bidding model leads to
exactly the same values as are derived here, hence the two ap-

proaches are compatible [10].



Given v, let p = (p1,p2,...,pn) > 0 be a hypothetical set
of prices for the players. For any subset SCN the profit of S
relative to p is v (S) - épif In particular, the empty set al-

ways yields zero profit. 1)

The external market will be treated in the sketchiest of
terms. It may consist of one, several, or many agents, who re-
spond to prices set by the players. Only one assumption is made

regarding the market:

(3) Market Postulate . For any given prices p the set

of players bought constitutes a maximum profit set.

This assumption is certainly plausible if there is only one
buyer. If there are several buyers, they can be thought of as
arriving at the purchase window in some order, and a similar
outcome obtains. Other market models suppdrting this hypothesis

can easily be imagined.

COOPERATIVE MARKET VALUE

Let the players in the game propose some division of their

joint proceeds. What is the maximum amount they can obtain?
Suppose for example that the trio proposes the distribution

pg = $633 1/3 , = $233 1/3 , p, = $133 1/3

Pa
This distribution effectively establishes prices for the
various players. A market viewing the distribution will see that

each of the three duos constitutes a most profitable set (the
profit being $33 1/3 for each), whereas the trio would yield zero
profit. Hence one of the duos will be hired, and some player
will be excluded. But then the players will not obtain the full

$1000, so the proposed distribution is infeasible.



Of course, it might be argued, the players could act as a
coalition and simply insist that they must all be bought together
or not at all. Then they would receive $1000, and could split
it as proposed. Unfortunately there is a very strong incentive
for such a coalition to break up, since any duo would be better
off by offering to defect (for a bonus) and the market agents

might well try to induce them to do so.

The conclusion is that if the trio has any hope of obtaining

$1000, they cannot split it in this way.

In general, let XqrX5,...,%X, be a proposed distribution to

the coalition N. As viewed by tﬁe market, the amounts X; con-
stitute effective prices for the players. Hence N will only be
able to obtain the amount ﬁ}ﬁ_ if the set of players bought con-
tains all players i such that X; > 0. Thus there must be a

maximum profit set T with respect to x such that x; = 0 for 1&T.

If g is the profit from T, then

(4) q=v(T) - }x; 2 VvI(S) - ]x; for all SCN .
T S
However, X, = 0 for i T implies
(5) v(N) - in = v(N) - in > v(T) - ZXi =q ,
N T T

so equality holds in (5) and N is also a maximum profit set with

respect to x.

The maximum amount N can obtain is therefore g*, where g*

is an optimum to the linear program

(6) min g
subject to q + Zpi > v (8) for all S
S
q + Zfﬁ_ = v (N)
N
p2>0



Here p has been identified with x. Note that g* > 0 by
virtue of the inequality with S = ¢.

It is easily seen that (6) always has an optimal solution,
since q = v(N), p = 0 is feasible and g is clearly bounded below.
Any optimal soluEion~g* to (6) will be called a cooperative market
value for v. A cooperative market value represents a distribu-
tion to the players that yields a maximum total return to the
players in the presence of a market which provides the payoffs.

If the game v has a core, then the minimum value of g is zero,
and the cooperative market values are precisely the distributions
in the core. Thus the cooperative market value concept general-

izes the core in a natural way.

In Example 1 the unique cooperative market value is
p§ = $600, pi = $200, pé = $100, and the market absorbs $100 in
pure profits. In this sense the players can be exploited by a

booking agent, nightclub owner, or other entrepreneur.

Of course, for the players to actually receive these amounts,
all of them must be bought. But each duo also yields as much
profit as the trio, $100. What assures that the market will buy
the trio instead of some duo at these prices? The answer is
that the players could receive these amounts; moreover they can
all assure themselves of up to these amounts, since if all "shade"
their prices by a small amount e, then {S,A,C} will be the unique

most profitable set as viewed by the market.

In general for any game v, if all players with positive co-
operative market values "shade" their prices by a small amount ¢,
then all are certain of being bought. Hence the cooperative |
market value can also be interpreted as a limiting distribution to

the players that is independent of how the market resolves a "tie."

One can similarly ask how much any subcoalition CCN could
obtain (in the limit) by a suitable pricing of its members. For
C to be able to guarantee itself an amount o, it must be true

that no matter what prices are asked by the players not in C, C



will be contained in some maximum profit set and receive the
amount &. More precisely, C can guarantee itself o if there is
a |cl-vector p° > o, ép€ - &, such that for any prices p' C2 0
quoted by the players in N-C, there exists a maximum profit set

T relative to p = (pC,EN_C) with = q.

T o
cor Pi

The maximum amount C can obtain in this way is denoted by
v¥ (C), and the n-person game v* so defined is called the cooper-

ative sell-out game. It can then be shown that
every cooperative market value for v is in the core of v¥.

This result, which is a special case of Theorem 2 below,
says that no coalition can, by any pricing policy, guarantee
itself more than it gets under the prices represented by a co-
operative market value. Combined with the earlier observations
about the relationship between cooperative market values and the

core of v, it also implies that

the core of v* is always nonempty, and contains the core of V.

It will also be shown (Theorem 2) that while the core of v¥*
may contain distributions other than the cooperative market
values, none of these meet the test of being a "noncooperative

equilibrium" (to be defined below) and therefore are not viable.

In the trio game of Example 1, consider the coalition of
the soprano (S) and the alto (A). If both have positive prices,
Pgr P, > 0, then {s,A} will be contained in a maximum profit set
when C charges Pc only if

3 ~

uOO—pC-pA 900—ps-pA MOO—pC—pA;1000—pS-pA—pC

~

A

4800—pc—ps 900—ps—pALor 1800—pc—pS

A
A

1000 - pg =Py = Pc 7

0

A
A

900-pS-pAJ L 0 < 1000 - pg = Py ~ P

o~

that is,



(ps < 500 + pc‘ pg < 600
TpA;1oo+pd or p, < 200 g
|Ps + Py < 900) Pg + pp £ 1000 - pn
The min max (ps-kpA) is achieved when Pg = 600, and Py = 200.
>0 PgrPp>0
Pe=® PgrPp
Thus v*(S,A) = $800. Now the maximum amount that the singleton
set {S} can guarantee itself is at most v(S) = $80, since other-

wise the others might charge so much that only the empty set
Yields a nonnegative profit. On the other hand, with Pg = $80
none of the sets ¢, {A}, {C}, {A,C} can vield a higher profit
than does {S,A,C}, hence v#*(S) = $80. By this type of reasoning
we find that

v¥(¢) =0
v¥(S) = 80 v¥(S,A) = 800
v¥(A) = 50 v¥(s,C) = 700
v*(C) = 40 v¥ (A,C) = 300
v*(S,A,C) = 900
In this case the cooperative market value E* = (600,200,100) is

the unique vector in the core of v¥*.

NONCOOPERATIVE MARKET VALUE

If the core of the original game v is empty, it can easily
be imagined that the players will not cooperate at all, because
there is not enough economic glue to hold self-organized coali-
tions together. This does not mean, however, that the benefits
the players can produce by joint action will be lost. It simply
means that coalitions will be organized from the outside by
entrepreneurs. Under this regime production is efficient —-- the
maximum possible value v(N) will be produced. For their services,
however, the entrepreneurs extract a profit. This profit is
necessarily positive if the game has no core; in fact, it may be

very large. The minimum profit that will be extracted if the
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players cooperate in setting their prices is the optimal g* of
(6). This value will be called the extractable value of the
game, and denoted by g*(v). It represents the minimum amount
that must be skimmed off of each coalition's value for the

core to come into existence.

If the players do not cooperate, ,then even greater profits
may be extracted. However the possible prices that can hold
even in this setting are quite restricted. 1In fact, we shall
show that the attempts of the players to find their most ad-
vantageous prices relative to the others' has an equilibrium

outcome.

Define the "price-setting" game as follows. For any pos-
sible prices p let f(p) be the maximum profit set that is actu-
ally bought aE these grices. Typically there is only one such
set for a given p, however f serves as a tie-breaking rule.if
there is more than one maximum profit set. The function f is
called a market schedule. Some specification of f is necessary
for the price setting game to be well-defined, and it turns out
that there always is some choice of £ that yields a price equi-
librium. Happily, the equilibrium prices and payoffs, if they

do exist, do not depend on which particular f they come from.

Define the noncooperative sell-out game for a given f to
be the game whose player set is N, and in which a strategy of
player i is to name a nonnegative real number Py (his price);

the payoff to i given the strategy p = (p1,p2,...,pn) is then
p; if iEf(g) ’
0 if i & £(p)

A price vector p > 0 is a strong noncooperative equilibrium
(hereafter called simply an equilibrium) and (p,£f) is an equi-
ltbrium pair if there is no set of players that can change prices
in such a way that each receives a higher payoff than before,
assuming that none of the other players changes price [11. That

is,
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there is no nonempty CCN such that

pi = P; for all i1&C ,

¢, (p',f) > ¢;(p,f) for all i€C .

The class of all equilibria is easily characterized. Let
0

72

called critical sets. By assumption, N is a critical set. The

= {SCN: v(S) = max} be the family of maximum value sets,

eritical players N° are the players contained in every critical
set: N° = nNg
s€g°

For any price vector p define p, the normalization of p,

~

as follows:

0]

p = p; if i€N
=0 otherwise .
p is normal if p = g.
Theorem 1. Any game V has an equilibrium price vector p;

moreover p > 0 Zs an equilibrium and q the corresponding

extracted profit, i1f and only if

e
Q
+
t~1
H'UI
II'v

> v(S) for all SCN ,

(ii) g + ) P; v(T) for some critical set TCN ,

(iii) for every player k there exists

SCN with k€S5S andq+Zpi=v(S) .
S

These conditions say that p is an equilibrium if the
maximum profit g is realized on some critical set T and T remains
a maximum profit set (with the same profit gq) even when all non-

critical players quote a price of zero; further, no player is in
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every maximum profit set. The latter condition is clearly neces-

sary, else some player could raise his price further.

If the conditions are accepted for the moment as sufficient,
it is easy to see why an equilibrium exists, and how to construct
one. Beginning with prices go and some critical player k, raise
his price to the point where he is not contained in some maximum
profit set, and do this successively for all of the critical
players. In a finite number of steps, condition (iii) must be
satisfied. At this point the constructed price vector p satis-
fies p; = Ei = 0 for all noncritical i, and by construction all
critical sets are maximum profit sets, so conditions (i)-(iii)
are satisfied and p is an equilibrium. (This does not imply of

~

course that all equilibria may be constructed in this way.)

This theorem is a generalization of results in [8] for simple
games, and the proof that the conditions are necessary and suf-
ficient is given in the Appendix. Here we note several corol-

laries.

The conditions imply that in any maximum profit set S all
noncritical players have zero price. In particular, no matter
what £ is, all noncritical players will receive zero payoff.
Furthermore, if S* is the set of players sold and T the maximum
profit critical set guaranteed by condition (ii), then any player
in T - S* with a positive price could lower his price and improve
his income. Hence all players in T - S* must have zero price,
which implies S* is also a critical set. This shows that in

equilibrium the payoff to any player i is precisely Ei'

Corollary 1.1: (p,f) is an equilibrium pair iff p satisfies

(2)-(17271) and f(g) 18 a critical set.

Corollary 1.2: For any equilibrium price vector p, the

equilibrium payoffs are p.

Corollary 1.3: If p is an equilibrium then so is p.
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Corollaries 1.2 and 1.3 say that the payoff vector from any
equilibrium set of prices is itself a normal equilibrium. Any
normal equilibrium will be called a noncooperative market value

for v.

Theorem 2. Every cooperative market value is a noncoopera-
tive market value; in fact, the set of cooperative market
values 7s precisely the set of noncooperative market values

contaitned in the core of v¥,

The proof is given in the Appendix.

The fishing rights game (Example 2) has a one-point core
consisting of the allocation (6,4,3,2) to players A,B,C,D re-
spectively. This valuation of the players is both a cooperative
and a noncooperative market value for the game and the corre-
sponding extractable profit is zero. However, there are non-
cooperative market values not in the core. The reader may verify
that each of the valuations (8- x,2+ x,3,x) where 0 < x < 2is a
noncooperative market value yielding a profit of 2 - X units to

the market.

OPPORTUNITY COSTS

In the sell-out game, if a player is not bought he gets
nothing. This is because, by assumption, value can only be ob-
tained through intermediary agents. Thus, if the players in a
football draft pool are not hired by a team, they get nothing;
if a fishing fleet does not buy a licence to fish in the terri-
torial waters, the country gets nothing; if the singer is not

contracted by the night-club owner, he gets nothing.

This assumption ignores, however, the true relation between
the players in the game and the universe outside the game: in
reality, each player or factor has an opportunity cost of being
employed in the game v as opposed to doing something else. The
maximum value of doing something else establishes a floor price
pg > 0 for each player i in the game. Thus if the football

player or singer is not recruited, he can get an alternative job
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or collect unemployment compensation; if the country's coastal
waters are not exploited for fishing they could be used for
example for waste dumping. The opportunity costs Eo are addi-
tional data of the problem not specified in the game v; however,

these costs must be included in realistic applications.

The previous theory dealt with the "pure" case go = 0. The
results generalize in a straight-forward manner to the case of
an arbitrary EO > 0. However, direct connections with the core
generally do not survive, except in the case where the opportu-

nity cost of each player i is identified with v(i).

Given EO, the cooperative sell-out value v¥(C) of a coalition
CCN is the sum of its opportunity costs plus the maximum addi-
tional amount it can obtain by some distribution over and above

these costs.

Now a coalition C can obtain an amount o in addition to its

opportunity costs if there is a distribution x, > 0 for all iecC

such that for pg = x. + pi and any feasible prices Pg—ci p; de-

i
manded by the other players, there exists a maximum profit set T
. C _N-C .
) . = o,
with respect to (E /P ) with cﬂrxl o
For any distribution x = (x1,...,xn) which yields a maximum

for the coalition N, x + Eo = p will be called a cooperative
market value for V relative to p°.

~

A critical set relative to p° is any set which yields max-
imum profits when prices are p®. The critical players N° are
those contained in every critical set. A price vector p is normal
if p = p where p is defined by

Ce o)
Py if i EN

5. =
op; if ign® .

If x + p~ = p is a cooperative market value then for some T

~ ~ ~

&

— pa— —— \ — O 3 .
g = v(T) %pi > v(S) gpi for all s and p; = p; for all igT.
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Hence

v(t) - Ipy - I x> v(S) - ]p;

0 for all S
T T-S s 1t

If S is critical, then equality must hold. Hence maximum profits

are attained on all critical sets, and p; = pg for all noncritical
players.

The cooperative market values relative to po are therefore
the optimal solutions to the linear program '

(7) min g
subject to
P 2 EO with p; = pg for i9ENO '

q +

o}

v
<
0

for all S

14

S
q + )} p; = v(T) for all critical sets T
T with respect to po.

~

The optimum value of (7) is called the extractable value
of the game v given floor prices po.

Clearly an optimum always
exists.

We illustrate these ideas with the "trio" example. Suppose

that each of the singers can work instead as a typist and earn

$250. The profit from the different coalitions, net of opportu-
nity costs, is

w(¢) =0
w(S) = =170 w(S,A) = 400
w(A) = -200 w(S,C) = 300
w(C) = -210

w(A,C) = =100
w(S,A,C) = 250

The unique critical set is the duo {S,A}. If the soprano

and the alto receive premiums of $300 and $100 respectively,

then {S,A} yields a net profit of zero and no other set yields a

positive net profit. Therefore by (7) the extractable value

is zero, and (550,350,250) is a cooperative market value for v
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with the given floor prices. This is not the unique cooperative

market value, however. The same analysis holds for any amounts

xS and xA such that Xgq + xA = U400, Xg > 300, X5 > 0. Hence the
cooperative market values form the family {(650-xA, 250-+xA,250):
0 2 x, 2 100}.

If each player's opportunity cost is taken to be v{(i), then

the core of v exists if and only if the extractable value of the
game is zero, and the cooperative market values constitute pre-

cisely the core of v.

For arbitrary floor prices EO > 0 the definition of the
noncooperative sell-out game is generalized as follows. The
strategy space is defined to be the set of all p with p > EO,
and for any market schedule f, the payoff is

q)i(E’f) = pi if iEf(}g) ’

= p; if igf(p) .

. An equilibrium means a strong noncooperative equilibrium
with respect to this game. Theorems 1 and 2 and their corollaries

now generalize verbatim with the added condition that p > p°.

=

APPLICATION TO VOTING GAMES

A legislature is a natural example of a situation in which
the players' actions do not yield value to the players directly,
but to interest groups outside the game. The representatives of
the interest groups, called lobbyists, view the game as a pro-
duction process in which the object produced is a decision, and
their object is to buy combinations of legislators that yield a

desired outcome.
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In the context of voting games opportunity costs also arise
in a natural way. The alternative to selling out is to "stay
honest," which doubtless (to most legislators) has a positive
value. The fact that this value is particular to the legislator
and may be nontransferable is of no importance: a floor price

pg > 0 is assumed given for each player as a datum of the problem.

The voting game v is now interpreted as a production func-
tion in the following way. For a given issue that some interest
group wants to have passed, every losing set S has zero monetary
value, while every winning set T has a monetary value v(T) = L,
where L is presumed to be "large" relative to the players' floor
prices. If L is sufficiently large relative to the players'
floor prices (a not unreasonable presumption) then, unless there
is a veto player, the value of L is immaterial to the determina-
tion of either cooperative or noncooperative market value. This
is because the price ceiling of a plaver is determined by the
possibility of substituting other players for him, hence ultimately

on the others' floor prices, not on: the value of L.

Example 3. Consider the weighted voting game (3,1,1,1,1,1)
where a weighted vote of 5 or more is required to win. Let every
player have the same floor price po > 0, and let the value of
every winning set to a lobbyist be some large number L. The
critical sets S are those of form {3,1,1}, and player 1 is the
unique critical player. By Theorem 1, the normal noncooperative

equilibria are the solutions p to the system

~

(0 p2p’

(i) g + épi > L for all winning sets S
(ii) g + épl = L for all critical sets S
(iii) g + épi = L for some winning set S not

containing player 1.
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Since only player 1 is critical p; = po for players 2 to 6.
Moreover, the only winning set not containing player 1 is
{2,3,4,5,6}, so by conditions (ii) and (iii), p, + 2p° = 5p°,
whence pg = 3po. Thus p* = (3p°,po,po,po,po,po) is the uniqgue
noncooperative market value (hence it is also the unigue co-

operative market value) and market profits are g* = L - 5po.

The ideas of "cooperative" and "noncooperative" market
values and floor prices were first introduced [8] in the con-
text of voting games under the names "canonical equilibrium"
and "strong noncooperative egquilibrium" respectively. The orig-
inal motivation was to develop a measure of power with more
economic content than such value concepts as the Shapley-Shubik
and Banzhaf measures. In defining power it was argued that it
is not what a player asks but what he gets that counts, hence
the proper measure of his power is not his price but his expected
payoff. 1In [8] this was interpreted to mean his expected bribe
income under cooperative market value prices, i.e. his expected
bribe income over all equilibrium pairs (p,f) when p is a co-
operative market value and f a market schedule. In Example 3,
there are 10 critical sets, each of which might be the set bought
in equilibrium, hence the probability that any given noncritical
player is bribed is 2/5 and the expected bribe incomes are
(3p°,2p°/5,2p°/5,2p°/5,2p°/5,2p°/5) .

However, this interpretation ignores the fact that even if
a player is not bribed he still receives an implicit payoff --
his opportunity cost. The present model includes opportunity
costs in the payoff function and leads to the more satisfactory
result that price and payoff are the same -- at least for all

"normal" prices.

In the presence of a veto player -- that is, a player which
is necessary for every winning coalition -- the total value L of
the winning coalitions to the lobbyist enters explicitly, since
this value is the only effective ceiling on the price of such a
player. (In [8] the value of the winning sets was assumed to be

infinite and equilibrium was not defined for this case.) To see
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the effect of a veto player consider the same example as above
but with a quota of 6 required to win. Then player 1 is a veto

player, the unique noncooperative market value is
0 _0 _0 _0 _0 0
p= (L=-3p ,p /P /P /P /P )
and market profits are zero.

This model of vote buying holds whether there are one,
several or many lobbyists trying to obtain control of. the voters.
However, it may well happen that there are lobbyists on opposite
sides of an issue -- one trying to buy votes for, the other against.
In this situation the present model does not always apply, since
it is predicated on the assumption of a uniform market in which
all buyers perceive the same production function. This will be
the case for two opposing lobbyists only if the winning coalitions
are the same as the blocking coalitions (i.e., only if the voting
game is decisive, like simple majority rule). Various special
bidding mechanisms have been investigated for the case of two

opposing lobbyists [5,6,9].

RELATION TO OTHER VALUES

The vpreceding argument has shown that in the face of a market,
the players of a game with transferable value may not be able to
distribute to themselves the whole value of the game (unless the
game has a core). This distinguishes the concept of market value
from a number of other value concepts. (The idea that the players
should be able to distribute the whole value of the game goes
back to von Neumann and Morgenstern [7].) Here we contrast the
market value with several other value concepts using the "trio"
example, and show how the latter fail to satisfy certain simple

market tests.
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The unique cooperative (and noncooperative) market value
for the trio is (600,200,100) and it is assumed that all three
singers are hired. Clearly no singer will do better by asking
less, and if any tries to get more, only her rivals will be hired
and she will go begging. Moreover, $900 is the maximum that all

can get under these conditions.

Consider by contrast the Shapley value for this game: (495,
280, 225). This wvaluation will not stand in the presence of re-
cruiters (i.e. night club owners) because certain subcoalitions
yield more profit than the whole coalition. The unique most
profitable coalition under these prices is the soprano-alto duo,
with a profit of $125. 1In these circumstances one of two things
must happen: either the prices of S and A will rise, or the price
of C will fall (or both). Moreover this conclusion follows with-
out postulating any cooperative behavior on the part of the play-
ers, so the Shapley value fails the test of noncooperative price

equilibrium.

A second value concept, the generalized Banzhaf value (see
[2,3]) is based on a probabilistic assessment by each player of
his value in joining an existing coalition. If S is a coalition
and i¢ S then the value of i joining S is v(8U{i}) -v(S). 1If
all prior coalitions SC .(N- {i}) are equally likely we obtain the
Banzhaf value of i: )

8, = I [v(sulil) - v(s)1/2™"
SAN-{i}

N

The sum of the values may be more or less than the "value
of the whole," Vv(N).

The Banzhaf values for Example 1 are (BS,BG,BO) = (572.5,
357.5, 302.5). These are implausible as market values for the
simple reason that all nonempty sets yield a negative profit.

Another frequently used value concept is the least core and
a specialization thereof, the nucleolus. The least core is an

allocation x > 0 to the players such that the whole amount v (N)

~ = o~
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is divided, and the excess profit possible from any subcoalition

is a minimum, that is

min g

(1)

¥
v
1o

(ii) g + )} x, > v(8)

(iii) Jx, = v(¥)

These conditions are very close to the definition of the
cooperative market value, except for the crucial assumption
(iii) that the players must receive the whole value of the game.
Unfortunately, this simple difference leads to a value which
also fails to satisfy the test of noncooperative market equi-

librium.

The least core for the trio consists of the single imputa-

tion (ps,pA,pC) = (633 1/3, 233 1/3, 133 1/3). There are three
most profitable sets: {S,A}, {S,C}, and {A,C}. However, only
one of them will be bought -- which one depends on additional,

unspecified factors. Whether the choice is deterministic or
probabilistic, however, some player will always be able to quote
a slightly lower price and thus make sure that he is bribed with
certainty, in other words to increase his expected income. So
the players -- acting independently --will be both motivated and
able to upset this allocation: it fails the test of noncoopera-

tive equilibrium.

CONCLUSION

In summary, if the action of players in a cooperative game
has value to agents outside the game, a market for the game may
be created that conditions the plausible valuations that can be
placed on the players. The players are assumed to place values

on themselves and the market responds. If they do so noncooper-
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atively, then strong equilibrium prices or values can be shown
to exist. But even if they set their values cooperatively they
will not be able to realize the whole value of the game if the
core is empty. This means that, for purely structural reasons,

the players may be exploitable by outside entrepreneurs.

It is always possible, of course, to enlarge the original
game so as to incorporate the market. Introduce a new factor
"O" (the market) and define the game ¥V on {0,1,...,n} by v(S) =
v(S - {0}) if OES, Vv(S) = O otherwise. It will then be seen that
the cooperative and noncooperative market values are particular
imputations in the core of this augmented game. But the attempt

to encompass everything within a game having larger boundaries

obscures important features such as opportunity costs. The game
theoretic apparatus is more useful when it is employed flexibly
to bring into sharp focus certain types of interactions without
forgetting the larger system in which they are embedded. Here
this approach was used to focus on the players rather than the
market agents; exactly the opposite approach could be taken in
which price formation in the market is modelled in detail. It
may be shown, however [10], that this approach also leads to

precisely the value concepts described here.
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APPENDIX

Proof of Theorem 1.

The existence of an equilibrium has already been noted in

the text for p = 0 and the argument is similar for general po.

Sufficiency of the Conditions

Let p > p° satisfy conditions (i) - (iii) of Theorem 1. By
(ii) there is a critical set T that is also a maximum profit set
relative to p. Notice that (i) and (ii) imply p; = p; for all

i ET. Notice further that for any critical set S¥

2 v(s*) - . = v(s*) - . - (p; = p.)
q2zv sZ* P; = V SZ* Pj s*ZnT Pj ~ P,
= v(r) - Jp; - J (b, -pY)

T 1 s*xnr

il

v(T) - ) p: =q -
LP;

Thus

(8) g = v(S*) - )} p, for all critical sets S* .

Let f be any market schedule such that f(p) = T. We will
show that (p,f) is an equilibrium pair (thus also establishing
half of Corollary 1.1).

If not, then for some p' _O

>
nonempty coalition C, we have ¥.

Hence for T' = f(p'),
(9) ccrT

(10) p! > p; = Ei for all iecnT ,
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and
(11) p > p; =p; all iec~T
Now
(12) v(T) - Zpi < v(T') - z'pi
T T
and
(13) g=v(T) - IP: > v(T') -} p.
Po1 = 'g'Pl

Subtracting (12) from (13),
(14) ! pl-p) 2 ) (pi-Py) -
(15) J (Pi-Pp) 2 1 (pf-By)

By (10) and (11), p! > Ei for all ie€C, hence for all ie€N.
Since T'2TNC, (15) implies that pi = Ei for all i€ (T' - (TNC)).

Thus p} = Ei for all i €C - T, contradicting (11) unless C-T = ¢.
Thus
(16) cCTNT' and pi=5i for all i €T' - C .

By hypothesis C # ¢; choose j&€C. By (iii) there is a set
S* such that jgS* and g = v(5¥%) - SZ* P By (i) and the fact
that p > g, g = v(s*) - & Ei’ whence p, = p, for all i€s*.

~

Therefore, under prices E' the profit of S* is

e
I
T

[

v(s¥) - I pi=v(s*¥) - I p; - ] (pi-py) =a- J (p]
S* S* S*NC S*NC

However, the profit of T' is

v(T') - Zpi=q—g(pi-§i) ,

Tl
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which is smaller, since jE€C - S*¥ and pj > 55. This contra-
diction to the definition of T' establishes the sufficiency of

the conditions.

Necessity of the Conditions

Let p 2 go be an equilibrium, that is, a strong noncoopera-
tive equilibrium relative to some specific market schedule f.
Let f(p) = T, and q = v (T) -,%pi. We show first that T is a
critical set (this will, incidentally, prove the other half of

Coroliary 1.1).

Suppose not. Let Tﬁ = {iﬁﬂ?:pi > pi}, and define p8 such
that
p, if igT

p_ =
1 p; + € if ieT'

Consider an arbitrary critical set S*.

v(s*) - J p. > v(T) - Jp
s¥ * T
implies
(s#%) - ° - . - p? T) - ° - . - p°
v (5%) SZ* P; S*ZmT (p; - pi) > v(T) %pl r%(pl p;)

The two sides of this expression can be rewritten as

(s%) - €4 (pS -pJ) > v(T) - ¥ pt
v Sz*pl S*Z—T P17 P '%pl

. £ 0 =+ .
- = * 7 -
Since S*ETwi pi) e|S nT |,1t follows that for all
sufficiently small € > 0,

(17) v(s*) - I p. > v(m) - IpS
gx 1 T 1
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. . . € . .
Therefore T is not maximum profit under p . Since T 7=

. - - - y e . R ||' .
maximum Proilt undar p oand p differs rrom p’ oonly on 't , 1t

follows that every maximum profit set S with respect to EE has
a nonempty intersection with T'. Let C(C # ¢) be a minimal

element of the following family, ordered by inclusion:

Q% = {SrWT+ : S is maximum profit under pe} ’
and let
P if i€cC
p; =

Pio+eifiec ,

T .

where € is chosen so small that pg + e < py; for all ie In
particular, p' > pE with > for iezT+ - C. Now the maximum profit

under p' is the same as under pE; call it g'. In particular,

f(p') = 8' has profit q' under both p' and EE. By choice of ¢,

S'NT CC. By definition of C, S'fWT+ = C. Therefore CE;f(E').

But E' is obtained from p when all members of C reduce their
prices from p; to pi + €. Moreover,‘the payoff to 1€C is pg
under P but pg + € under Q', since Cg;f(g'). So p was not a
strong noncooperative equilibrium. This contradiction establishes
that T = f(E) must be a critical set. 1In particular, (ii) of

Theorem 1 holds for T.

With p® defined as above, the argument beginning at (17)

shows that for all sufficiently small £ > 0 we must have

v(S) - Ip; < v(T) - [p; =q for all SCN .
s T

The limit pf EE as €+ 0 is the vector pT defined by

Py if i €T

Ei ifigT ,

and
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(18) v(s) - Zp? < v(T) - Zp? = v(T) - Xpi = q for all SCN.
S T T

Suppose that Py ~ Ek = pﬁ for some k€T. By definition of
P, k is not critical, hence there is a critical set S such that
k¢ S. Then

v(s) - Jpd = v(r) - Jp?
s Tt
implies
T 0 0
v(s) - Jp; =v(8) - Ip; - ) (p;-p;)
s 1 s ¥ st P 1t

v(T) - }pd - (p; -pd) > v(T) - Yp. ,
'12"1 s;vr 11 '%l

the > since Py > Ek = pﬁ and k&€ T-S. This contradicts (18),
showing that p; = Ei for all i €T, hence pT = p. But then (18)

-~

is precisely condition (i) of the theorem.

Finally, condition (iii) is clearly necessary, since if a
player were contained in every maximum profit set, he could raise

his price and do better. O

Proof of Theorem 2.

Let p* be a cooperative market value relative to some given
floor prices po. We show first that p* is also a noncooperative

market value.

We know that p* is an optimal solution to (7), hence p* is
normal (p* = p*) and maximum profits g* are attained on some

critical set.

By Theorem 1 it remains only to show that no player k is
in every maximum profit set. Such a player k would have to be
critical, since all critical sets are maximum profit. But then
player k's price could be increased, contradicting the fact that

g* is a minimum for (7).
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Next we show that p* is in the core of v*. Since we have
%p{ = v¥(N) by definition of v*, it remains only to show that

ZPI > v*(S) for all sCN .
S

Suppose to the contrary that épI < v¥(S) for some S. By defini-
> 0 such that v*(8) =

gxi + g;@. Consider the price vector p' that equals x; + pg

on S and pg on N - S. By definition of v*(S) there is a maximum

profit set S' relative to p' such that X, = 0 for 1i€85 - s'. If

tion of v*(S) there is an |S|-vector x

X > 0 for some k€S - No, then there is a critical set not con-
taining k, and under p' it will yield a higher profit than S',

a contradiction. Hence X = 0 for all k&€s -~ NO.

Now consider the vector p" that equals X, + pg on S and pi

on N - S. By the preceding,

(19) p} = p}f for all igsnn® and ] p

*
o beo > 1 p¥

1 snn©

Again by definition of v*(S) there is a maximum profit set

S" relative to p" such that

~

(20) py = p; for all i€s - s"

Thus for any critical set T,

(21) q* = v(T) - Jp} > v(s") - ] p¥
T Sll

whereas

(22) q" = v(s") - SZ" p; > v(T) - %p; ’

whence

(23) %(p’i' - p¥) > Sz" (pY - pt) .

By (19), p; = pI for all ie€es" - T, and by (20) p; - p; 0

for all ie€T - S". Hence equality holds in (21)-(23). In par-

ticular, all critical sets are maximum profit sets under p".
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Thus (q",p") is feasible for (7). But (19) implies g" < g*, a

contradiction.

Conversely, let p be a noncooperative market value in the
core of v*¥. Then %pﬁ = v¥ (N). Now v¥* (N) = %;q for some opti- °
mal solution p* to the linear program (7); moreover, from the
definition of~v* and the fact that p* is normal, v*(T) ='%p;
for every critical set T. Since P is assumed to be in the core

of v*,

(24) Ip; > v*(T) = Jpt for all critical T .
T T

Since p and p* are normal,

~

+1Ip; 2 ZTP: +%P{ =I§Pi .

H- O

(25) p; = 1 p
N N-T T N
But Zpi = Zp; = v*(N), so all inequalities are equalities
N
in (24) and (25). Hence p is also an optimal solution to (7),

so p is a cooperative market value.ld
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FOOTNOTE

1. By profit we mean pure profit. If the opportunity cost of

alternative investment is some profit rate w > 0, then the pure
profit of a set S of factors is v(s) - (1+m) Zp;. This situa-
tion is treated by simply defining the new game. "v'(S) = v(S)/

(1 +m) for each S and proceeding as above.



