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ABSTRACT

This paper proposes a large Bayesian Vector Autoregressive (BVAR) model with common stochas-
tic volatility to forecast global equity indices. Using a monthly dataset on global stock indices,
the BVAR model controls for co-movement commonly observed in global stock markets. More-
over, the time-varying specification of the covariance structure accounts for sudden shifts in the
level of volatility. In an out-of-sample forecasting application we show that the BVAR model with
stochastic volatility significantly outperforms the random walk both in terms of point as well
as density predictions. The BVAR model without stochastic volatility, on the other hand, shows
some merits relative to the random walk for forecast horizons greater than six months ahead. In a
portfolio allocation exercise we moreover provide evidence that it is possible to use the forecasts
obtained from our model with common stochastic volatility to set up simple investment strate-
gies. Our results indicate that these simple investment schemes outperform a naive buy-and-hold
strategy.

Keywords: BVAR, equity indices, forecasting, log-scores, stochastic volatility
JEL Classification: C11,C22,C53,E17,G11

[. INTRODUCTION

In recent decades, a marked increase in globalization led to stronger integration in the dynamics
of various asset prices. The global financial crisis in 2008/09 illustrated how correlations between
different global equity markets changed over time. In light of financial innovations and increased
connectivity between international stock exchanges, accounting for the prevailing co-movement
thus appears to be of predominant importance when modelling equity prices and returns. While
the first moment of equity prices, i.e., the mean, displays similar movements across markets, the
amount of co-movement in the volatilities also exhibits a large degree of similarity. Although
this regularity has received considerable attention in the academic literature on the dynamics of
stock prices, it has not yet been exploited in the forecasting literature. Practitioners in financial
institutions like investment banks, pension funds or hedge funds naturally strive for models
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that are capable of producing precise out-of-sample predictions that might guide portfolio
allocations. Moreover, central banks often manage large amounts of capital and tend to invest
considerable amounts in equity markets. The sovereign wealth fund of Norway managed by the
Norges Bank, for example, invests more than 60 percent of its available capital in global equity
markets (Norges Bank Investment Management, 2014).

The vast majority of existing contributions on the prediction of stock prices focus either
on atheoretical techniques, which tend to extrapolate recent behaviour of stock prices, or on
theoretically motivated empirical models. Apart from purely statistical approaches, this strand
of literature also includes techniques from machine learning and computational intelligence
(see, for example, Chen et al., 2003; Enke and Thawornwong, 2005). Contributions focusing
exclusively on the statistical characteristics of the time series involved have been slightly more
successful, in cases where the forecaster’s loss function has been specified such that risk-return
ratios of a given portfolio are optimized. Papers which follow a theoretically motivated empirical
approach are, among others, Ou and Penman (1989); Holthausen and Larcker (1992) and Pesaran
and Timmermann (1995). In addition, several studies exploit the relationship between dividend
yields and excess returns for predictive purposes (Ang and Bekaert, 2007; Campbell and
Thompson, 2008; Rapach et al., 2010). All these studies rely on models that include a moderate
to large number of predictors in the model. Another strand of the literature focuses on models
that reduce the dimensionality of the problem. For instance, Kelly and Pruitt (2013) extract a
latent factor from the cross-section of book-to-market ratios for the US stock market. Apart from
focusing on the price or return of a given stock, an important strand of the literature exclusively
deals with the predictability of stock market volatility. Prominent examples are French et al.
(1987), Hamilton and Susmel (1994) and Bauer and Vorkink (2011).

The majority of the contributions mentioned so far conclude that empirical models with or
without theoretical foundations are not able to produce more precise point forecasts than simple
random walks, providing further evidence for the unpredictability of stock prices. The reason
for this lack of out-of-sample performance mainly stems from three sources. First, most models
used tend to be heavily parameterized, suggesting that the models overfit the data. This typically
translates into weak out-of-sample predictive performance. The second reason could be due to
the fact that financial markets are quite efficient, implying that if a model tends to generate
robust predictions, traders would exploit this information until the advantage vanishes. Finally,
most models employed to forecast equity prices are linear, implying that parameters are not
allowed to change in response to different economic conditions.

In the present paper we alleviate such problems by focusing on a simple variant of a Bayesian
vector autoregressive model with common stochastic volatility (BVAR-CSV) in the spirit of
Carriero et al. (2015). Forecasting with Bayesian methods has a long standing tradition in
macroeconomics. Recently, focus has shifted to high-dimensional models which explicitly allow
for time-varying coefficients and stochastic volatility (Cogley and Sargent, 2005; Primiceri,
2005; Clark, 2011; Carriero et al., 2015). We borrow strength from this literature by using a
BVAR of moderate size that exploits two important characteristics of equity indices, namely the
co-movement in the conditional mean and in the conditional volatility. More specifically, our
model assumes that the volatility of the time series in the panel may be well described by a single
latent factor that effectively scales the variance-covariance matrix of the VAR model. Several
authors have emphasized the important role of stochastic volatility for producing accurate
predictive densities, whereas research in finance mainly agrees on the importance to account for
heteroskedasticity commonly observed in financial time series at moderate to high frequency
time domains (Clark, 2011; Clark and Ravazzolo, 2015; Carriero et al., 2014, 2015). This
so-called volatility clustering needs to be properly incorporated in the modelling framework to
obtain properly calibrated predictive densities.
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This paper aims to contribute to the literature along several important dimensions. First, we
provide evidence on the degree of co-movement between the volatility of equity indices, which
supports the use of a single stochastic factor. Second, we benchmark our BVAR-CSV against
the same BVAR without stochastic volatility and predict a panel of 18 well-known international
equity indices. Albeit purely statistical in nature, our approach provides more precise point and
density forecasts as compared to a simple random walk model. Finally, to assess whether the
BVAR-CSV model performs well in terms of other loss functions, we use a simple portfolio
allocation application. In this application we entertain the BVAR-CSV model to guide our
investment decisions and show how investment strategies based on the BVAR-CSV produce
larger investment returns relative to a naive investment scheme.

The remainder of the paper is structured as follows: Section II introduces the BVAR model
with common stochastic volatility and discusses the prior setup employed. The design and
evaluation of the forecasting application are outlined in Section III. Furthermore, we conduct a
simple portfolio allocation exercise where different investment strategies based on the BVAR-
CSV model are implemented and benchmarked against a naive investment strategy. Finally, the
last section concludes the paper.

II. THE ECONOMIC FRAMEWORK

This section outlines the econometric model. More specifically, after providing an overview of
the statistical model we describe the prior and posterior distributions and give a brief overview
of the Markov chain Monte Carlo (MCMC) algorithm.

11.1 Bayesian vector autoregressive models

Let us consider the general VAR(p) model given by

YI=b0+BlY/71+"'+B/7Yt7p+etv (21)

where Y, isa M x 1 vector of endogenous variables (equity indices) measured in time ¢, b, is a

M x 1 intercept vector and B, ..., B, are conformable M x M coefficient matrices. Finally,
e, denotes the usual vector of errors, where

e, ~ N, ). 2.2)

Note that the M x M matrix ¥, is time-varying and depends on the M x M variance-covariance
matrix ¥

¥, =exp(h,)Z, 2.3)
h=y+o¢h_—y)+ou, 2.4)
u, ~ N(0, 1). (2.5)

Let y € R and ¢ € (—1, 1) denote the level and the autoregressive parameter in (2.4), respec-
tively. Finally, 0% is the variance of the latent log-volatility process.
Note that we can decompose the time-invariant part of X, as

T =TSY, (2.6)

with Y being a lower triangular matrix with unit diagonal and typical free element denoted
by v;;. The matrix S = diag(s, . .., s)) stores the time-invariant idiosyncratic variances. For
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identification purposes we set s; = 1, implying that the factor loading of the first element of e,
equals unity.

This volatility specification — in contrast to the existing literature on stochastic volatility in
multivariate dynamic systems — implies that the whole system is driven by a single volatility
process, thus effectively imposing a factor structure on the volatilities'. As we will show in
Subsection I1I.2, this specification is justified on the ground that the first principal component
extracted from the volatilites of our dataset explains the majority of observed variation. In
addition, as will be explained below, this specific volatility structure implies significant com-
putational gains as compared to models where the volatilities are modeled as equation-specific
(see Primiceri, 2005; Clark, 2011, for an application).

Our model thus combines two important empirical regularities commonly observed in finan-
cial markets. First, our framework permits us to account for volatility clustering among equity
indices. Due to the time-varying specification of the variance-covariance matrix, the model
effectively incorporates sudden shifts in the level of volatility. However, it is worth noting that
the assumption of constant covariances X over time implies that the relationship between the
equity indices included in our panel is assumed to be constant over time as well. Second, due
to the large panel used, we are also able to exploit cross-sectional information from the equity
indices in the sample. The BVAR model thus inherently accounts for interdependencies and
co-movements between different equity indices.

The model in (2.1) can be rewritten more compactly as

Y, =B'X +e, 2.7
where B = (B,..., B,, b)), which is a K x M matrix, with K = Mp+1 and X, =
(Y ,,...., Y, 1)isa K x 1 vector. Stacking the columns of (2.7) yields

Y=XB+e, (2.8)

where Y and X are T x M and T x K, respectively. Additionally, it proves to be convenient to
normalize the matrices X, and Y, by dividing through exp(%,/2), that is

X, = exp(—h,/2)X, and ¥, = exp(—h,/2)Y,, (2.9)

with the corresponding full-data matrices denoted as X and ¥, respectively.

11.2 Prior specification

The VAR described in the previous subsection typically suffers from the well-known curse
of dimensionality. This implies that the apparent overparameterization of the model in
equation (2.1) leads to in-sample overfitting, which typically translates into weak out-of-sample
forecasting performance. To alleviate overfitting problems we introduce additional information
in the model through Bayesian shrinkage priors in the spirit of Doan et al. (1984), Litterman
(1986) and Sims and Zha (1998). This implies shrinking the model discussed above towards a
prior model, which in our case is a random walk with drift. This is predicated by the fact that
stock prices tend to follow a random walk process, which is typically a tough benchmark for
more elaborate econometric models.

In general, a Bayesian framework requires the specification of prior distributions on all
parameters in the model. Our prior setup is given by

vec(B)|Z 7,0 ~ N(vec(B), Z® V), (2.10)

'See Huber (2016) for a systematic comparison between large-scale models that feature different stochastic
volatility specifications.
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where equation (2.10) represents the normally distributed prior on B, where B and J , denote
prior mean and variance, respectively. Note that we assume prior dependence between B and X,
which leads to a conjugate prior specification. Conjugacy implies that the posterior distributions
are available in closed-form and the Kronecker structure of the variance-covariance matrix for
B leads to significant computational gains.>

Moreover, note that we also condition on a hyperparameter 6, which controls the tightness of
the prior. Following Giannone et al. (2015), we impose a Gamma prior with parameters @, and
byon6,

0 ~ G(ao, bo). 2.11)

6 is thus treated as an unknown quantity to be estimated jointly with the system described in
(2.1)-(2.5). 1t is noteworthy that conditional on 0, this prior setup can be implemented through
suitable dummy observations. This captures the notion that the prior arises from a fictitious
dataset. In general, let ¥ and X denote suitable dummy data matrices. Then, the prior variance
on the coefficients and the prior mean are given by

— XX, (2.12)

B=V,XY. 2.13)
For s; we elicit an inverted gamma prior with hyperparameters ¢, and d,
s; ~ ZG(co, dp), (2.14)

where we set the prior hyperparameters such that the prior is effectively non-informative.
Moreover, we impose a normally distributed prior on v;;,
v, ~ N, V). (2.15)
H, and V' denote the prior mean and variance, respectively.
“For the parameters of the log-volatility equation in (2.4), we use the prior setup proposed in
Kastner and Frithwirth-Schnatter (2014). This implies specifying a Gaussian prior on y,

y ~ N .V, (2.16)

with mean ©, and variance V. Moreover, on the autoregressive parameter we impose a beta
distributed prlor given by

Pr L~ Bl b, 2.17)

Note that the density for ¢ is given by

L+ -

p(9) = 2B(ay, b)) 2 2 ’

(2.18)

where B(a,, b;) denotes the Beta function. A convenient feature of this prior setup is that it rules
out explosive behavior of the log-volatility process because the support of this distribution is
the unit interval (—1, 1). Using the mean of the Beta distribution, E(¢) is given by

2a,

E(¢) = m 1. (2.19)

2This result holds true as long as we condition on /, and 6.
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Hence, if a, is greater than b,, the prior mean is positive, whereas if b, is greater than a,, the
prior mean would be negative.
Finally, we use a gamma prior on o2,

o? ~G(1/2,1/2B,). (2.20)

Here, B, is a scalar hyperparameter controlling the tightness of the prior. It is straightforward to
show that this prior translates into a normally distributed prior on the signed square root of ¢
with mean zero and variance B, . This implies that, in contrast to the traditional inverted gamma
prior, we do not bound o away from zero a-priori and thus allow for more shrinkage. These
choices are motivated in Frithwirth-Schnatter and Wagner (2010) and Kastner and Frithwirth-
Schnatter (2014).

1.3 Posterior distributions

Due to the specific form of the priors discussed in the previous subsection it is possible to derive
well-known conditional posterior distributions for B and X!, which facilitate a simple Gibbs
sampling scheme.

Under the prior assumptions (2.10) - (2.20), the conditional posterior for B is given by

vec(B)|Z7',0,h, D~ N(vec(B), = ® V), (2.21)
with
Vei=XX)", (2.22)
B=V,XY, (2.23)
where X = (X', X'), Y =", Y'Y, h = (hy, ..., h;) and D denotes the available data. Note

that conditional on /, posterior quantities are standard results found in many sources (see, for
example, Kadiyala and Karlsson, 1997; Koop and Korobilis, 2010; Karlsson, 2013).
The conditional posterior of X! is of Wishart form

7 B,6,h, D~ W®,S), (2.24)

withv =v + T and § = (Y — XB) (Y — XB).

Unfortunately, the conditional posterior distributions for the remaining parameters are of no
well-known form. This implies that p(k|B, £7', 8, D) and p(@|B, T~', h, D) are not readily
available, which prevents the usage of simple Gibbs steps for the aforementioned parameters.

11.4 Prior implementation and posterior simulation

To estimate the BVAR model we have to specify the hyperparameters for the priors discussed
above. Starting with the prior on B, we follow Banbura et al. (2010) and Koop (2013), and
construct the following dummy observations to implement a variant of the Minnesota prior
(Litterman, 1986). This implies choosing ¥, and B such that the prior model equals the naive
random walk with drift and the prior variance is set so that coefficients on higher lag orders
are shrunk aggressively towards zero. More specifically, the following dummy observations are
used to match the Minnesota moments

diag@]sl, ey QMSM)/Q

_ OM(pfl)xM _
Y= diag(s,, ..., Sy) X =

01><M

Jp ®diag(sla --~7SM)/9 OM]Jxl
OMpr 0M><l ’ (225)
leMp K
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where J, = diag(1, ..., p)and b, ..., b,, denote the diagonal elements of the first M rows and
columns of B, which just equals the identity matrix under the traditional Minnesota prior. Note,
that the first block in (2.25) implements the prior on the first lag of the endogenous variables,
whereas the second block implements the prior on the variance-covariance matrix. The last
block implements the prior on the intercept, where k = 1/1000 is set such that the prior on the
constant is effectively non-informative. Following Litterman (1986) and Sims and Zha (1998),
sy, - - ., Sy denote standard deviations obtained by estimating univariate autoregressive models
of order p. Usually, the tightness parameter is assumed to be constant and known a priori.
However, following Giannone et al. (2015) we treat 6 as an unknown quantity to be estimated.
For the gamma prior associated with 6, we set the hyperparameters equal to @, = 1, by = 1. For
the free elements in T, we set the prior mean H, equal to zero and the variance V' equal to
ten. Given the scale of our data this choice proves to be rather uninformative. Moreover for
the prior on s; we set ¢, = d, = 0.01. For the log-volatility equation, we use the following set
of hyperparameters for the priors. First, for the Beta prior on ¢ we set a; = 5 and b; = 1.5,
resulting in a prior which puts considerable mass on high-persistence regions of ¢. Second, the
prior mean on the level of the log-volatility is set equal to zero, with variance set to 100. This
translates into a diffuse prior on y. Finally, for o we set B, = 1.

This leads us directly to the specific design of our MCMC algorithm. The following MCMC
algorithm is employed to perform posterior inference:

1. Initialize the parameters of the model using maximum likelihood estimates or draws from
the prior.

2. Sample B from N(vec(B), = ® V).

3. Conditional on B, draw X~ from W(¥, S).

4. Obtain a draw from p(h|B, ', 0, D) (and the parameters of the log-volatility equation)
using the algorithm outlined in Kastner and Frithwirth-Schnatter (2014).

5. Finally, sample 0 using a random walk Metropolis step with acceptance probability

p(DI6")p(67)

. 2.26
2DI6)p(©) (2.26)

a(6*10) =

Let 8* ~ N(6, 9) denote the proposed value of 8, 8 be a scaling parameter® and p(D|6)
denotes the marginal likelihood.

Steps 2. and 3. can be implemented using simple Gibbs steps. For the components of the
log-volatility equation and consequently the history of log-volatilities, we use the so-called
ancillarity sufficiency interweaving strategy put forward by Kastner and Frithwirth-Schnatter
(2014).* Step 5. is implemented using a random walk Metropolis step where the marginal
likelihood is available in closed form due to (conditional) conjugacy. More specifically, the
marginal likelihood is given by

1

—1 M — _T+M+y—
pDIO) o ((XNIV DZISI™ = . (2.27)

This completes the description of the MCMC algorithm employed.

3This parameter is specified such that the acceptance probability lies between 20 and 40 percent, see
Karlsson (2013).
4This step is implemented by means of the R package stochvol (Kastner, 2016).
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TABLE 1
Stock indices used in the BVAR model
Region Name Description
Northern America  DJIA Dow Jones Industrial Average
SPX S&P 500 Index
COMPX NASDAQ Composite Index
OSPTX S&P/Toronto Stock Exchange Composite Index
Latin America MEXBOL Mexican Stock Exchange Mexican Bolsa IPC Index
IBOV Ibovespa Brasil Sao Paulo Stock Exchange Index
Europe SXSE EURO STOXX 50 Index
FTSE Financial Times Stock Exchange 100 Index
CAC Cotation Assistée en Continu 40 Index
DAX Deutsche Boerse AG German Stock Index
IBEX Iberia 35 Index
XMB Financial Times Stock Exchange/Milano Italia Borsa Index
AEX Amsterdam Exchange Index
OMX OMX Stockholm 30 Index
SMI Swiss Market Index
Asia-Pacific NKY Nikkei 225 Index
HSI Hong Kong Hang Seng Index
SPASX S&P/Australian Securities Exchange 200 Index

III. FORECASTING RETURNS OF EQUITY INDICES

In this section we provide a brief overview on the data and the model specification adopted
in this study, assess whether our proposed modelling approach is at odds with the data, and
present the main findings of our forecasting exercise. Moreover, the last subsection illustrates
the advocated approach within a simple portfolio exercise.

1II.1 Data overview and model specification

In order to account for the co-movement between the indices under scrutiny, we use a large
sample of stock indices. The dynamic behaviour of a stock index is thus not only explained
by its own movement, but also by the dynamics of the other indices. Our dataset comprises
the most important equity indices (in terms of market capitalization) across North America,
Europe, Asia and Latin America. More specifically, the dataset includes major equity indices of
Northern America (4 indices), Europe (9 indices), Latin America (2 indices) as well as Asia and
Pacific (3 indices). Further details on the included stock indices are depicted in Table 1. Data
on stock prices are obtained on a daily basis from the Yahoo! Finance database for the time
period ranging from 1 January 1998 to 31 July 2014. We then constructed monthly averages of
all equity indices under consideration.

All equity indices enter the model in log levels and we include a lag length of p = 4.
For the MCMC algorithm we use 10,000 iterations with the first 5,000 being discarded as
burn-ins.’

SEstimation of the model has been carried out in R, where all estimation files are available upon request.
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Volatilities
61 — DJIA
— SPX
— COMPX
— OSPTX
— MEXBO
— 1BOV

HSI
SPASX
— Single factor

Posterior mean of volatilities
(univariate SV models and factor model)

Time

Fig. 1. Volatilities of univariate stochastic volatility models and the posterior mean of exp(4;,).

1IL.2 Is there a common factor in the volatilites of equity price returns?

Before we proceed with the actual forecasting exercise it is worth noting that our modelling
approach seems to be overly simplistic at a first glance. However, equity markets tend to be
strongly integrated across the globe, implying that shocks that hit a particular country (most
notably the USA) influence equity prices internationally.

Figure 1 presents the volatilities obtained by running a set of univariate stochastic volatility
models of the form

Ay = exp(hi /2)n, 3.1)

where Ay, is the first difference of the ith element of Y, and n;, ~ N(0, 1) is a standard normally
distributed random variate. In addition, Figure 1 also presents the common volatility factor that
is obtained by estimating the BVAR-CSV over the full sample.

A few interesting findings emerge. Note that all volatilities tend to follow a similar pattern,
implying that global equity markets display a strong tendency towards co-movement in volatility.
Equity price volatility increased across the globe, especially in the early 2000s. This can be
traced back to the burst of the ‘dot-com’ bubble and the 11 September terrorist attacks. Both
shocks could be viewed as being purely US based. However, the pronounced increase in volatility
for most indices considered suggests that the aforementioned country-specific shocks quickly
turned into global shocks, leading to sharp declines in equity prices. The financial crisis of
2008/2009, that originated from the US housing market, also led to severe drops in equity prices
and a sudden spike in the volatility of equity returns. For this period, we find again a general
increase in volatility for most indices considered.

Apart from small idiosyncratic deviations from this general pattern, visual inspection suggests
that the variance structure of a broad set of equity indices can be well captured by our simplistic
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TABLE 2

Statistical evidence for a common volatility structure

Proportion of variance explained by the first four factors

Component 1 Component 2 Component 3 Component 4
Prop. of Variance 0.76 0.09 0.07 0.02
Cumulative Prop. 0.76 0.85 0.92 0.94

Classical Selection Criteria

Kaiser Opt. Coord. Parallel. Analysis ~ Opt. Acceleration
2 2 2 1

The upper panel depicts the proportion of variance explained by the first four principal components (first
row) and the cumulative proportion of variance (second row). The lower panel presents the results of several
classical information criteria.

single factor model for the variance-covariance matrix. To provide some statistical information
on the appropriateness of our approach, Table 2 presents evidence on the amount of variation
explained due to the first four principal components and a set of selected classical information
criteria.

The upper panel of Table 2 suggests that over the estimation period, the first principal
component explains around 76 percent of total variation of the panel, capturing the majority of
variation in volatilities across all 18 indices considered. The lower panel of Table 2 presents
the results obtained by estimating several classical information criteria to select the optimal
number of factors. The criteria we use are the well-known Kaiser and parallel analysis criteria,
that both rely on the inspection of the sample correlation matrix. The optimal coordinates
(Opt. Coord.) criterion is obtained by linearly extrapolating the coordinates of the preceding
eigenvalues through a linear regression. Finally, the optimal acceleration criterion inspects the
inflection point of the scree plot. All measures point towards one or two factors. Inspection of
the corresponding scree plot (not shown) also points towards two factors (albeit the eigenvalue
associated with the second principal component only marginally exceeds unity). Our analysis
thus suggests that the optimal number of factors lies between one and two and supports our
assumption of one stochastic factor.

111.3 Design of the forecasting exercise

We propose the following recursive forecasting exercise.® In the first step, we start with an
initial estimation period ranging from 1998:M01 to 2011:M07. The remaining observations are
used as a verification sample to assess the predictive accuracy of our modeling approach. Then,
we use the BVAR to simulate k-step ahead predictive densities. After obtaining the predictions,
we expand the initial estimation window by & steps. This procedure is repeated until we reach
the end of our data sample (2014:M07).

In our framework the k-step ahead predictive density is given by

p(Yr+k|Dr) = LP(YI+k|Drv E)p(E|er)dE’ (32)

The results based on a rolling estimation window yields similar results.
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where D, denotes the information set up to time 7 and E collects all available parameters of the
model. Equation (3.2) can be easily approximated using Monte Carlo integration. As a point
estimator, we utilize the mean of the predictive density, denoted by 7r+k.

We base our forecasting comparison upon two measures, the root mean square error (RMSE),
which is a well-known measure for the accuracy of point forecasts. The RMSE is defined as

—\2
ZZ:/U (YIO - YT)
T

where ¢, and 7 denotes the first and last period of the verification sample, respectively. The
actual outcome at time 7 is denoted by Y.°.

To assess how well our model performs in terms of density predictions, we moreover adopt the
log predictive score (LPS). The LPS is a well-known Bayesian evaluation criterion, motivated
recently in Geweke and Amisano (2010). In general, the log predictive score is the logarithm
of the predictive density log p(Y,.+|D,) evaluated at Y. This implies that the log predictive
score is given by

RMSE =

: (3.3)

T—k

LPS = "log p (Yrui = Y2,ID,) . (3.4)

=ty

Conjugacy of the model described above implies that the one-step ahead predictive density is
available in closed form. However, for k£ > 1 we have to perform posterior simulation. Evaluation
of the predictive density is then done using the quadratic approximation put forward in Adolfson
et al. (2007), which is given by

LPS(YS,) = _O-S(M log(27) + log [V | + (Yr(-)#k - ?I+/\')/Vr+k\r (Yr0+k - 7H—k) )7
3.5)

where VTH.‘I and 7,“ denote the posterior variance and mean of the predictive density,
respectively. Another convenient property of this approximation is that we can easily obtain the
corresponding marginal predictive densities (i.e., the predictive density for a given element of
Y., after integrating out the remaining elements of Y, ;) by simply dropping the corresponding
rows and columns of 7,+k|f and 7,+k.

111.4 Forecasting results

This section provides details on the evaluation of out-of-sample forecasts of the equity indices in
our dataset. Table 3 summarizes the results of the forecasting exercise for different forecasting
horizons and model settings. BVAR-CSV and BVAR denote the BVAR models with and without
common stochastic volatility, respectively. In both cases out-of-sample forecasts ranging from
one to twelve months ahead are reported.

The RMSEs presented in the upper part of the table are moreover reported relative to the
RMSEs of random walk forecasts, implying that values below unity signal outperformance,
while values exceeding unity indicate underperformance, relative to the benchmark. To assess the
significance of our findings, we also report significance levels obtained by running the Diebold-
Mariano test (see Diebold and Mariano 1984) and the Amisano-Giacomini test’ (Amisano and

"Note, that the specific design of our forecasting exercises implies that the size of the estimation and
verification sample expand over time, suggesting that a key condition for the validity of the Amisano-
Giacomini test is violated. Nevertheless, we still include confidence levels to provide a rough gauge on the
significance of the differences in LPS.
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Giacomini, 2007) with two asterisks marking the five percent significance level and one asterisk
signaling significance at the ten percent level.

Table 3 reveals that in the BVAR setting without common stochastic volatility, the random
walk proves to be a rather tough benchmark. The table shows that the BVAR barely outperforms
the random walk for any of the stock indices in the sample. This holds true for all the forecasting
horizons considered. Relative to the random walk, the average performance across all indices
considered reveals that the BVAR only outperforms the random walk in terms of nine- and
twelve-steps-ahead forecasts in a statistically significant fashion.

The forecasting performance of the BVAR model with common stochastic volatility (BVAR-
CSV), however, shows significant improvements relative to the random walk. Irrespective of
the forecasting horizon, BVAR-CSV produces more accurate out-of-sample predictions for
most of the equity indices under scrutiny as compared to the benchmark. On average, the table
reveals that the outperformance is especially pronounced for longer horizons (nine and twelve
months ahead). Forecasting European and North American equity indices produces the smallest
RMSE:s relative to the random walk. The results for the Dow Jones Industrial Average (DJIA)
and the S&P 500 Index (SPX), for example, particularly confirm this pattern with relative
RMSEs ranging from 0.71 to 0.89 and 0.74 to 0.91, respectively. While improvements for short-
term predictions (one and three months ahead) appear to be modest, being insignificant for
the vast majority of indices considered, longer term forecasts (greater than six months ahead)
tend to be significant for most indices. Note that the overall differences in terms of RMSE are
significant even at shorter forecast horizons, outperforming the random walk significantly at
the ten percent levels at the three-months-ahead horizon and at the critical five percent levels
for the remaining time horizons (except at the one-month-ahead horizon). This result is due to
the fact that the evaluation of a the full matrix of forecast errors across all indices considered
raises the power of the test.

Due to the fact that RMSEs neglect the uncertainty surrounding the point forecasts, we
also focus on the log predictive score. The lower panel of Table 3 presents the results for
the BVAR-CSV and the homoskedastic BVAR relative to the random walk’s LPS. Numbers
greater than zero indicate outperformance of the respective model whereas negative values
indicate outperformance of the random walk. Note that we simulate the predictive density from
a random walk model by exactly imposing the prior in the standard BVAR.

Several things are noteworthy. First, the final row of Table 3 suggests that the BVAR-CSV
outperforms the random walk benchmark for time horizons greater than one-month-ahead in
terms of relative overall LPS. The homoskedastic BVAR model also improves upon the random
walk model, although the accuracy gains are somewhat more muted. The overall LPS figures are
substantially greater than zero for forecast horizons ranging from three- to twelve-months-ahead,
being statistically significant at all horizons considered. This suggests that allowing for more
flexibility of the error variance-covariance matrix yields pronounced accuracy improvements in
terms of the first and second moment of the corresponding predictive density.

Across equity indices and by considering the marginal predictive density provides no clear-
cut evidence in favour of the CSV specification. In the short-run, random walk predictions
tend to be more precise as compared to the BVAR and even the BVAR-CSV. In the case of
the BVAR-CSYV, this finding could reflect the fact that the volatility structure closely tracks
equity market volatility in the USA and Europe. This treatment might be appropriate for the
majority of indices, however, it might be inappropriate for other markets. In addition, note that
marginal predictive densities ignore the rich covariance structure contained in ¥,, neglecting
one important advantage of a large-scale multivariate model.®

8Technically, this stems from the fact that we evaluate a set of M univariate predictive densities, implying
that the relationship between different equity markets has been integrated out.
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Comparing the differences between the homoskedastic BVAR and the CSV specification
reveals that when the predictive density of the full model is evaluated, allowing for stochastic
volatility improves the accuracy of the density forecasts by large margins. Financial time
series usually exhibit significant shifts in volatility, which translates into situations where the
predictive density is expected to become more dispersed in times of crisis and more concentrated
in ‘normal’ times. Even though such behaviour also influences point predictions, the effects on
density predictions are much larger. This can be seen in Table 3, where especially for the three-
to six-steps-ahead density forecasts the outperformance is particularly pronounced. This leads
to the conclusion that stochastic volatility exerts significant positive effects in terms of density
predictions.

We have made several attempts to ensure the robustness of our findings. First, increasing
the length of the verification period to include the great crisis of 2008/2009 leads to similar
results. However, in terms of RMSEs the differences between both BVAR specifications and the
random walk tend to disappear. This does not carry over to the log scores, where the differences
tend to increase by margins up to ten percent. This is again in line with the results described
above, where the inclusion of stochastic volatility leads to more reliable density forecasts.

Performance over time

Table 3 presents the average RMSEs and the overall LPS across the whole verification sample.
To gain some insights on the degree of time variation of our findings and to what extent the
changes in the LPS are driven by different moments of the corresponding predictive density,
Figure 2a to Figure 2e display the evolution of the cumulative log predictive score (vis-a-vis the
random walk) and the cumulative (average) squared forecast errors over the verification sample.

For the one-month-ahead time horizon, LPS of both models considered tend to be smaller
than the random walks’ LPS. However, the LPS of both models improve upon the random walks’
LPS in the first half of 2013. This roughly coincides with a general increase in volatility as
shown in Fiugre 1. Afterwards the LPS tend to fall relative to the random walk, with the BVAR
being outperformed by the BVAR-CSV and the random walk. Note that both models display a
similar performance in terms of point forecasts, with the CSV specification providing slightly
more precise point forecasts.

The finding that the relative LPS increases sharply when volatility increases carries over to
all other forecast horizons considered. The BVAR-CSV generally outperforms all competing
models for horizons greater than one-month-ahead in terms of point and density predictions.
Note that up to the second half of 2012, both BVARs tend to be inferior to the random
walk in terms of LPS. However, the period from the beginning of 2013 onwards marks a
serious regime shift with a sharp increase in volatility. Both models that aim to estimate a
full covariance matrix exploit cross-sectional information, ultimately providing superior density
predictions. In addition, the single scaling factor used to adjust the variance-covariance matrix
of the system leads to appropriate forecast intervals. This is also due to the fact that the
CSV specification reacts to changes in volatility, making the prediction intervals wider when
necessary, thus also covering observations which would be highly unlikely under the BVAR
specification.’

111.5 A simple portfolio exercise

Even though LPS allow us to unveil the ability of the BVAR to properly predict the density
associated with some variable of interest, it is not possible to directly judge the ability to

° All results and codes are available upon request.
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Fig. 2. Evolution of the cumulated LPS and the cumulated squared forecast errors over the
verification sample.

predict the future direction of that variable. This is of key interest to practitioners in financial
institutions or central banks who base their decisions on the most likely path of some financial or
macroeconomic quantity. Since our goal is to show that the BVAR produces reliable directional
forecasts (i.e., whether some indices go up or down), we demonstrate the performance of our
approach in a simple portfolio management exercise.
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Recently, several studies have emphasized the importance of judging a models’ predictive
capabilities by using economic measures. Carriero et al. (2009), for example, benchmark their
BVAR using a simple trading strategy and evaluate the corresponding Sharpe ratios. They find
that forecasts obtained from the BVAR generally improves Sharpe ratios as compared to simple
autoregressive models.

In the spirit of the aforementioned study we use the predictions from our BVAR model to
guide the investment process of a portfolio manager. First, we have to make several assump-
tions characterizing the investors’ behaviour, which in turn allow us to formulate three simple
investment strategies.

We assume that the investor is only allowed to enter long positions.

Furthermore, our investor is not allowed to borrow money, i.e., to leverage positions.
We assume that there are no transaction costs involved.

Investors are only allowed to change their positions once per time period considered (i.e.,
per month).

5. The investor starts with an equally weighted portfolio in #,.

6. Finally, our investor maximizes the risk/reward ratio by picking the strategy that yields
the highest expected return for a given level of volatility.

Ealb o e

Before turning to the trading strategy, a few remarks on the employed assumptions appear neces-
sary. While the first assumption will be relaxed in an alternative investment strategy, 2. to 4. are
assumptions in order to keep the employed investment strategies simple. The equally weighted
portfolio assumption in #, reflects an agnostic stance by preventing an asymmetric portfolio al-
location a priori. Conditional on the level of uncertainty (volatility), the last assumption ensures
that the investor maximizes the risk/reward ratio.

Under these assumptions, we propose the following simple trading strategy. At time ¢, use the
point forecast for the ith index, Y, ., and compare it with the current outcome, Y. Compute
the percentage difference denoted by g; . If this difference is greater than zero (i.e., the index
is expected to increase in value), we include it in our portfolio. Otherwise, if the expected change
is negative (or equal to zero), we exclude the index for the given time period. Computing g; .,
foralli = 1,..., M allows us to calculate portfolio weights at time ¢, w,. The ith element of
w, is given by

Wiy = —SnH (3.6)

ij:l &j.r+1

Note that if g;,.; < 0 we set w;, = 0. Equation (3.6) implies that if the expected percentage
increase is high, we overweight that index/market in our portfolio, whereas for low/negative
increases, the respective index is underweighted/excluded in our portfolio. If all expected returns
happen to be negative the investor is not investing in equities, effectively selling all positions for
that given point in time. Afterwards, if the expected returns of some indices turns positive again,
the investor consequently re-enters the market. This strategy is labelled the Active investment
style.

For the second strategy, we relax the first assumption above. Hitherto we have assumed that
the investor is not allowed to bet on falling markets by short-selling a given equity index. We
relax this assumption by assuming that the investor is also allowed to invest in markets where the
forecast for # + 1 is smaller than the current value at time . Furthermore, this strategy assumes
that all positions in the portfolio are equal in value both in relative as well as in absolute terms
(i.e., we equally weight all indices included). This implies that the M positions included in
our portfolio only differ whether they are long or short positions. This strategy is labelled the
Long/Short investment strategy.
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Fig. 3. Comparison of alternative investment strategies over the verification sample.

As a third benchmark strategy, we assume that the investor invests all available capital in
the index, which has the highest expected profit from period ¢ to period ¢ 4+ 1. This implies
that the entire portfolio consists of only a single equity index. We call this strategy the Max
investment strategy. However, it is worth noting that in the case of the highest expected profit
being negative, the strategy involves short-selling the equity index with the lowest expected
profit.

As the natural competitor to the aforementioned strategies, we also investigate the effects of a
Passive investment style. This corresponds to the case where money is kept equally distributed
across all equity indices over the entire investment horizon.

Fiugre 3 presents the posterior distribution of the evolution of our portfolio over the time
period ranging from August 2011 to July 2014. All portfolios start initially with 18 USD worth
of capital, spread equally across indices (i.e., at #, one USD is invested in each equity index
under scrutiny). For simplicity we moreover assume that exchange rates are mutually constant
relative to the US dollar. This rules out effects related to movements in exchange rates.'

Apparently, the Passive investment strategy is outperformed by all other strategies considered.
It is worth noting that the Long/Short displays the strongest performance among the strategies
that exploit the BVAR-CSV model to generate trading signals, with the Max trading scheme
ranking second. Note that while all strategies suffer severe losses in the first half of 2012, active
strategies tend to profit from the fact that the weightings are adjusted rather rapidly, effectively
diminishing the adverse effect of a global downturn in equity prices on the investor’s portfolio. In
the first half of 2013, all strategies except the Long/Short strategy face sharp losses, recovering
quite fast afterwards.

10Relaxing this assumption would complicate the analysis, since we would also have to forecast a broad
panel of exchange rates relative to the US dollar.
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Fig. 4. Posterior distribution of the portfolio value at time r = 2014/07.

To gain some information on the dispersion of the portfolio, Figure 4 depicts the posterior
distribution of the portfolio value in July 2014. Both the Active and Long/Short strategy display a
similar standard deviation. However, in concordance with the finding described above, the mean
of the distribution of the latter investment scheme is shifted to the right, implying a stronger
return in the end. Note that the standard deviation of the Max strategy is remarkably high. This
is simply a result of the lack of portfolio diversification. Since this strategy invests the available
capital in the index that is expected to show the highest absolute change in the future, gains
from diversification do not materialize, leading to a much higher variance of the portfolio.

Note, that this overly simplistic example can also be extended to allow for using leverage,
i.e., use debt-financed investing. This could lead to further improvements in terms of expected
returns. In addition, using a shorter trading time frame would lead both strategies to converge
in terms of average returns, due to the optimistic sentiment in the stock markets.

IV. CONCLUSION

This paper puts forth a large dimensional BVAR model to forecast equity indices. This approach
is empirically justified by the finding that a few latent factors explain the majority of the time-
varying volatility of equity indices. Our model thus provides a parsimonious representation of
the data, capable of incorporating several stylized facts commonly observed in the analysis of
equity markets.

The performance of our approach is evaluated in an out-of-sample forecasting exercise. To
effectively capture the interdependencies of the global market, forecasts are carried out on a
sample of eighteen major equity indices. We compare the performance of the BVAR model,
with and without stochastic volatility, to that of a naive random walk forecast. Both models tend
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to perform well when the forecasting horizon is increased, outperforming the benchmark model
both in terms of point and density predictions. Inspection of the evolution of cumulative log
Bayes factors over time reveals that especially in times of economic stress and uncertainty, our
model with stochastic volatility proves to be reliable and relatively precise.

In addition to the analysis above, the paper also presents a simple trading exercise. The
BVAR-CSV model is used to efficiently allocate available capital across a portfolio of stock
indices using a set of different investment styles. This exercise aims to demonstrate the ability
of the BVAR-CSV to properly predict possible directions of the underlying equity indices. Most
strategies considered clearly outperform a simple buy-and-hold strategy with fixed and equal
capital allocation. This provides some evidence that institutional investors should incorporate
models in their investment decisions that capture correlation in the conditional mean (i.e.,
the VAR part of our model) and in the conditional variance (captured through the stochastic
volatility factor).
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