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Abstract: The paper presents a large scale nonlinear model which is used for support-
ing international negotiations aimed at improving air quality in Europe. The model
helps to identify cost-effective measures for reducing air pollution emissions that will
result in meeting environmental standards for tropospheric ozone, acidification and
eutrophication. Several methodological issues related to the specification, generation
and optimization-based analysis of large nonlinear models for decision support that
are of a more general interest are presented. Copyright (©)1998 IFAC
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1. INTRODUCTION

I In many parts of Europe the critical levels of
air pollution indicators are exceeded and measures
to improve air quality in these areas are needed
to protect the relevant ecosystems. Cost effective
measures aimed at the reduction of ground level
ozone concentrations at several hundreds of re-
ceptors over Europe can be calculated by a mini-
mization of a cost function that corresponds to the
costs related to reductions of NO, and VOC emis-
sions subject to constraints on the resulting ozone
concentrations. The Ozone model, cf e.g. (Heyes
et al., 1997), has been developed for analysis of
various policy options that lead to improvement
of the air quality by reductions of such emissions.
However, the emissions of NO, should also con-
form to the standards set at each receptor for
acidification and for eutrophication. The latter
problem is handled by the RAINS model (Alcamo
et al., 1990). An analysis of two separate models
is cumbersome, therefore the RAINS model has
been included in the Ozone model. This in turn

1 This paper will appear in: Large Scale Systems: Theory
& Applications, P. Groumpos (Ed.), Elsevier, 1998.

requires a joint consideration of not only emissions
of NO, and VOC but also of NHz (ammonia) and
SO, (sulphur oxides). The resulting model is large
and nonlinear with a large linear part.

There is a number of methodological and technical

issues related to the specification, generation and

optimization-based analysis of such a large model
that are of a more general interest and therefore
several of them are presented in this paper:

e The resulting model is a nonlinear one, therefore
a problem specific generator has been devel-
oped and coupled with three nonlinear solvers.
The generation of the model requires process-
ing of a large amount of data coming from
various sources. Object-oriented programming
approach to the model generation and analysis
has been applied.

e A representation of environmental targets by
hard constraints would result in recommenda-
tions of expensive solutions, hence soft con-
straints (with compensations for violations of
the original targets) are specified.

e The resulting optimization problem has typi-
cally non-unique solutions, therefore a technique
called regularization was applied in order to



provide a suboptimal solution having additional
properties that are specified by a user.

e A minimization of costs related to measures
needed for improvement of air quality is a main
goal; however, other objectives (such as ro-
bustness of a solution, trade-offs between costs
and violations of environmental standards) are
also important. Therefore, a multicriteria model
analysis has been applied to this case study.

2. MODEL DEFINITION

One should first distinguish between a set I of
sources of various types of air pollution, and a set
J of areas for which various quality indicators are
assessed. Conventionally, the names emitter and
receptor are used for elements of such sets. In order
to account for measures that can be applied to
a group of emitters, sets of NO, and VOC emitters
are composed of subsets called sectors. Emitters
that belong to a particular sector emit either NO,,
or VOC or a linear combination of them.

The model definition requires the following in-

dices:

e Index ¢ € I corresponds to emitters. The num-
ber of elements in [ is equal to the number of
countries (about 50).

e Index is € S; corresponds to a sector that emits
either NO, or VOC or a linear combination of
them; S; is a set of sectors in ¢-th country. A set
S; has typically about 5 elements.

e Index j € J corresponds to receptors. There are
598 receptors, each representing one 150x150 km
grid.

e Index | € L corresponds to a combination of
ozone thresholds and a year.

e Index m € M corresponds to a set of receptors
for which balancing of violations and surpluses
of targets 1s defined.

2.1 Decision variables

The main decision variables are the annual emis-
sions of the following four types of primary air
pollution emitted by either a sector or by a coun-
try:

n;, - emission of NO,

vis - emission of VOCs

a; - emission of NHs

s; - emission of SO,

Additionally, optional decision variables are con-
sidered for scenarios which allow controlled vio-
lations of air quality targets. For such scenarios
variables corresponding to each type of the con-
sidered air quality targets are defined for each
receptor. Optionally, violations of targets can be

balanced with surpluses (understood as a differ-
ence between a target and a corresponding actual
concentration). For efficiency reasons one variable
is used for both violations of targets and sur-
pluses (positive values represent violations while
negative values correspond to a part of a surplus
that is used to balance violations of targets with
surpluses).

Therefore, the following decision variables are op-
tionally defined for violations (surplus if a variable
is negative) of the corresponding targets:

yi; - for ozone exposure,

ya; - for acidification,

ye; - for eutrophication.

2.2 Qutcome variables

The consequences of applications of computed (or
provided) values of the decision variables are eval-
uated by values of outcome variables. However,
several auxiliary variables needed for the defini-
tions of outcome variables have to be specified
first.

2.2.1. Auxiliary variables
n; - emission of NO,:

n; = Z Nis (1)

v; - emission of VOCs:

V; = Z Vis (2)

is€S,;

eny; - the mean effective emissions of [-th type of
NO, experienced at j-th receptor:

eny; = Z el n; + enny; (3)
i€l
where enny; are given effective natural emissions
of NO,..
nlv;; - the representation of another nonlinear
term defining the I-th type of ozone exposure
at j-th receptor:

nlvlj = Z dlijvi (4)

i€l

2.2.2. Definition of outcome variables  One out-
come variable represents the sum of costs of re-
ductions of emissions; four sets of other outcome
variables correspond to various indices of air qual-
ity.

The sum of annual costs related to the reduction
of emissions is defined by:

cost = Z(cai(ai) + esi(si) + ¢ (ni, v5)) (5)

i€l



where ca;(-) and es;(-) are cost functions for
reductions of NHz and SO, respectively, and ¢;(+)
are defined by:

ci(ni,vi) = Z Cis(') (6)

is€S,;

where ¢;5(+) are cost functions for NO,, or for VOC
or for joint NO, and VOC reduction.

All cost functions are PWL (piece-wise linear),
convex and monotonically decreasing.

For each receptor, the following four outcome vari-
ables correspond to various indices of air quality:
aoty; - the long term ozone exposure of [-th type:

aot;; = Z(alijvi + bygni 4 yiiind)
iel
—|—Ozlj6nlzj + ﬁljenljnlvlj + k’lj (7)

acl; - acidification of type 1, i.e. the sum of
depositions of NO,, NHs and SO,:

aclj = tnSj(Z tnijni + Ztaijai + k’n])
i€l i€l

—1—21582']'82' —|—ij (8)
i€l

ac?; - acidification of type 2:

ac2; = Ztnijni —+ Ztaijai

iel i€l
—|—t88]’ (Z tsijsi + k’Sj) + k’nj (9)
i€l

eu; - eutrophication, i.e. the sum of depositions of

NO, and NHj:

i€l i€l

where tn;;, ta;;, ts;; are transfer coefficients for
NO;, NHz and SO, respectively; kn; and ks;
are constants for nitrogen and sulphur background
depositions; tns;;, tss;; are scaling coefficients.

Environmental effects caused by the two types of
acidification and by eutrophication are evaluated
at each receptor by a PWL function which repre-
sents an accumulative excess of each type of the
air quality index:

aacl; - accumulative excess of acl;:

aacl; = PWL§ (acly) (11)
aac2; - accumulative excess of ac2;:

aac2; = PW L} (ac2;) (12)
aeu; - accumulative excess of eu;:

aeu; = PWL;“(euj) (13)

2.3 Constraints

The accumulative excess of long-term ozone expo-
sure is constrained by:

aoty; — yij < aot;*" (14)
where aoty; is defined by (7) and aotj}*” is a given
maximum ozone exposure for [-th threshold at j-
th receptor.

Constraint (14) without the term —y;; would be
a so-called hard constraint for the accumulative
excess of ozone exposure. Such a formulation
is typically used in a traditional formulation of
optimization problems. It can also be used in the
presented model by selecting an option that does
not allow for generation of variables y;;. However,
an implementation of hard constraints for air
quality targets would result in forcing much more
expensive solutions caused by constraints that are
active in only one or two receptors. Introduction
of the term —y;; converts a hard constraint into
a so-called soft constraint. This allows a violation
of a target air quality. However, such a violation
is:
¢ constrained by upper bounds on variables y;;,
e compensated by surpluses (i.e. differences be-
tween actual exposure and the corresponding
target) in other receptors belonging to the same
set of receptors (e.g. located in the same country
or region),
e controllable by a trade-off between violations
of targets and corresponding costs of reducing
emissions.

The constraints for the accumulated excess of the
two types of acidification and of eutrophication
are defined in a similar way:

aaclj — ya; < aaci**” (15)
aac2j — ya; < aaci*” (16)
aeuj — ye; < aeu;” (17)

Optionally, violations of targets can be balanced
with surpluses of targets over sets of receptors:

Z WOImj Yij S tbOlm =0 (18)

J€Im

L L

Z Z wolmjylj S thOlm (19)

=1 j€Jm =1
Z Wam;ya; < tham (20)
J€Im
Z wem;ye; < they, (21)
J€Im

where woyp;, Wamj, wen; are given weighting co-
efficients, J,,,m € M are sets of receptors, and



tboyy, , thay,  the,y,, ths,, are target balances for m-
th set of receptors for [-th type of ozone exposure,
two types of acidification, and eutrophication, re-
spectively.

3. MODEL ANALYSIS
3.1 Multiple-criterion optimization

A composite criterion function (22) is applied in

order to support analysis of trade-offs between the

three criteria:

e minimization of total costs of emissions reduc-
tion,

e minimization of violations of environmental
standards,

e robustness of solutions.

The first two components have already been dis-
cussed, therefore only the last one requires justi-
fication.

A typical problem with applications of optimiza-
tion techniques for decision support is caused by
very different solutions (with almost the same
value of the original goal function) of various
instances of a mathematical programming prob-
lem that differ very little. A quality of a solution
is assessed from the optimization point of view
primarily through the value of a goal function;
therefore solutions of slightly perturbed problems
may differ substantially. However, from an appli-
cation point of view an equally important indi-
cation of a solution robustness is some measure
of closeness of solutions of perturbed problems.
Consider, for the sake of illustration, two instances
of the model that differ very little. The values of
goal functions for such solutions will be almost the
same. However, 1t often happens that the optimal
solution of the first instance has high reduction
of emission in country A and low reduction in
country B, while the optimal solution for the
second instance has low reduction in country A
and high reduction in country B. Such solutions
would hardly be acceptable. In order to deal with
this problem, a technique called regularization,
cf. e.g. (Makowski, 1991) for a more detailed dis-
cussion, is applied.

The criterion function is defined by:
goal_function = cost + © + & (22)

where the cost term is defined by (5), the penalty
term © is defined by:

O => "> pouij + payai + peyei)  (23)
jed IeL

and the regularization term & is defined by:

@ = d|z 2| (24)

where p,, pa, pe arve given penalty coefficients (not
necessarily large) and € is a given (not necessarily
small) positive number.

The interpretation of each of the terms is as

follows:

e The first term corresponds to the sum of costs
of emission’s reduction of all types of pollution
and at all emitters.

e The second term is the penalty term introduced
to deal with the soft constraints defined by
introduction of variables y;;, ya;, ye; into con-
straints (14, 15, 16, 17).

e The third term is €||z—Z||, where z denotes a vec-
tor composed of all decision variables (except of
the decision variables y;, ya;, ye;, for which the
reference point is implied to be 0 by the virtue of
the penalty term of the criterion function). This
is a regularizing term introduced in order to
avoid large variations of solutions having similar
values of the original criterion function.

Note that the formulation of the optimization
problem 1s single-objective — because such were
the requirements of the modeler. However, the
specifics of this model — in particular the penalty
terms for soft constraint violations, the regulariz-
ing term — make it very similar to a multiobjective
formulation, as applied e.g. to softly constrained
inverse scenario analysis.

4. MODEL MANAGEMENT

Generation and management of the model under
consideration 1s a challenging task from the op-
erations research point of view. Several method-
ological and technical issues that are of a broader
interest are discussed in subsequent subsections.

4.1 Generation and solution of the model

A commonly accepted rule of thumb for opti-
mization of large nonlinear models is to try vari-
ous solvers. Therefore three solvers, namely CF-
SQP (Lawrence et al., 1996), CoNoPT (Drud,
1996) and MinNos (Murtagh and Saunders, 1987)
are used for solving the resulting optimization
problem. For the reasons that are discussed in de-
tail by Makowski (1998a) a problem specific model
generator has been implemented in C++4 for this
model.

The task of implementation of software that uses
several solvers is interesting from the software
engineering point of view. Each solver has a differ-
ent interface (the way of specification of an opti-
mization problem). However, most of the software
components are common to all the solvers. There-
fore, object-oriented programming approach was



a natural choice because 1t greatly simplifies the
software development by handling common parts
in base classes and by providing solver-specific in-
terfaces through inherited classes. The approach is
conceptually very simple. Each of the above men-
tioned solvers is available as a library of Fortran
subroutines. The generator has C++ classes that
are specific for each solver. These classes are inher-
ited from base classes that handle a common part
of the generator. A problem specific report writer
processes the results into a form that eases their
interpretations. Another class supports a portable
interface between C++4 and Fortran. Hence, three
versions of executables can easily be produced,
each is composed of the generator, report writer
(postprocessor) and one of the solvers.

A nonlinear solver requires routines that com-
pute values and Jacobian of the constraints and
of the goal function. A remarkable part of total
computation time is used for execution of these
functions, therefore efficiency of their implemen-
tation is important. The code for the Jacobian has
been generated by Mathematica (Wolfram, 1996)
with a prior use of the FullSimplify operator that
substantially simplifies the formulas. This is an
easy way to generate a bug free and efficient code.

Finally, one should notice that the dimensions
of the model are not fixed. For some scenarios
a part of the constraints and/or variables does not
need to be generated. Moreover, the dimensions of
matrices and vectors used in the model definition
vary substantially for various types of analysis.
Fortunately, constructors of C++ classes handle
such problems in a natural and efficient way.

4.2 Data handling

The model has a large number of parameters, but

this itself would not be a problem. The challenge

comes from the fact that various parts of the pa-

rameters are provided as a result of data process-

ing that is performed on various computers. Data

handling for the model has to meet the following

requirements:

o efficient handling of a large amount of data,

e binary compatibility, at least for Unix and NT,

e casy handling of basic data structures (sparse
and dense matrices having elements of basic
types),

e no royalty fees.

The HDF (Hierarchical Data Format) public do-
main software by Koziol and Matzke (1998) is
used for handling data in the model. The basic
data structures are handled by a collection of well
tested C++4 classes that are also used for the LP-
DIT. A C++ interface class has been implemented
for an easy and efficient handling of the used data
structures by the HDF library.

4.3 Conversion of PWL functions

Costs of emission reductions are given as PWL
functions of the emission level. PWL functions
are not smooth. Therefore, in order to be able
to use efficient nonlinear solvers (which require
smooth functions), the PWL cost functions are
represented by corresponding smooth functions.
However, the PWL functions (11, 12, 13) are
replaced by sets of inequalities. Due to the space
limitations these conversions are not presented
here.

4.4 Preprocessing of the optimization problem

Preprocessing of an optimization problem is aimed
at generating another problem that has the same
goal function value as the original problem and
fulfills its constraints, but which is easier to solve.
It is a commonly known fact that a preprocess-
ing of a large optimization problem can dramat-
ically reduce computation time and memory re-
quirements. Preprocessing is a standard feature
of any good LP solver. However, preprocessing of
nonlinear models is a much more difficult task,
see e.g. (Drud, 1997). Generally, preprocessing of
an optimization problem in a problem generator is
much more efficient than an attempt to preprocess
a nonlinear problem by a solver. Some instances
of the model presented in this paper contain over
10,000 variables and contraints, therefore its pre-
processing is essential.

Preprocessing in the generator is composed of the

following elements:

e Outcome variables defined by equations (6)
through (13) are not generated. The affected
constraints are reformulated to equivalent forms
without using these outcome variables (auxil-
iary functions are implemented to provide values
of outcome variables for the report writer).

e The variables en; and nlv; and equations (3, 4)
are eliminated and eq. (7) is modified accord-
ingly.

e All linear constraints are combined into the
LP-DIT format by Makowski (1998b), and the
preprocessing implemented in LP-DIT, which is
similar to that implemented by Gondzio (1997),
is applied to these constraints. Only preprocess-
ing methods based on the analysis of the primal
problem can be applied. Nevertheless, for many
types of scenarios even a majority of linear con-
straints can be removed from the optimization
problem.

4.5 Scaling

Scaling of nonlinear models is an important el-
ement of a model specification. The experiences



from the early stages of the model development
show that a badly scaled model created numer-
ical problems to all the solvers that are used ?.
A detailed discussion of scaling implemented in
the model is far beyond the scope of this paper.
Therefore we only mention that each instance of
the optimization problem is scaled in the genera-
tor in such a way that:
e absolute values of the elements of the Jacobian
and of the Hessian are smaller than 10°,
e an attempt is also made to achieve a smallest
(non-zero) absolute value of Jacobian to be “not
too small”.

5. CONCLUSIONS

The paper illustrates methods and techniques
applied to the generation and analysis of the
optimization-based nonlinear model which is ap-
plied to the examination of various policy options
aimed at improving the air quality in Europe.
Extensions of traditional OR methods that en-
hance usefulness of model-based decision support
for policy analysis have been presented. Software
engineering issues pertinent to generation and
analysis of complex and large nonlinear models
were discussed.
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