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In a 1971 paper, Suzuki and Kiyose give a model for light

water moderated atomic reactor refueling optimization.

Specifically, they present a linear programming formulation

for minimizing the number of fresh fuel assemblies required

by a reactor over a finite planning horizon subject to power

generation and safety requirements and reactor design specif­

ications. The optimal refueling pOlicies found by Suzuki and

Kiyose were useful in reducing the fresh fuel required, but

two difficulties were encountered. First, the optimal linear

programming solutions included small fractional numbers of

fresh fuel assemblies which were difficult to round off. The

second difficulty was that their formulation had approximately

l65H constraints where H is the length of the planning horizon.

The problems solved had H=lO, but it was desired to analyze

the problem for longer planning horizons of 20 to 30 stages

without solving prohibitively large mathematical programming

problems.

In this paper, we g~ve a reformulation of the reactor

refueling optimization problem that consists of approximately

l5H constraints and a large number of columns. This reform­

ulation is required because the state-of-the~art of integer

programming does not usually permit the solution of integer

programs with thousands or even many hundreds of constraints.

Moreover, the reformulation should permit the linear programm­

ing approximation to be more easily solved, at least



approximately.
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Finally, the reformulation identifies and

analyzes explicitly the fundamental activity in refueling

optimization; namely~ the introduction, degradation and

removal of fuel assemblies. This should make it easier to

modify the model to take into account additional features of

the problem such as a ~ost for moving an assembly from one

location to another.

1. State~ept and Rpfornulation of the Problem

A fuel asse~bly is introduced into the reactor at a

barnup levelland degrades with ti~ to burnup level j

J = 1, ... ,J. Time is measured in discrete stages and we let

h = J, ••. ,n, denote the periods in the p'anning horizon. The

exact degrad~tion of an a.ssembly during a g17en period depends

on the zone in which it operates. Let i = 1, ... ,I d.enot(~ these

~onec and let T.(j) > j denote the burnup level of a fuel
1

assembly at the end of a period spent in zone i when it was

at a burnup level j at the start of the period.

The formulation of Guzuki and KiyoGC is an folJows.

h-;-;: .. denote the number of fuel asscmr.lics
IJ

j assigned to zone i in period h. The integer programming

problem which mlD1m1zes fresh fuel 1S
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H I
hZ = mJ.n L: L: xiI

h=l i=l

J h b~s.t. L a .. x .. <
j=l J.J J.J - J.

I
h+l I

L < L h'x .. xiT:-l(j)
i=l J.J i=l J.

for all i,h

for all j ,h

except j=l, h=H

(1.1 )

(1. 2)

h
x .. > 0 and integer for all i,j,h,

J.J (1. 4)

where the integer a .. J.5 a technological coefficient for an
J.J

assembly in zone i at burnup level j and

T- l (.) .i J J.8 the burnup level at the start of a period of an

assembly located in zone i which degrades to level j by the

end of th~ period. Note tha~ the slacks on the constraints

(1,3) are the burnup assembli~s of levels j which are

discarded at' the ~:tart of period h+l. In the actual applic-

ation, there are 3 IH .constraints of the type (1 2) . 1 d'. ,J.nc U J.ng

IR equality const~aints. Moreover, there are upper bound

constraints aD the slack variables s~ on the
1

GQnstraints. We have stated (1.2) 1D the simpler fo~m, and

omitted the bounds on the s~, J.n order to be abl~ to prespnt
J.

an uncluttered discussion of our approach, ThesQ d~tail~ can

be reinstated without difficulty when computation is done,

The idea behind our reformulation is that the constrRint3

(1.3) have an implied network structure which is not being

exploited and moreov~r, which is ineffic~ency described by a

large system of inequalities.
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We define a fuel assembiy schedule to be an H-vector

with entries 0,1,2, ... ,1 where the entry in the hth component

indicates the zone in which it is located in period hand

zero indicates it is not used. The non-zeros must run

consecutively. An example of a schedule when H=lO is the vector

(0,6,0,3,3,2,2,0,0,0) indicating the assembly is introdueed

into the reactor in zone 3 at the start of period 4, is

relocated in zone 2 at the start of period 6, and ~s removed

at the end of period 7 .

Each assembly schedule implies unique burnup levels of

the assembly. Specifically, we have

assembly used in periods

located in zones

burnup levels

where

and

j = l.
o

iO' il;···,i T

jo' jl'''' ,jT

s= 1, ... ,T

( 2 )

The information in (2) ~s used to define the performance

coefficients

h ,a ihjh
if h e: {hO,···,hO + T}

v. =
~

I 0 if h ¢ {hO' ... , h O + T}

Let V denote"the IH vector with components hv .•
~

In order to state our reformulation of problem (1), we need
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k
a complete enumeration of such columns, say V k = 1, ... ,K,

h,k
with components v. .

1
Let x

k
denote the number of times

schedule k is to be used. Then problem (1) is equivalent to

~ = m1n

K
s . t . ~

k=l

K
~

k=l

h,k < b?
vi Xk 1 for all 1, h

x > 0 and integer for all k
I;: -

The number of schedules will in general be quite large and

a nethod is required to generate good schedules iteratively

but not exhaustively. The linear programming problem which

results if the integrality restriction in (3) is omitted is

denoted by L.P. (3) and its minimal objective function value

by L.

2. G~neration of Fuel Assembly Schedules

It is clear that I.P. (3) has an enormous number of

ccJ.umns for an application of any realistic S1ze; for

i = 5, J = 150, H = 30, we estimate I.P.(3) would have

betwee~ 10,000 and 20,000 columns. Thus, some pr1c1ng

pr0cedure for generating good columns for I.P.(3) without

ex~ausiively generating all columns is required. Since

th0.re is nothing inher~ntly special about I.P.(3), a column

genera7.ion procedure for it is applicable to a number of

similar I.P. column generation problems such as the cutting

steck problem, multi-commodity flow problems and others



(Lasdon (1970)).
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For this reason, the general theory of

I.P. column generation viII be presented in another paper.

We give here only a brief discussion of hov columns can be

generat ed.

The idea behind column generation for L.P.(3) 15 linear

programming dual pricing (Lasdon (1970)). Specifically, let

TI denote a n~n-ncgative 1H vector of prices on ~he ~onstraints

in L.P. (3). Th~ column generation procedure is to solve

minimize 1T V

s . t . V feasible column

~n order to find a specific column Vwith the property

TI V < -1. If this last inequality holds~ then the column

y' looks attractive for use in L.P.(3) since its :'educed cos":,

1 + ~ V 18 negative relative to the prices IT. In this case.

V 16 add~d with an appropriate variable to L.P.(3).

The column genF:ration problem has :'\ shortest ri)ute

n0twork interpretation. The nodes and arcs are gen0.rat0Q

recursiv01y from the following initial set nf nnden and arcs.

~he initial set of nodes are an or1g1n node, a removal node,

and node~ i, 1, h,for all 1, h. There are arcs drawn fT0m

the ~rigin to nodes i, 1, h
h,with ar~ lengths 1T'~i 1

1 .. ,

starting from node i, 1, h, there are a number of arcs ~rawn

~o th~ r~moval node. Each arc corresponds ~;,) mn.int:~ininc;

the fuel assembly in zone 1 ~or r additional periods,

r = 0,1,2, ... ,R, where R is a practical upper limit on
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assembly life; probably R=4 will sUffice for the given

problem. If r=O, the arc length is 0, whereas if r ~ 1,

the arc length ~s

h+l
:rT i ai,To(l)

~ .

where

+ , ••. , +

and

T~ ( l) = To ( 1 )
~ ~

r == 2,3, ... ,R

The additional nodes and arcs are generatively recur-

sively from the nodes i, 1, h. Specifically, a node i, J, h

Previouslv generated will generate nodes i', Tr+1r J
o)" i \ ,

h + r + 1 for all i ~ i' and for r = 0,1, ... ,R, and arcs

drawn from i, j, h to these nodes. These correspond to

maintaining the assembly in zone ~ for r additional periods

and then shifting the assembly to zone

arc length is

o ,

~ . The '?.ssociated

h+l
1To aOT(O)
~ ~, i J

+ , ••• , +
h+r h+r+l

1To aOTr(o)+1To .. aO'Tr+l(O)
~ J.'i· J J. ~'-i J

where only the last term is present if r=O.

The column generation problem is solved when we have

found the shortest route path from the origin node to the

removal node. If the length of this path is less than - 1,

then the corresponding path can be used to generate a column

to add to L.P.(3).
~

The example illustrated in figure 1 will
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,..,
suffice to show how this is done. Notice that T~(l) = 27;

that is, a fresh assembly in zone 3 for two periods degrades

to a burnup level of 27. The shortest route path corresponds

to a schedule (0,0,0,3,3,4,4,4,o, ... ,0)~ From this schedule,

a column V is uni~uely definci.

The network we are describing 1R clearly very large for

the given values I = 5, J = 150, H = 30. However, 0'1r

proposed method for solving and using the network should

eliminate most of the difficulties. The idea is to ~dapt

Dijkstra's al!ori~hm (1959) for solv~ng 3hortest route

problems. The al~orithm begins with arcs drawn from the

origin to the nodes i, 1, h, with their associat~d l~ngths

for all i, h. These arcs are ordered according ~o l~ngth,

creating a path list, and the minimal one drawn to ~ specific

The algD~ithm th~n ~~nsiler~ the

R + 1 paths drawn out of the 3pecifi~ i, 1, h, t,.., t~~ re~oval

node ~nd selects the minimal length 0n~ ;rom ~rn0ng the3~.

This path represents a completed schedule and it ber~mes thp

incumbent nhcrtest route path until a better is discover~a.

The path to 1, 1, h, is also extended to thn nones

i ' , r, for all i' 1 i and for r = C,l, ... ,n.

These pat.hs are ordered according to lene;th anJ. .... 11e orde:red

list is merged with the previous ordered path li'1t with t.he

minimal element deleted (it is replaced ~y the neWly gener~

ated paths). The minimal element of the path list is ag.n1n

selected and the path is extendea in the same manner.



L.P. Column Generation Algorithm

Step 1 (Initialization):

For i = 1, •.. ,I, h = 1, •.• ,H, add i 1 h to path list

with associated length TI~a'l'
. 1 1

Order path list by

increasing .length. .Set ~he incumbent length of shortest

route path to the best known (or estimated) value c.

Step 2.

Stop if path list is empty. Otherwise, select first

path from path list (i.e., path with minimal le~gth).

Suppose it is drawn to node i J h and has length c.

(Optional: search through the list and eliminate all other

paths drawn to i j h). Extend path to removal node by short-

'.'::t path by ,-:-alc 1.l1n.t.irig r E {OIl, .. , ,R} satisfyi.ng

if

r h+t
r 'IT, a'Tt(,) =

t=l 1 1 i J

h+t
minimum E TI, a'Ttr')
~-O 1 R t=l 1 1 1·~J"'-, , ... ,

r
h+t

C + l. TI . a. • rp t ( . )
.t:.:l J 1. i J

< C

replace incuIilben t . by this path and s('!t ~ eq'lal to,,-) the left

band sum. Delete all paths from path list with len~th

greater than c - 6 where

/). = R • ID1n

i,j,h

h
7T, a, .

1 1.1
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Step 3.

1 i and r = 0,1, ... ,R, extend path to nodes

h + r + 1 with associated length

c +
r h+t h+t+l
L 11". a.Tt(.) + n. a. Tr+l( ')

t=l 1 l"i J 1 1 1 1 i J

except if this length is greater than c - ~. M~rge these

paths with the paths on path list so that the augmented path

list is still ordered by increasing length. Return to

Step 2.

P.emarks

Step 1. The shortest ro';te path from the previ,")us ~alculat-

lon with different 11"~ con be used to give a val~J"e 0::' e using
1

the new arc lengths 1T~a. .. Alternatively, we can tqke
1 1J

e = -1 since any basis activities in L.P.(3) correspond to

paths with length -1.

Step 2(a). Since any column with reduced cost less than -1

can be used to improve the solution io L.P.(3), the stnppin~

criterion can be e < -1 -£ for some £ > O.

(b). There may be relatively few paths drawn to the

same node in the network. Therefore, it may not be worth

the work at each step to make the optional subs~ep.

(c). The value ~ is selected so that any incnmpleted

path with length greater than e - ~ will not have a completed

length less than e. The value ~ is a gross overestimate ann

it will probably be preferable t~ use a smaller value in



spite of the small risk that the'shortest route path may

be deleted b~fore it is completed.

Step 3(a). There may be a cost associated with moving an

-
assembly fro~ one -zone to another. If the obje~tiv~ function

of the problem (3) were changed to one of minimizing cost

rather than the num~er (If fresh fuel assemblies used s then

the moving cost could be in~luded ac we~l.

This ccmpletes our d~scussion of column generation for

L.P.(3). The problem we really want to solve i~ I.~.(3).

Thus, the qu~nti0n remains: How do we adapt or continue the

linear programming column generation process to solve the

integer programr.ing problem? In a separate paper we will

give 3 thcor~tic~l procedur~ which ~llows this to be done.

Roughly spenking s the idea 18 to add adJitiJnal structure to

the shortest route problem so that paths other than those

corresponding to th~ optimal linear programming basic

activities aTe e~nerated.

From a practical viewpoints hcweve r s the procedure for

generating additional columns for I.P.(3) needs to be c0robined

with branch and bound and heuristics. We will be i~ a better

position to judga these practical matters when ~omputationn:

experim~nts curr~ntly underway are completed. We plan ~o

write annthpr vcrS10n of this paper including r~mputati0naJ.

exp~rience.
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