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1. Motivation

Our motivation is two-fold:

1. to expand Jonas et al. (2014)
Uncertainty in an emissions-constrained world
emerging from the 3 (2010) Uncertainty Workshop;

2. and to contribute to the unresolved guestion of How

limited are prognostic scenarios?

We are still moving at a theoretical level but we already
encounter important insights and windfall profits!



1. Motivation (2)

An easy-to-apply metric or indicator Is needed that
Informs non-experts about the time In the future at
which a prognostic scenario ceases to be (for whatever
reasons) in accordance with the system’s past.

This indicator should be applicable in treating a system /
model coherently (from beginning to end)!
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1. Motivation (1)

Jonas et al. (2014):

The mode of bridging diagnostic and prognostic
uncertainty across temporal scales relies on two
discrete points in time: ‘today’ and 2050.

Now we want to become continuous ...



1. Motivation (1)
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2. Framing conditions and definitions

Net Storage in the Atmosphere
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Jonas and Nilsson (2007: Fig. 4); modified M. Jonas et al.
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2. Framing conditions and definitions

Net Storage in the Atmosphere

Spheregof
Activity

under ) o
the Kp: / FF Industry Kyoto Biosphere Non-Kyoto™

Biosphere

Impacting? Qo ¢
%,\V

g

Only Fee ¢, Fierr ¢ @nd Fy. ¢ can be discriminated top-down
globally!

Jonas and Nilsson (2007: Fig. 4); modified M. Jonas et al.
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2. Framing conditions and definitions

Jonas and Nilsson (2007: Fig. 6); modified L Janes @iall
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2. Framing conditions and definitions

——

L Bottom-up /top-down (full C) accounting is not in place. ,
We cannot yet verify AC fluxes at the country scale!

; . E . o M. Jonas et al.
Jonas and Nilsson (2007: Fig. 6); modified O AT



2. Framing conditions and definitions

Verification

Observations
(+ Accounting)
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3. Diagnostic vs prognostic uncertainty

Diagnostic uncertainty
— can increase or decrease depending on whether or not
our knowledge of accounting emissions becomes more

accurate and precise!

Prognostic uncertainty
— under a prognostic scenario always increases with

time!

’g M. Jonas et al.
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3. Diagnostic vs prognostic uncertainty

Fossil CO, emissions ~ Kyoto-gas emissions
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3. Diagnostic vs prognostic uncertainty
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3. Diagnostic vs prognostic uncertainty

Probabllity of exceeding 2 °C.:

Indicator Emissions Probability of exceeding 2 °c-

Range Hlustrative default case®
Cumulative total CO; emission 2000-49 886 Gt CO3 B-37% 20%

1,000 Gt CO3 10-42% 25% 4-—
1,158 Gt CO3 16-51% 33%
1,437 Gt CO3
Curnulative Eyoto-gas emissions 2000-49 1,256 Gt CO3 equiv.
<=

29-T70% S0%.
B=-27% 20%:

1,500 Gt CO3 equiv. 4— 10-43% 26%

1,678 Gt COz equiv. 15-51% 3%
2,000 Gt CO; equiy. 20-T0% 0%
2050 Kyoto=-0as erissions 10 Gt CO2 equiy. :,.'r"' 6=32% 16%
{Halved 19907 18 Gt COs equiv. yre 12-45% 250%
(Halved 2000 20 Gt COs equay. yr 15-49% 325
36 Gt CO; squiv. yvr 39-82% B4%
2020 Kyoto-gas emissions 30 Gt C0z equiv. yrt (B-308%)" (21%)
35 Gt C03 equiv. yrt {13-469%) (20%)"
40 Gt COz equiv. yrt {19=-56%)" (37% )
S0 Gt COz equiv. yr (53-87%) (74%)

Meinshausen et al. (2009: Tab. 1) 50 th. Joznoalsset ilé
ctober =



3. Diagnostic and prognostic uncertainty

Prognostic ¢ Diagnostic

Additional
undershooting

Combined

Massari Coelho et al. (2012: Fig. 10) 50 th. Joznoalsset ?7
ctober =



4. Learning In a prognostic context

Emissions

)-7 M. Jonas et al.
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4. Learning In a prognostic context

Emissions

A

Emissions
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4. Learning In a prognostic context

Emissions

Task: Find optimum between

‘order of the signal’s dynamics’
and both the extension and the
opening of uncertainty wedge!
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4. Learnin
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4. Learning In a prognostic context
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5. Toward application: accurate + precise system

Assume that we have learned from a RL exercise

« that each historical data record has a memory and
exhibits (but not necessarily) a linear dynamics;

» that each data record’s uncertainty (learning) wedge
unfolds linearly into the future (until when?);

 and that our data records exhibit linear inter-
dependencies [eqg: T=T(C) ; C=C(E) ; E = E(t) ]

IIIII



5. Toward application: accurate + precise system

Assume that we have learned from a RL exercise

« that each historical data record has a memory and
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5. Toward application: accurate + precise system

E(t) — C(t) — T(t)

E=mgt, C=m,t, T=mt

We merge an accurate-precise system
with classical statistics!

Af, combines Unc (learn) + Dyn (mem)
knowledge!

M. Jonas et al.
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5. Toward application: accurate + precise system

Similarly for C=C(t):

Al [E——
C=m,t

T=mj,t

The linearly interdependent cases C=C(E) and T = T('Cl)z T(C(E))

C=m E=m.m_t=m_t;
T=m. . C=m m . E=m m. m,t=mjt

Find:
AE =Af. m

Ei™""Et

t= AfEtE
AC=Af m t=Af. . C=

AT = ﬂf,n m,t= Af’[‘tT =

That is:

M. Jonas et al.
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5. Toward a

Similarly for C=C(t):

lication: accurate +

recise system

Fumnction
F=aA a; =a'gy
f=ad+b8 -e':l'l':: = u"’ﬁ:‘; + fa:n'f; + 2aba, g
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Source: http://en.wikipedia.org/wiki/Propagation of uncertainty
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http://en.wikipedia.org/wiki/Propagation_of_uncertainty

5. Toward application: accurate + precise system

To understand this result, look at C=C(E), for which we found:

Rewrite as

2
F

~72 7 ~2 X
AfL +ARL —AfL =0 ©

Fa

a

which describes a second-order cone:

M. Jonas et al.
8 October 2015 — 29

“Tﬂ

=
-



5. Toward application: accurate + precise system

To understand this result, look at C=C(E), for which we found:
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5. Toward application: accurate + precise system

Serial-parallel interdependence:

E, = C
E, —» C,

— T

Deriving Af, 1s easy and straightforward

(particularly in the case of uncorrelated variables)!

The analytical expression for Af, also holds for a system,

where the second emissions source (E, ) is replaced by a sink (R: removal):

E - C, This is a game changer
R = C -1 that has not so far been
2 considered!

meaning that the learning does not change while the two systems differ:
C=C,+C, versus C=C, -C,.

That is, a sink reduces a source but their uncertainties still add up!

M. Jonas et al.
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5. Toward application: accurate + precise system

a) Emissions

AF

N net ‘

Jonas &Nilsson (2007: Fig. 9); modified

b) Emissions - Removals
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6. Insights and outlook

1. The risk of exceeding a 2050 global temperature target
(eg, 2 °C) appears to be greater than assessed by the IPCC!

The correct approach would have been to deal with cumulated
emissions and removals individually to determine their combined
risk of exceeding the agreed temperature target.

RL allows exactly this to be done: RL overcomes this shortfall
and allows the effect of learning about emissions and removals
Individually to be grasped.

M. Jonas et al.
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6. Insights and outlook

B Example:
1. The risk target
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6. Insights and outlook

2. \We anticipate that, in the case of success, the way of
constructing prognostic models and conducting systems
analysis will have to meet certain quality standards:

« Better diagnostic data handling (retrospective learning)!
» Specifying the models’ outreach limits!

« Safe-guarding complex models by means of meta-models
which fulfill the above!

M. Jonas et al.
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