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1. Introduction

Bayesian Model Averaging (BMA) has become a popular tool for economic growth applications
in economics (for a comprehensive introduction to BMA, see Hoeting et al., 1999). The so-called
open-endedness of economic theory concerning the factors driving income per capita differences
across countries (Brock and Durlauf, 2001) allows the empirical researcher to specify a large number
of models to quantify the effect of potential drivers on economic growth. The use of techniques
that explicitly assess model uncertainty (mostly within the class of linear regression models) has
thus become widespread in econometric research dealing with the empirical determinants of income
growth differences across countries (for some seminal contributions to this literature, see e.g.
Fernandez et al., 2001; Sala-i Martin et al., 2004; Masanjala and Papageorgiou, 2008; Durlauf et al.,
2008; Ley and Steel, 2009b).

Economic growth applications of BMA tend to quantify the relative importance of a given
covariate by calculating its so-called posterior inclusion probability (PIP), which is defined as
the sum of posterior probabilities of specifications which contain that particular variable. Such a
statistic has become a standard tool in econometric applications of BMA and is routinely used
to measure the relative importance of different potential drivers of income growth differences
across economies. While standard PIPs are intuitive measures that provide valuable insights into
the overall importance of individual covariates as economic growth determinants, they face a
number of shortcomings. The PIP neglects the heterogeneity across typical model specifications and
accordingly does not inform about whether the degree of importance of the variable is evenly spread
across potential specifications (that is, it is relatively independent of whether other covariates are
part of the model) or, on the contrary, it is particular to specific combinations of explanatory
variables.

Previous work assessing joint covariate inclusion in BMA applications has focused on capturing
relevant dependency structures using bivariate measures, that is, concentrating on the analysis of
the joint posterior distribution of the inclusion of pairs of variables over the model space. Such a
concept has been quantified in the form of bivariate jointness measures in the context of BMA, put
forward first by G. Doppelhofer and M. Weeks in a working paper of 2005 (Doppelhofer et al., 2005),
which got published in a slightly different version as Doppelhofer and Weeks (2009a). Ley and
Steel (2007), Strachan (2009) and Ley and Steel (2009a) offer alternative measures of jointness. In
particular, Ley and Steel (2007) formulate a set of properties for jointness measures and show that
Doppelhofer and Weeks’s statistics do not fulfill them. Additionally, they propose two other indices
which satisfy all of their suggested properties. Strachan (2009) shows that the interpretability of
the jointness measure of Doppelhofer and Weeks (2009a) may be limited in contexts where one or
both of the analyzed variables have a negligible PIP and offers yet another measure in order to
tackle this shortcoming. Doppelhofer and Weeks (2009b), on the other hand, argue that another
desirable property of jointness measures happens to be fulfilled by their indicator but not accounted
for in the indices of Ley and Steel (2007) or Strachan (2009).1

1Interestingly, the measures proposed by Doppelhofer and Weeks (2009a), Ley and Steel (2007) and Strachan
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In this paper we propose an alternative approach aimed at succinctly and comprehensibly
describing the dependency structure across variables in the model space using latent class analysis
(LCA, see, e.g., Vermunt and Magidson, 2002) and apply it to economic growth regressions. This
method was first introduced by Lazarsfeld (1950) to describe dependency structures between
observed discrete variables based on latent traits and has gained widespread popularity in such
research fields as psychometrics or political science (see, e.g., Breen, 2000; Blaydes and Linzer, 2008).
The main idea behind LCA is to relate the realizations of observed variables to an unobserved,
categorical latent variable which captures the dependency structure between the observed variables.
This latent variable groups observations in such a way that the dependency between variables
is reduced to a minimum within groups. By applying LCA methods to the covariate inclusion
structure of best models identified by BMA, we are able to capture the dependency patterns across
included covariates through a (unobserved) latent variable which induces classes with independent
covariates conditional on class membership. Such a setting implies that PIPs within clusters
constitute sufficient information to describe the importance of the variables and the differences of
PIPs between clusters are representative of the dependencies in the inclusion of a covariate with
respect to (all) other variables.

The method proposed in this paper provides a tool for applied econometricians that goes beyond
the identification of individual robust determinants of socioeconomic variables by distilling the
joint covariate structures that underlie the distribution of the posterior model probability across
specifications. Suitable theoretical frameworks based on the results of the clustering can then be
inferred based on the identity of the corresponding groups of variables. In the spirit of Durlauf et al.
(2008), the applied researcher may be interested in incorporating prior beliefs about the relative
importance of some theoretical frameworks (defined over the joint prior inclusion probability of
certain covariate groups) in order to assess the evidence for or against them. The modeling tool
provided by our method is able to incorporate this information in a straightforward manner.
We apply this approach to the two datasets that have been most widely used for assessing the

robustness of economic growth determinants (those in Fernandez et al., 2001, and Sala-i Martin
et al., 2004, henceforth FLS and SDM, respectively). Our results for the FLS dataset reveal
patterns of complementarity and substitutability across geographical, institutional and religious
variables. For the SDM dataset, we find that the importance of the variable related to malaria
prevalence is highly dependent on the inclusion of other covariates in the specification. The insights
gained from the clustering exercise for the SDM dataset partly reconcile some of the contradictory
results found in the literature concerning the importance of malaria prevalence as a determinant of
income growth differences across countries (see for example Sala-i Martin et al., 2004; Schneider
and Wagner, 2012; Hofmarcher et al., 2014).
The remainder of this paper is structured as follows. In Section 2, we present the econometric

setting used to analyze the anatomy of covariate inclusion over the model space within BMA

(2009) were independently developed earlier in the context of data mining. The statistic of Doppelhofer et al.
(2005) is known as log-ratio, the measures of Ley and Steel (2007) are related to the Jaccard index. The index of
Doppelhofer and Weeks (2009a) is known as odds-ratio and Strachan (2009)’s measure is closely related to the
so-called two-way support (see Tan et al., 2004; Glass, 2013).
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applications and outline the LCA approach. Section 3 presents the results of the LCA analysis
applied to the set of best models identified for the FLS and SDM datasets. Section 4 concludes
and proposes further paths of research.

2. Evaluating Covariate Inclusion Dependency Using Latent Class
Analysis

2.1. Model Uncertainty and Economic Growth Determinants: The Econometric
Framework

The standard setting for BMA analysis in the framework of cross-country growth regressions assumes
that the growth rate of income per capita (y) can be linearly related to a group of covariates
(Xj) chosen from a set of potential growth determinants (X). Assuming that n observations are
available, a typical linear regression model (Mj) is given by

y|α, βj , σ ∼ N(αι+Xjβj , σ
2I), (1)

where ι is a column vector of ones of dimension n. Assuming that a total of K variables are
available, inference on a quantity of interest (∆) is given by

p(∆|y) =

2K∑
j=1

p(∆|y,Mj)p(Mj |y), (2)

where p(Mj |y) is the posterior model probability, which in turn is proportional to the product
of the prior model probability p(Mj) and its marginal likelihood p(y|Mj). After eliciting priors
over model-specific parameters (p(βj |Mj) and p(σ|Mj)), as well as over models (p(Mj)), posterior
model probabilities and thus the posterior distributions given by equation (2) can be computed.
The problems caused by the exorbitantly large number of summands in equation (2) when K is
not small can be overcome in a straightforward manner by sampling from the model space using
Markov Chain Monte Carlo (MCMC) methods (Madigan and York, 1995).
In the spirit of the literature on jointness in BMA applications, we propose to analyze the

anatomy of the set of models sampled by the Markov chain in order to carry out inference about
the covariate inclusion structures existing in the model space. While existing jointness measures
tend to concentrate on the analysis of the K ×K matrix of bivariate inclusion frequencies in the
Markov chain, we aim at gaining knowledge about the overall structure of covariate inclusion by
analyzing the full M ×K matrix of inclusion profiles of the specifications sampled by the Markov
chain, where M is the number of sampled models. A model profile γi, for i = 1, . . . ,M (that is,
one of the rows of the matrix), is a K-dimensional vector of ones and zeros indicating the variables
which are included in model i, with typical element γik = 1 if variable k is part of model i and
γik = 0 otherwise. We propose to perform the analysis of the inclusion patterns over the model
space assuming the existence of implicit latent groups to which model specifications are assigned
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depending on their covariate inclusion pattern.

2.2. Latent Classes and Covariate Inclusion: A Bayesian Approach Using Dirichlet
Processes

We propose to use a method that resembles existing BMA applications dealing with the computation
of jointness measures among covariates. It takes a two-step approach in terms of analyzing the
posterior probability distribution over model specifications obtained using standard BMA methods.
Using clustering methods based on LCA, it aims at unveiling clusters of model profiles among the
specifications sampled in the Markov chain Monte Carlo model composite procedure.

Following the methods put forward by Molitor et al. (2010), we apply Dirichlet Process Clustering
(DPC) in order to carry out inference about the latent classes governing covariance inclusion
structures in economic growth regressions. Compared to other methods in the literature (Forgy,
1965; Hartigan and Wong, 1979; Patterson et al., 2002), DPC eliminates the need to set the number
of latent classes a priori. While selecting a suitable number of clusters has been a widely discussed
problem in the LCA and finite mixture literatures (McLachlan and Peel, 2000, Chap. 6), the nature
of Bayesian inference using DPC allows for the automatic selection of an optimal number of clusters
for given prior settings.
We assume that γi, the K-dimensional vector summarizing the variable inclusion profile for

model i, has elements that arise from a mixture of infinitely, but countably many distributions,

p(γi) =

∞∑
c=1

p(gi = c)

K∏
k=1

p(γik|gi = c), (3)

where p(gi = c) denotes the probability that model i is assigned to cluster c and p(γik | gi = c)

governs the inclusion probability of the k-th covariate in cluster c. In turn, for our application we
use

p(γik | gi = c) ∼ Bern(πck),

πck ∼ Beta(δ, δ),

p(gi = c) = Vc

c−1∏
j=1

(1− Vj),

Vc ∼ Beta(1, α).

Such a mixture model implies, that given assignment to a cluster, the inclusion of covariate k
resembles the probabilistic process proposed, for example, in Ley and Steel (2009b). The inclusion
probability of covariate k in a given cluster c is thus governed by a Bernoulli distribution whose
parameter follows a Beta distribution. The probabilistic structure that governs assignment to the
different clusters, p(gi = c), on the other hand, corresponds to the so-called stick-breaking process
formulation of the Dirichlet process (see Sethuraman, 1994; Papaspiliopoulos, 2008; Liverani et al.,
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2013). This representation can be interpreted as determining the mixing proportions p(gi = c) by
successive divisions of the unit interval whose relative sizes are determined by independent draws
from the Beta(1, α) distribution.
Posterior inference for DPC can be carried out using MCMC methods. Papaspiliopoulos and

Roberts (2008), for instance, present an approach using retrospective sampling. However, identifying
a DPC model is difficult due to label switching (Redner and Walker, 1984). We follow Molitor et al.
(2010) and derive a suitable partitioning of the set of sampled model profiles using the information
on co-assignment to the same clusters during sampling. This information is collapsed into an
association matrix that can be interpreted as a similarity matrix between model profiles when
assuming that model specifications often assigned to the same cluster are similar. A clustering
technique relying only on similarity measures between specification profiles can then be used to find
the final clustering, for instance Partitioning Around Medoids (PAM, Kaufman and Rousseeuw,
1990), which is the approach used in our empirical application.

Once a partition has been chosen, several statistics can be used to assess the goodness of fit of
the clustering. In our application we rely on measures based on the likelihood ratio chi-squared
test statistic (G2), which measures goodness-of-fit by relating the observed counts of specification
profiles in each cluster to the counts predicted by the estimated model. The test statistic is given
by G2 = 2

∑2K

j qj ln
qj
Qj

, where qj refers to the observed number of counts of specification profile

γj and Qj is the expected number of counts assuming independency of the explanatory variables
(see for example Brier, 1980). We calculate this G2 statistic separately for each cluster and for the
aggregated BMA exercise.

In addition, in order to identify substitutability/complementarity of variables based on the cluster
solution, we compute a simple measure of interestingness of a variable (IM ) in the spirit of the
literature on association rules. The interestingness measure IM is determined as the square root of
the mean squared deviation of PIPs with respect to the unclustered case across clusters, weighted
by the cluster-specific mass of posterior model probabilities. Thus, this measure reflects the stability
of the relative importance of the variable across model structures and is able to give an indication
of the existence of substitutability/complementarity inclusion patterns across covariates in the
model space.

2.3. A Simulation Exercise

We assess the performance of the method by making use of a small-scale simulation exercise. We
consider a set of ten potential covariates, xk, k = 1, . . . , 10 and two settings based on different
data generating processes. In the first setting, the dependent variable is a linear combination
of the first five covariates and a random error term, yi =

∑5
k=1 xik + εi, where εi ∼ N(0, 0.01)

and all covariates are drawn from standard normal distributions. In the second setting, the
dependent variable can be represented by two different linear combinations of predictors, so that
yi =

∑5
k=1 xik + εi = −

∑10
j=6 xik + εi.2

2Technically, we implement this setting by defining xi,10 ≈ −
∑9

k=1 xik.
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Using simulated datasets with 50 observations for each one of the settings, we perform standard
BMA (assuming a single cluster of model specifications) as well as the clustering procedure proposed
over the sampled model profiles. We use a Beta-Binomial prior for covariate inclusion (Ley and
Steel, 2009b) and a unit information prior for the parameters in the BMA application. For this
small example with K = 10 a complete enumeration of all models is performed. For the clustering
procedure, we use a Gamma(2, 1) prior over α, elicit δ = 90 and retain the top 500 models. The
posterior inference is based on 1,500 MCMC iterations, after 1,000 burn-in runs. The results for
the first (single cluster) setting are presented in Table 1, where we report the posterior inclusion
probabilities and the mean of the posterior distribution of the parameters associated to each one of
the covariates, averaged over 100 simulated datasets.

The standard BMA method (see results in panel (a) of Table 1) correctly identifies the covariates
included in the true model and the mean of the posterior distribution of the relevant parameters
appear very close to the true value of unity. The clustering approach identifies two clusters, with
the first one covering over 99% of the models in the BMA procedure and reproducing the same
results as those in the non-clustered case in terms of PIP and means of the posterior distribution
of the associated parameters (see panels (b) and (c) in Table 1). In the second setting, whose
results are presented in Table 2, the standard BMA procedure averages out the effects of the two
alternative data generating processes. The PIP values obtained using BMA are around 0.6 for all
variables and the mean of the posterior distribution over the parameters is approximately 0.5 for
the first five covariates and −0.5 for the rest of the variables. DPC is able to disentangle the two
competing data generating processes, assigning roughly the same posterior mass to each one of
the two clusters found. The mean of the posterior distribution of the parameters are in line with
the actual values in the true model(s) and the covariates which are not included in the alternative
specification have a relatively low PIP and an expected effect which is very close to zero.

3. Covariate Inclusion Clustering in Economic Growth Regressions

The clustering method presented in Section 2 is applied to the datasets compiled by Fernandez
et al. (2001) and Sala-i Martin et al. (2004) (henceforth, FLS and SDM datasets). These two
datasets comprise cross-country information on a large number of potential determinants of income
growth and have been extensively used to assess empirically the role played by model uncertainty
in economic growth regressions. In addition to GDP per capita growth figures, the FLS dataset is
composed by 41 covariates and spans information for 72 countries, while the SDM dataset includes
information on 67 different determinants for 88 economies. The variables in both datasets are
presented in the Appendix A.
The BMA analysis of both datasets is carried out using a Beta-Binomial prior on covariate

inclusion probabilities with a prior average model size of K/2 (20.5 for the FLS dataset and 33.5
for the SDM dataset) and the hyper g-prior proposed in Liang et al. (2008) for the regression
coefficients. We base our inference concerning the inclusion probability of covariates on five million
MCMC model draws, whereby the first two million draws were discarded. Alternatively, we
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Table 1: Simulation Results: Single cluster

(a) Standard BMA

PIP Post. Mean

x1 1.0000 0.9799
x2 1.0000 0.9822
x3 1.0000 0.9810
x4 1.0000 0.9828
x5 1.0000 0.9796
x6 0.2030 −0.0001
x7 0.2053 −0.0007
x8 0.2032 0.0003
x9 0.2063 −0.0002
x10 0.2053 −0.0001

(b) DPC: Cluster 1 (>99%)

PIP Post. Mean

x1 1.0000 0.9799
x2 1.0000 0.9822
x3 1.0000 0.9810
x4 1.0000 0.9828
x5 1.0000 0.9796
x6 0.2009 −0.0001
x7 0.2033 −0.0007
x8 0.2011 0.0003
x9 0.2042 −0.0002
x10 0.2034 −0.0001

(c) DPC: Cluster 2 (<1%)

PIP Post. Mean

x1 1.0000 0.9799
x2 1.0000 0.9824
x3 1.0000 0.9811
x4 1.0000 0.9825
x5 1.0000 0.9804
x6 0.9975 −0.0004
x7 1.0000 −0.0025
x8 1.0000 0.0010
x9 1.0000 −0.0013
x10 1.0000 −0.0010

Simulation results averaged over 100 simulated datasets. Data generating process: yi =
∑5

k=1 xik + εi. Column

labelled PIP reports the posterior inclusion probability, column labelled Post. Mean reports the mean of the posterior

distribution of the corresponding parameter. See text for details on the setting of the simulation.

also implemented dilution priors over the model space following George (1999) (see also Durlauf
et al., 2008). Such a model prior assigns relatively lower prior probability to specifications with
highly correlated covariates by weighting the prior model probability using the determinant of the
correlation matrix of the explanatory variables. The results obtained using such a dilution prior are
not qualitatively different from those with the standard Beta-Binomial prior which are presented
below.3

Using the top 500 unique models visited by the Markov chain (weighted by their posterior model
probability), we apply the clustering procedure described in Section 2 in order to unveil clusters
of inclusion patterns across specifications. Technically, we create an auxiliary dataset composed
by the 500 top model profiles drawn where the number of observations of each model profile is
proportional to its posterior probability. We normalize this auxiliary dataset so that the profile
corresponding to the 500th top model is included exactly once and the relative importance of the
rest of the models is preserved. For the FLS and SDM dataset the weighted top 500 model profiles
in the auxiliary datasets span 33,480 and 28,800 model profile observations, respectively.4

Concerning prior elicitation for DPC, we use a setting that implies a relative preference for a
smaller number of broad clusters over a multitude of clusters populated by few model structures,
which may eventually lack interpretability. We use a Gamma(2, 1) prior over α and δ = 90.

3For the FLS dataset, for instance, the correlation between the posterior inclusion probabilities obtained with the
dilution prior and the standard Beta-Binomial prior, as well as between the means and standard deviations of
the posterior parameter distributions, tend to be above 0.8. Detailed results of the BMA exercise using George
(1999)’s dilution prior are available from the authors upon request.

4Expanding the set of top models to cover a larger part of the posterior model probability leads to significant
computational complications. For the case of the FLS dataset, which contains less covariates, we also implemented
the method for the top 1,000 models, leading to similar results as those presented for the top 500 specifications.
Such a result is not very surprising given the fact that the increase in the posterior model probability covered by
the top models is very modest when moving from the top 500 to the top 1,000 specifications.
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Table 2: Simulation Results: Two clusters

(a) Standard BMA

PIP Post. Mean

x1 0.6030 0.4951
x2 0.6038 0.4949
x3 0.6032 0.4931
x4 0.6039 0.4945
x5 0.6028 0.4941
x6 0.5983 −0.4854
x7 0.5989 −0.4874
x8 0.5985 −0.4853
x9 0.5983 −0.4851
x10 0.5983 −0.4857

(b) DPC: Cluster 1 (49%)

PIP Post. Mean

x1 0.1995 0.0024
x2 0.2009 0.0023
x3 0.2000 0.0012
x4 0.2014 0.0018
x5 0.1991 0.0020
x6 1.0000 −0.9774
x7 1.0000 −0.9808
x8 1.0000 −0.9772
x9 1.0000 −0.9771
x10 1.0000 −0.9782

(c) DPC: Cluster 2 (51%)

PIP Post. Mean

x1 1.0000 0.9817
x2 1.0000 0.9814
x3 1.0000 0.9789
x4 1.0000 0.9809
x5 1.0000 0.9801
x6 0.2009 0.0006
x7 0.2025 0.0000
x8 0.2018 0.0006
x9 0.2011 0.0008
x10 0.2009 0.0006

Simulation results averaged over 100 simulated datasets. Data generating process: yi =
∑5

k=1 xik + εi = −
∑10

k=6 xik + εi.

Column labelled PIP reports the posterior inclusion probability, column labelled Post. Mean reports the mean of the

posterior distribution of the corresponding parameter. See text for details on the setting of the simulation.

Posterior inference is based on 1,500 MCMC iterations, after 1,000 burn-in runs. This choice of
priors is relatively standard in LCA applications (see e.g. Liverani et al., 2013).5

3.1. Results for the FLS Dataset

DPC identifies an optimal partition of seven clusters of models by inclusion structure in the FLS
dataset. Table 3 provides an overview of the main characteristics of these different model clusters
regarding the number of model specifications in the cluster, as well as the mean model size and the
average adjusted R2 for specifications within the cluster. These statistics are also presented for the
unclustered model space considered. Although the top 500 models used for the analysis only cover
approximately 8% of the posterior model probability in the space of potential specifications, the
overall unclustered results are very similar to those in Fernandez et al. (2001) concerning the PIP
of individual variables.6

The first two clusters capture more than half of the posterior mass covered by the set of
specifications considered, while clusters 6 and 7 cover a negligible part of the model space in terms
of posterior model probability. Cluster 7 is composed by very large models and due to its minimal
importance in terms of posterior probability does not appear particularly relevant in terms of
interpretation. The cluster-specific G2 statistics imply an improvement in fit as compared to the
unclustered results once the covariate inclusion structures are assigned to the classes identified.

5We have carried out several robustness checks changing the elicitation of the priors which did not lead to any
significant differences in the inference results as long as the prior setting implies a preference for a relatively small
number of clusters.

6It should be noted that, in contrast to Fernandez et al. (2001) and Ley and Steel (2007), we employ a hyperprior
for prior inclusion probabilities and model-specific parameters, following Ley and Steel (2009b) and Liang et al.
(2008), respectively.
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The reduction in the G2 statistic is very sizable and widespread across the clusters.

Table 3: Summary of FLS clusters

Overall 1 2 3 4 5 6 7∑
Posterior model prob. 0.08 0.03 0.02 0.01 0.01 0.01 0.00 0.00

Average model size 10.5 10.5 8.7 8.4 11.6 10.9 18.1 41.0
Average adjusted R2 0.83 0.84 0.81 0.80 0.85 0.84 0.90 0.91
G2 statistic (×105) 3.52 0.24 0.24 0.13 0.15 0.09 0.19 0.00

Figure 1 offers a graphical representation of the differences in PIPs for individual covariates
across the identified clusters. The covariates are sorted by their PIPs in the standard (unclustered)
BMA exercise, which are plotted as a solid line together with their corresponding within-cluster
PIPs, depicted as bars. It should be noted that the patterns of PIP across variables in all clusters
differ structurally from the unclustered BMA results, so that no individual cluster mimics the PIPs
obtained by the standard BMA exercise closely. The color of the bars in Figure 1 corresponds to
the value of the IM statistic.

Table 4: FLS dataset: Weighted correlation of cluster-specific inclusion for variables with IM >
0.5 max(IM)

SubSahara EcoOrg YrsOpen Muslim RuleofLaw

SubSahara 1.00 0.50 −0.65 −0.34 0.73
EcoOrg 1.00 −0.87 −0.33 0.87
YrsOpen 1.00 0.45 −0.96
Muslim 1.00 −0.31
RuleofLaw 1.00

The PIPs of the four most robust variables of the FLS dataset (Confucian, GDP60, LifeExp
and Equipinv) appear stable across clusters. The variables with a higher degree of variability in
PIPs across clusters tend to be related to geography (SubSahara), institutions (EcoOrg, RuleofLaw
and YrsOpen7) and religion (Muslim). The characteristics of the inclusion structure of these
variables across clusters can be best understood by computing the weighted correlation matrix
of cluster-specific binary inclusion variables, which is presented in Table 4. The correlation
among covariate inclusion variables reveals that SubSahara, EcoOrg and RuleofLaw tend to contain
complementary information in the sense of appearing together in specifications. The same is true
for the group of variables formed by YrsOpen and Muslim, while the inclusion of these two sets
of variables presents sizable negative correlation. This result indicates that some of the effects of

7The variable YrsOpen is based on the Sachs-Warner index of openness, which has a strong institutional component.
For example, socialist economies are automatically considered closed to trade by this indicator.
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Figure 1: FLS dataset: PIPs in unclustered BMA (solid line) and by identified cluster (bars)

11



Unveiling Covariate Inclusion Structures In Economic Growth Regressions

institutions and geographical variables on economic growth can be alternatively modeled using
these two groups of covariates in a robust manner, but that once that they are controlled for, the
inclusion of variables of the other group appears redundant.
The interplay of changes in PIPs across clusters presented in Figure 1 indicates that the set of

religious, institutional and geographical variables used in cross-country growth regressions often
contain redundant information which can be replicated using different subgroups of them. An
example of such a phenomenon is observed when comparing clusters 1 and 3. The importance
of SubSahara and RuleofLaw as growth determinants which can be inferred from the results in
cluster 1 disappears in cluster 3 and their fall in PIPs occurs in parallel to a strong increase in
PIP for YrsOpen. The set of religious variables (Muslim, Catholic, Protestants, Hindu and, to a
lesser extent, Buddha) also presents large variation in PIPs across clusters.

3.2. Results for the SDM Dataset

Ley and Steel (2009a) found very weak (bivariate and/or trivariate) jointness in the group of
covariates included in the SDM dataset. Our procedure splits the model space into three different
model clusters by covariate inclusion patterns. Table 5 presents the summary statistics for the
identified clusters. The top 500 unique specifications cover 40% of the posterior model probability, a
much larger proportion than in the case of the FLS dataset. The structure of variable inclusion for
the SDM dataset appears to have a different nature as compared to the results for the FLS dataset.
In addition to the lower number of identified clusters, the first two classes of inclusion structures
identified exhibit relatively similar characteristics in terms of the posterior model probability
covered. As in the case of the FLS dataset, the cluster specific G2 statistics are lower than the
corresponding value for the model without clustering, thus supporting the method employed.
Figure 2 depicts the PIPs of the variables in the SDM dataset computed using the top 500

models, as well as those derived from the models in the single clusters.8 The results show a large
degree of variability in PIPs across clusters for many of the covariates, including those presenting
the highest PIPs in the unclustered case.

Table 5: Summary of SDM clusters

Overall 1 2 3∑
Posterior model prob. 0.40 0.21 0.17 0.03

Average model size 5.5 6.5 3.9 6.8
Average adjusted R2 0.67 0.71 0.62 0.70
G2 statistic (×105) 10.25 1.33 2.36 0.58

8Variables with PIP lower than 5% have been excluded in order to improve the readability of the graph. For these
variables no remarkable changes could be detected when comparing the BMA results with the cluster-specific
PIPs.
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Figure 2: SDM dataset: PIPs in unclustered BMA (solid line) and by identified cluster (bars)

Given the large posterior probability mass over models covered by the first two clusters, we
concentrate on the differences in PIPs observed between these two. Remarkable differences in
PIPs across these two clusters can be observed for the MALFAL66 variable, which presents a much
higher PIP in the second cluster, making it the second most important variable for models within
that cluster. Such a phenomenon is accompanied by a sizable decrease in PIP for P60, IPRICE1,

TROPICAR, GDPCH60L and DENS65C. The empirical literature on model uncertainty in cross-country
growth regressions which analyzes the SDM dataset often reports on the effect that the use of
different approaches to parameter shrinkage has on the importance of MALFAL66. Schneider and
Wagner (2012) as well as Hofmarcher et al. (2014), for instance, find that the robustness of MALFAL66
as a determinant of income growth differences across countries improves when estimation methods
based on LASSO and elastic nets are used. In addition, the results in Schneider and Wagner (2012)
and Hofmarcher et al. (2014) also indicate a loss of importance of DENS65C when methods implying
a more stringent shrinkage are used in the estimation. These are precisely two of the variables which
present the highest values of IM in our results, hinting to the fact that their relative importance
depends on the type of model (as represented by the variable inclusion structure cluster) considered.
Such a pattern of substitutability across covariates is easily recognizable from the weighted

correlation matrix of cluster-specific binary inclusion variables for the group of variables with the
highest IM values, which is presented in Table 6. The correlation patterns present in the model
space indicate that MALFAL66 tends to act as a substitute of the group of variables composed by
IPRICE1, TROPICAR, GDPCH60L and DENS65C. The difference in average model size across these
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Table 6: SDM dataset: Weighted correlation of cluster-specific inclusion for variables with IM >
0.5 max(IM)

DENS65C GDPCH60L IPRICE1 MALFAL66 TROPICAR

DENS65C 1.00 0.95 0.92 −0.93 0.97
GDPCH60L 1.00 1.00 −1.00 0.83
IPRICE1 1.00 −1.00 0.79
MALFAL66 1.00 −0.80
TROPICAR 1.00

two important clusters in the space of posterior inclusion probability structures is in line with
the strong impact of different parameter shrinkage approaches on the relative importance of the
variables which is highlighted in previous literature. In addition, in their study of pairwise jointness
measures, Doppelhofer and Weeks (2009a) report that P60, IPRICE1, DENS65C and TROPICAR exhibit
significant negative bivariate jointness with MALFAL66, a result that can be easily reconciled with
the output of our analysis. While Ley and Steel (2007) find very limited evidence for jointness
structures in the SDM dataset, the only triplets of important variables for which disjointness is
reported also involve TROPICAR and MALFAL66.
In spite of the fact that the third cluster that DPC identifies covers a very small part of the

posterior mass over models, its PIP structure also reveals interesting patterns as compared to
the other two clusters. In this group of models, two of the most relevant variables in terms of
(unclustered) PIP, EAST and TROPICAR, lose their importance and their information is captured by
a different set of geographical and religious variables (CONFUC, LAAM and SAFRICA). The results in
Doppelhofer and Weeks (2009a) concerning the complementarity of EAST and TROPICAR and the
substitutability of EAST with respect to CONFUC, LAAM and SAFRICA are perfectly in line with these
results. In addition, Doppelhofer and Weeks (2009a) find the latter to be complements, which is
also supported by the comparison of the PIPs in our third cluster with those in the other two.

4. Conclusions and Future Paths of Research

In this contribution we are concerned with covariate inclusion patterns of BMA exercises with
large model spaces. Recent research on such jointness structures tends to choose a low-dimensional
approach to such an analysis and thus concentrates on bivariate or trivariate approaches, by
calculating the inclusion relationships of few explaining factors at a time. We propose a novel
approach by utilizing LCA techniques and apply DPC to two well known datasets in the BMA
growth literature. The clustering method put forward in our contribution aims at unveiling
commonalities in the joint inclusion of variables and thus offering the applied econometrician
evidence about the competing structures (as formed by groups of variables that appear together)
that are covered by the posterior over the model space.
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Our results indicate that within the set of models sampled by the Markov chain in the BMA
analysis of determinants of economic growth, several distinct clusters of models by covariate
inclusion can be identified. For the FLS data, we identify seven clusters of models which differ in
the inclusion structure for geographic, institutional and religious covariates. In contrast, the SDM
dataset only reveals three latent classes with very different dependency structures. The inclusion of
the variable measuring malaria prevalence is shown to vary strongly across clusters, with its effect
on economic growth being captured often by other factors such as the fraction of tropical area and
coastal population density.
We show that the study of dependency structures in covariate inclusion for large model spaces

appears particularly relevant in order to understand the nature of the factors affecting global
patterns of income growth. The proposed method lends itself to further straightforward expansions
such as the use of low-dimensional jointness measures for the analysis of within-cluster inclusion
patterns for small groups of covariates. The assessment of covariate inclusion clusters in the model
space under different shrinkage priors can also shed light on the effects of multicollinearity on the
robustness of economic growth determinants to model uncertainty.
In order to make our method and results comparable to those in the literature on jointness

measures, we decided to follow a two-step procedure and use the clustering method on the model
profiles visited by the Markov chain of the BMA procedure. The LCA and DPC methods proposed
in this contribution would also lend themselves to create priors over suitable covariate combinations
in the specifications that compose the model space. This path of further research, which we are
pursuing at the moment, appears particularly promising in order to unify the literature on jointness
and dilution priors in BMA applications.
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A. Datasets

Table A.1: Variable names and descriptive statistics — FLS

Abbreviation Variable Mean Std. Dev.

1 Abslat Absolute latitude 25.73 17.250
2 Age Age 23.71 37.307
3 Area Area (Scale Effect) 972.92 2051.976
4 BlMktPm Black Market Premium 0.16 0.291
5 Brit British Colony dummy 0.32 0.470
6 Buddha Fraction Buddhist 0.06 0.184
7 Catholic Fraction Catholic 0.42 0.397
8 CivlLib Civil Liberties 3.47 1.712
9 Confucian Fraction Confucian 0.02 0.087
10 EcoOrg Degree of Capitalism 3.54 1.266
11 English Fraction of Pop. Speaking English 0.08 0.239
12 EquipInv Equipment investment 0.04 0.035
13 EthnoL Ethnolinguistic fractionalization 0.37 0.296
14 Foreign Fraction speaking foreign language 0.37 0.422
15 French French Colony dummy 0.12 0.333
16 GDP60 GDP level in 1960 7.49 0.885
17 HighEnroll Higher education enrollment 0.04 0.052
18 Hindu Fraction Hindu 0.02 0.101
19 Jewish Fraction Jewish 0.01 0.097
20 LabForce Size labor force 9305.38 24906.056
21 LatAmerica Latin American dummy 0.28 0.451
22 LifeExp Life expectancy 56.58 11.448
23 Mining Fraction GDP in mining 0.04 0.077
24 Muslim Fraction Muslim 0.15 0.295
25 NequipInv Non-Equipment Investment 0.15 0.055
26 OutwarOr Outward Orientation 0.39 0.491
27 PolRights Political Rights 3.45 1.896
28 Popg Population Growth 0.02 0.010
29 PrExports Primary exports, 1970 0.67 0.299
30 Protestants Fraction Protestant 0.17 0.252
31 PrScEnroll Primary School Enrollment, 1960 0.80 0.246
32 PublEdupct Public Education Share 0.02 0.009
33 RevnCoup Revolutions and coups 0.18 0.238
34 RFEXDist Exchange rate distortions 121.71 41.001
35 RuleofLaw Rule of law 0.55 0.335
36 Spanish Spanish Colony dummy 0.22 0.419
37 stdBMP SD of black-market premium 45.60 95.802
38 SubSahara Sub-Saharan dummy 0.21 0.409
39 WarDummy War dummy 0.40 0.494
40 WorkPop Ratio workers to population −0.95 0.189
41 y GDP per capita growth 0.02 0.018
42 YrsOpen Number of Years open economy 0.44 0.355
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Table A.2: Variable names and descriptive statistics — SDM

Abbreviation Variable Mean Std. Dev.

1 ABSLATIT Absolute latitude 23.21 16.843
2 AIRDIST Air distance to big cities 4324.17 2613.763
3 AVELF Ethnolinguistic fractionalization 0.35 0.302
4 BRIT British colony 0.32 0.468
5 BUDDHA Fraction Buddhist 0.05 0.168
6 CATH00 Fraction Catholic 0.33 0.415
7 CIV72 Civil liberties 0.51 0.326
8 COLONY Colony dummy 0.75 0.435
9 CONFUC Fraction Confucian 0.02 0.079
10 DENS60 Population density costal 1960’s 108.07 201.445
11 DENS65C Population density 1960 146.87 509.828
12 DENS65I Interior density 43.37 88.063
13 DPOP6090 Population growth rate 1960-1990 0.02 0.009
14 EAST East Asian dummy 0.11 0.319
15 ECORG Capitalism 3.47 1.381
16 ENGFRAC English-speaking population 0.08 0.252
17 EUROPE European dummy 0.22 0.414
18 FERTLDC1 Fertility in 1960’s 1.56 0.419
19 GDE1 Defense spending share 0.03 0.025
20 GDPCH60L GDP 1960 (log) 7.35 0.901
21 GEEREC1 Public education spending share in GDP in 1960’s 0.02 0.010
22 GGCFD3 Government consumption share deflated with GDP prices 0.05 0.039
23 GOVNOM1 Nominal government GDP share 1960’s 0.15 0.058
24 GOVSH61 Government share of GDP 0.17 0.071
25 GR6096 Average growth rate of GDP per capita 1960-1996 0.02 0.019
26 GVR61 Government consumption share 1960’s 0.12 0.075
27 H60 Higher education in 1960 0.04 0.050
28 HERF00 Religous intensity 0.78 0.193
29 HINDU00 Fraction Hindu 0.03 0.125
30 IPRICE1 Investment price 92.47 53.678
31 LAAM Latin American dummy 0.23 0.421
32 LANDAREA Land area 867188.52 1814688.290
33 LANDLOCK Landlocked country dummy 0.17 0.378
34 LHCPC Hydrocarbon deposits in 1993 0.42 4.351
35 LIFE060 Life expectancy in 1960 53.72 12.062
36 LT100CR Fraction of land area near navigable water 0.47 0.380
37 MALFAL66 Malaria prevalence in 1960’s 0.34 0.431
38 MINING Fraction GDP in mining 0.05 0.077
39 MUSLIM00 Fraction Muslim 0.15 0.296
40 NEWSTATE Time of independence 1.01 0.977
41 OIL Oil-producing country dummy 0.06 0.233
42 OPENDEC1 (Imports+exports)/GDP 0.52 0.336
43 ORTH00 Fraction Orthodox 0.02 0.098
44 OTHFRAC Fraction speaking foreign language 0.32 0.414
45 P60 Primary schooling 1960 0.73 0.293
46 PI6090 Average inflation 1960-1990 13.13 14.990
47 POP1560 Fraction population less than 15 0.39 0.075
48 POP60 Population in 1960 20308.08 52538.387
49 POP6560 Fraction population over 65 0.05 0.029
50 PRIEXP70 Primary exports in 1970 0.72 0.283
51 PRIGHTS Political rights 3.82 1.997
52 PROT00 Fraction Protestant 0.14 0.285
53 RERD Real exchange rate distortions 125.03 41.706
54 REVCOUP Revolution and coups 0.18 0.232
55 SAFRICA African dummy 0.31 0.464
56 SCOUT Outward orientation 0.40 0.492
57 SIZE60 Size of the economy 16.15 1.820
58 SOCIALIST Socialist dummy 0.07 0.254
59 SPAIN Spanish colony 0.17 0.378
60 SQPI6090 Square of inflation 1960-1990 394.54 1119.699
61 TOT1DEC1 Terms of trade growth in 1960’s 0.00 0.035
62 TOTIND Terms of trade ranking 0.28 0.190
63 TROPICAR Fraction of tropical area 0.57 0.472
64 TROPPOP Fraction population in tropics 0.30 0.373
65 WARTIME Fraction spent in war 1960-1990 0.07 0.152
66 WARTORN War participation 1960-1990 0.40 0.492
67 YRSOPEN Years open 0.36 0.344
68 ZTROPICS Tropical climate zone 0.19 0.269
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B. Posterior Inclusion Probabilities by Cluster

Table B.1: PIPs within detected clusters — FLS

Overall 1 2 3 4 5 6 7 IM

GDP level in 1960 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Fraction Confucian 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Life expectancy 0.97 0.99 0.99 0.97 1.00 0.82 1.00 1.00 0.00
Equipment investment 0.96 0.98 1.00 1.00 0.73 0.95 1.00 1.00 0.01
Sub-Saharan dummy 0.85 1.00 1.00 0.00 1.00 1.00 1.00 1.00 0.13
Rule of law 0.69 1.00 0.35 0.03 0.82 1.00 1.00 1.00 0.14
Fraction Muslim 0.67 0.90 0.75 0.96 0.02 0.00 0.66 1.00 0.13
Degree of Capitalism 0.59 0.99 0.05 0.04 0.95 1.00 0.12 1.00 0.21
Fraction Protestant 0.55 0.52 0.25 0.67 0.92 0.98 0.05 1.00 0.07
Non-Equipment Investment 0.54 0.81 0.14 0.24 0.63 0.90 0.40 1.00 0.09
Fraction GDP in mining 0.48 0.30 0.61 0.36 0.95 0.25 0.96 1.00 0.06
Number of Years open economy 0.37 0.10 0.80 1.00 0.00 0.02 0.00 1.00 0.16
Black Market Premium 0.21 0.19 0.12 0.01 0.57 0.08 0.71 1.00 0.04
Latin American dummy 0.20 0.02 0.11 0.00 1.00 0.22 0.54 1.00 0.10
Fraction Hindu 0.19 0.04 0.00 0.00 0.43 0.63 1.00 1.00 0.09
Primary School Enrollment, 1960 0.17 0.02 0.20 0.39 0.00 0.00 0.90 1.00 0.05
Fraction Buddhist 0.15 0.29 0.07 0.06 0.06 0.00 0.15 1.00 0.02
Fraction Catholic 0.10 0.03 0.01 0.04 0.01 0.78 0.00 1.00 0.06
Civil Liberties 0.10 0.02 0.04 0.19 0.02 0.03 0.82 1.00 0.04
Size labor force 0.09 0.01 0.01 0.04 0.14 0.04 1.00 1.00 0.05
Ethnolinguistic fractionalization 0.08 0.01 0.02 0.00 0.04 0.04 1.00 1.00 0.05
Higher education enrollment 0.07 0.01 0.00 0.00 0.08 0.00 1.00 1.00 0.05
Political Rights 0.05 0.04 0.01 0.06 0.03 0.13 0.12 1.00 0.00
Fraction of Pop. Speaking English 0.05 0.03 0.01 0.00 0.00 0.00 0.55 1.00 0.02
Primary exports, 1970 0.04 0.02 0.07 0.10 0.00 0.03 0.00 1.00 0.00
French Colony dummy 0.04 0.01 0.01 0.00 0.00 0.00 0.54 1.00 0.02
Spanish Colony dummy 0.04 0.01 0.00 0.00 0.01 0.01 0.54 1.00 0.02
British Colony dummy 0.04 0.01 0.00 0.00 0.00 0.00 0.54 1.00 0.02
Exchange rate distortions 0.03 0.01 0.01 0.17 0.00 0.00 0.02 1.00 0.01
Outward Orientation 0.03 0.00 0.00 0.01 0.01 0.00 0.41 1.00 0.01
Age 0.03 0.02 0.02 0.02 0.08 0.00 0.05 1.00 0.00
War dummy 0.02 0.01 0.03 0.00 0.01 0.03 0.02 1.00 0.00
Public Education Share 0.02 0.00 0.00 0.00 0.08 0.00 0.05 1.00 0.00
Fraction speaking foreign language 0.02 0.01 0.00 0.06 0.00 0.00 0.00 1.00 0.00
SD of black-market premium 0.01 0.00 0.01 0.02 0.00 0.00 0.00 1.00 0.00
Absolute latitude 0.01 0.01 0.00 0.01 0.00 0.00 0.00 1.00 0.00
Ratio workers to population 0.01 0.01 0.00 0.01 0.00 0.00 0.00 1.00 0.00
Population Growth 0.01 0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Revolutions and coups 0.01 0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Area (Scale Effect) 0.01 0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Fraction Jewish 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
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Table B.2: PIPs within detected clusters — SDM

Overall 1 2 3 IM

East Asian dummy 0.92 0.99 1.00 0.00 0.06
Primary schooling 1960 0.76 0.99 0.43 0.99 0.08
Investment price 0.67 0.95 0.28 0.98 0.11
Fraction of tropical area 0.60 1.00 0.21 0.03 0.17
GDP 1960 (log) 0.58 0.83 0.24 0.79 0.08
Population density 1960 0.46 0.86 0.01 0.27 0.17
Malaria prevalence in 1960’s 0.34 0.02 0.78 0.00 0.14
Spanish colony 0.11 0.01 0.25 0.01 0.01
Life expectancy in 1960 0.10 0.04 0.18 0.03 0.00
Fraction Confucian 0.08 0.02 0.03 0.84 0.04
Latin American dummy 0.08 0.00 0.05 0.82 0.04
African dummy 0.07 0.03 0.00 0.81 0.04
Ethnolinguistic fractionalization 0.07 0.10 0.03 0.04 0.00
Government consumption share 1960’s 0.05 0.02 0.08 0.09 0.00
Political rights 0.05 0.09 0.00 0.00 0.00
Years open 0.05 0.04 0.05 0.04 0.00
Fraction Muslim 0.04 0.03 0.03 0.15 0.00
Fraction Buddhist 0.04 0.04 0.00 0.28 0.00
Fraction GDP in mining 0.04 0.03 0.02 0.15 0.00
Population density costal 1960’s 0.03 0.06 0.00 0.08 0.00
Higher education in 1960 0.03 0.03 0.03 0.00 0.00
(Imports+exports)/GDP 0.03 0.03 0.02 0.02 0.00
Government share of GDP 0.02 0.01 0.02 0.14 0.00
Fraction speaking foreign language 0.02 0.02 0.02 0.03 0.00
Primary exports in 1970 0.02 0.00 0.04 0.00 0.00
Air distance to big cities 0.02 0.04 0.00 0.00 0.00
Real exchange rate distortions 0.02 0.02 0.01 0.02 0.00
Fraction population less than 15 0.02 0.03 0.01 0.00 0.00
Government consumption share deflated with GDP prices 0.01 0.01 0.00 0.10 0.00
Fraction Protestant 0.01 0.01 0.02 0.01 0.00
Fraction population in tropics 0.01 0.01 0.01 0.03 0.00
Absolute latitude 0.01 0.01 0.01 0.00 0.00
Civil liberties 0.01 0.01 0.00 0.00 0.00
Colony dummy 0.01 0.01 0.01 0.00 0.00
Revolution and coups 0.01 0.01 0.01 0.00 0.00
Outward orientation 0.01 0.01 0.00 0.00 0.00
Fraction Hindu 0.01 0.01 0.00 0.00 0.00
Average inflation 1960-1990 0.01 0.01 0.00 0.00 0.00
European dummy 0.00 0.00 0.00 0.01 0.00
Size of the economy 0.00 0.01 0.00 0.00 0.00
Hydrocarbon deposits in 1993 0.00 0.01 0.00 0.00 0.00
Fertility in 1960’s 0.00 0.01 0.00 0.00 0.00
Fraction population over 65 0.00 0.00 0.00 0.00 0.00
British colony 0.00 0.01 0.00 0.00 0.00
English-speaking population 0.00 0.00 0.01 0.00 0.00
Square of inflation 1960-1990 0.00 0.01 0.00 0.00 0.00
Defense spending share 0.00 0.01 0.00 0.00 0.00
Landlocked country dummy 0.00 0.01 0.00 0.00 0.00
Religous intensity 0.00 0.01 0.00 0.00 0.00
Oil-producing country dummy 0.00 0.01 0.00 0.00 0.00
Time of independence 0.00 0.01 0.00 0.00 0.00
Socialist dummy 0.00 0.01 0.00 0.00 0.00
Fraction Catholic 0.00 0.00 0.00 0.01 0.00
Population growth rate 1960-1990 0.00 0.00 0.00 0.00 0.00
Nominal government GDP share 1960’s 0.00 0.01 0.00 0.00 0.00
Public education spending share in GDP in 1960’s 0.00 0.00 0.00 0.00 0.00
Capitalism 0.00 0.01 0.00 0.00 0.00
Terms of trade growth in 1960’s 0.00 0.00 0.00 0.00 0.00
Tropical climate zone 0.00 0.00 0.00 0.00 0.00
Fraction spent in war 1960-1990 0.00 0.00 0.00 0.00 0.00
War participation 1960-1990 0.00 0.00 0.00 0.00 0.00
Land area 0.00 0.00 0.00 0.00 0.00
Population in 1960 0.00 0.00 0.00 0.00 0.00
Fraction Orthodox 0.00 0.00 0.00 0.00 0.00
Fraction of land area near navigable water 0.00 0.00 0.00 0.00 0.00
Interior density 0.00 0.00 0.00 0.00 0.00
Terms of trade ranking 0.00 0.00 0.00 0.00 0.00
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