
LARGE SCALE SYSTEMS ISSUES IN MODELINGCOST-EFFECTIVE POLICIES FOR IMPROVINGTHE EUROPEAN AIR QUALITYMarek MakowskiInternational Institute for Applied Systems Analysis,A-2361 Laxenburg, Austriahttp://www.iiasa.ac.at/�marekAbstract: The paper presents a large scale nonlinear model which is used for support-ing international negotiations aimed at improving air quality in Europe. The modelhelps to identify cost-e�ective measures for reducing air pollution emissions that willresult in meeting environmental standards for tropospheric ozone, acidi�cation andeutrophication. Several methodological issues related to the speci�cation, generationand optimization-based analysis of large nonlinear models for decision support thatare of a more general interest are presented. Copyright c1998 IFACKeywords: decision support systems, air pollution, nonlinear models, object-orientedprogramming, preprocessing, robustness, multiple-criterion optimization, modelmanagement, criterion functions, constraint satisfaction problems.1. INTRODUCTION1 In many parts of Europe the critical levels ofair pollution indicators are exceeded and measuresto improve air quality in these areas are neededto protect the relevant ecosystems. Cost e�ectivemeasures aimed at the reduction of ground levelozone concentrations at several hundreds of re-ceptors over Europe can be calculated by a mini-mization of a cost function that corresponds to thecosts related to reductions of NOx and VOC emis-sions subject to constraints on the resulting ozoneconcentrations. The Ozone model, cf e.g. (Heyeset al., 1997), has been developed for analysis ofvarious policy options that lead to improvementof the air quality by reductions of such emissions.However, the emissions of NOx should also con-form to the standards set at each receptor foracidi�cation and for eutrophication. The latterproblem is handled by the RAINSmodel (Alcamoet al., 1990). An analysis of two separate modelsis cumbersome, therefore the RAINS model hasbeen included in the Ozone model. This in turn1 This paper will appear in: Large Scale Systems: Theory& Applications, P. Groumpos (Ed.), Elsevier, 1998.

requires a joint consideration of not only emissionsof NOx and VOC but also of NH3 (ammonia) andSOx (sulphur oxides). The resulting model is largeand nonlinear with a large linear part.There is a number of methodological and technicalissues related to the speci�cation, generation andoptimization-based analysis of such a large modelthat are of a more general interest and thereforeseveral of them are presented in this paper:� The resulting model is a nonlinear one, thereforea problem speci�c generator has been devel-oped and coupled with three nonlinear solvers.The generation of the model requires process-ing of a large amount of data coming fromvarious sources. Object-oriented programmingapproach to the model generation and analysishas been applied.� A representation of environmental targets byhard constraints would result in recommenda-tions of expensive solutions, hence soft con-straints (with compensations for violations ofthe original targets) are speci�ed.� The resulting optimization problem has typi-cally non-unique solutions, therefore a techniquecalled regularization was applied in order to



provide a suboptimal solution having additionalproperties that are speci�ed by a user.� A minimization of costs related to measuresneeded for improvement of air quality is a maingoal; however, other objectives (such as ro-bustness of a solution, trade-o�s between costsand violations of environmental standards) arealso important. Therefore, a multicriteria modelanalysis has been applied to this case study.2. MODEL DEFINITIONOne should �rst distinguish between a set I ofsources of various types of air pollution, and a setJ of areas for which various quality indicators areassessed. Conventionally, the names emitter andreceptor are used for elements of such sets. In orderto account for measures that can be applied toa group of emitters, sets of NOx and VOC emittersare composed of subsets called sectors. Emittersthat belong to a particular sector emit either NOxor VOC or a linear combination of them.The model de�nition requires the following in-dices:� Index i 2 I corresponds to emitters. The num-ber of elements in I is equal to the number ofcountries (about 50).� Index is 2 Si corresponds to a sector that emitseither NOx or VOC or a linear combination ofthem; Si is a set of sectors in i-th country. A setSi has typically about 5 elements.� Index j 2 J corresponds to receptors. There are598 receptors, each representing one 150x150 kmgrid.� Index l 2 L corresponds to a combination ofozone thresholds and a year.� Index m 2 M corresponds to a set of receptorsfor which balancing of violations and surplusesof targets is de�ned.2.1 Decision variablesThe main decision variables are the annual emis-sions of the following four types of primary airpollution emitted by either a sector or by a coun-try:nis - emission of NOxvis - emission of VOCsai - emission of NH3si - emission of SOxAdditionally, optional decision variables are con-sidered for scenarios which allow controlled vio-lations of air quality targets. For such scenariosvariables corresponding to each type of the con-sidered air quality targets are de�ned for eachreceptor. Optionally, violations of targets can be

balanced with surpluses (understood as a di�er-ence between a target and a corresponding actualconcentration). For e�ciency reasons one variableis used for both violations of targets and sur-pluses (positive values represent violations whilenegative values correspond to a part of a surplusthat is used to balance violations of targets withsurpluses).Therefore, the following decision variables are op-tionally de�ned for violations (surplus if a variableis negative) of the corresponding targets:ylj - for ozone exposure,yaj - for acidi�cation,yej - for eutrophication.2.2 Outcome variablesThe consequences of applications of computed (orprovided) values of the decision variables are eval-uated by values of outcome variables. However,several auxiliary variables needed for the de�ni-tions of outcome variables have to be speci�ed�rst.2.2.1. Auxiliary variablesni - emission of NOx:ni = Xis2Si nis (1)vi - emission of VOCs:vi = Xis2Si vis (2)enlj - the mean e�ective emissions of l-th type ofNOx experienced at j-th receptor:enlj =Xi2I elijni + ennlj (3)where ennlj are given e�ective natural emissionsof NOx.nlvlj - the representation of another nonlinearterm de�ning the l-th type of ozone exposureat j-th receptor:nlvlj =Xi2I dlijvi (4)2.2.2. De�nition of outcome variables One out-come variable represents the sum of costs of re-ductions of emissions; four sets of other outcomevariables correspond to various indices of air qual-ity.The sum of annual costs related to the reductionof emissions is de�ned by:cost =Xi2I (cai(ai) + csi(si) + ci(ni; vi)) (5)



where cai(�) and csi(�) are cost functions forreductions of NH3 and SOx, respectively, and ci(�)are de�ned by:ci(ni; vi) = Xis2Si cis(�) (6)where cis(�) are cost functions for NOx or for VOCor for joint NOx and VOC reduction.All cost functions are PWL (piece-wise linear),convex and monotonically decreasing.For each receptor, the following four outcome vari-ables correspond to various indices of air quality:aotlj - the long term ozone exposure of l-th type:aotlj =Xi2I (alijvi + blijni + lijn2i )+�ljen2lj + �ljenljnlvlj + klj (7)ac1j - acidi�cation of type 1, i.e. the sum ofdepositions of NOx, NH3 and SOx:ac1j = tnsj(Xi2I tnijni +Xi2I taijai + knj)+Xi2I tsijsi + ksj (8)ac2j - acidi�cation of type 2:ac2j =Xi2I tnijni +Xi2I taijai+tssj (Xi2I tsijsi + ksj) + knj (9)euj - eutrophication, i.e. the sum of depositions ofNOx and NH3:euj =Xi2I tnijni +Xi2I taijai + knj (10)where tnij, taij , tsij are transfer coe�cients forNOx, NH3 and SOx, respectively; knj and ksjare constants for nitrogen and sulphur backgrounddepositions; tnsij, tssij are scaling coe�cients.Environmental e�ects caused by the two types ofacidi�cation and by eutrophication are evaluatedat each receptor by a PWL function which repre-sents an accumulative excess of each type of theair quality index:aac1j - accumulative excess of ac1j:aac1j = PWLac1j (ac1j) (11)aac2j - accumulative excess of ac2j:aac2j = PWLac2j (ac2j) (12)aeuj - accumulative excess of euj :aeuj = PWLeuj (euj) (13)

2.3 ConstraintsThe accumulative excess of long-term ozone expo-sure is constrained by:aotlj � ylj � aotmaxlj (14)where aotlj is de�ned by (7) and aotmaxlj is a givenmaximum ozone exposure for l-th threshold at j-th receptor.Constraint (14) without the term �ylj would bea so-called hard constraint for the accumulativeexcess of ozone exposure. Such a formulationis typically used in a traditional formulation ofoptimization problems. It can also be used in thepresented model by selecting an option that doesnot allow for generation of variables ylj . However,an implementation of hard constraints for airquality targets would result in forcing much moreexpensive solutions caused by constraints that areactive in only one or two receptors. Introductionof the term �ylj converts a hard constraint intoa so-called soft constraint. This allows a violationof a target air quality. However, such a violationis:� constrained by upper bounds on variables ylj ,� compensated by surpluses (i.e. di�erences be-tween actual exposure and the correspondingtarget) in other receptors belonging to the sameset of receptors (e.g. located in the same countryor region),� controllable by a trade-o� between violationsof targets and corresponding costs of reducingemissions.The constraints for the accumulated excess of thetwo types of acidi�cation and of eutrophicationare de�ned in a similar way:aac1j � yaj � aacmaxj (15)aac2j � yaj � aacmaxj (16)aeuj � yej � aeumaxj (17)Optionally, violations of targets can be balancedwith surpluses of targets over sets of receptors:Xj2Jm wolmjylj � tbolm l = 0 (18)LXl=1 Xj2Jm wolmjylj � LXl=1 tbolm (19)Xj2Jm wamjyaj � tbam (20)Xj2Jm wemjyej � tbem (21)where wolmj ; wamj; wemj are given weighting co-e�cients, Jm;m 2 M are sets of receptors, and



tbolm; tbam; tbem; tbsm are target balances for m-th set of receptors for l-th type of ozone exposure,two types of acidi�cation, and eutrophication, re-spectively. 3. MODEL ANALYSIS3.1 Multiple-criterion optimizationA composite criterion function (22) is applied inorder to support analysis of trade-o�s between thethree criteria:� minimization of total costs of emissions reduc-tion,� minimization of violations of environmentalstandards,� robustness of solutions.The �rst two components have already been dis-cussed, therefore only the last one requires justi-�cation.A typical problem with applications of optimiza-tion techniques for decision support is caused byvery di�erent solutions (with almost the samevalue of the original goal function) of variousinstances of a mathematical programming prob-lem that di�er very little. A quality of a solutionis assessed from the optimization point of viewprimarily through the value of a goal function;therefore solutions of slightly perturbed problemsmay di�er substantially. However, from an appli-cation point of view an equally important indi-cation of a solution robustness is some measureof closeness of solutions of perturbed problems.Consider, for the sake of illustration, two instancesof the model that di�er very little. The values ofgoal functions for such solutions will be almost thesame. However, it often happens that the optimalsolution of the �rst instance has high reductionof emission in country A and low reduction incountry B, while the optimal solution for thesecond instance has low reduction in country Aand high reduction in country B. Such solutionswould hardly be acceptable. In order to deal withthis problem, a technique called regularization,cf. e.g. (Makowski, 1991) for a more detailed dis-cussion, is applied.The criterion function is de�ned by:goal function = cost + � + � (22)where the cost term is de�ned by (5), the penaltyterm � is de�ned by:� =Xj2J(Xl2L �oy2lj + �aya2j + �eye2j ) (23)and the regularization term � is de�ned by:� = �kz � �zk (24)

where �o; �a; �e are given penalty coe�cients (notnecessarily large) and � is a given (not necessarilysmall) positive number.The interpretation of each of the terms is asfollows:� The �rst term corresponds to the sum of costsof emission's reduction of all types of pollutionand at all emitters.� The second term is the penalty term introducedto deal with the soft constraints de�ned byintroduction of variables ylj ; yaj ; yej into con-straints (14, 15, 16, 17).� The third term is �kz��zk, where z denotes a vec-tor composed of all decision variables (except ofthe decision variables ylj ; yaj ; yej , for which thereference point is implied to be 0 by the virtue ofthe penalty term of the criterion function). Thisis a regularizing term introduced in order toavoid large variations of solutions having similarvalues of the original criterion function.Note that the formulation of the optimizationproblem is single-objective { because such werethe requirements of the modeler. However, thespeci�cs of this model { in particular the penaltyterms for soft constraint violations, the regulariz-ing term { make it very similar to a multiobjectiveformulation, as applied e.g. to softly constrainedinverse scenario analysis.4. MODEL MANAGEMENTGeneration and management of the model underconsideration is a challenging task from the op-erations research point of view. Several method-ological and technical issues that are of a broaderinterest are discussed in subsequent subsections.4.1 Generation and solution of the modelA commonly accepted rule of thumb for opti-mization of large nonlinear models is to try vari-ous solvers. Therefore three solvers, namely CF-SQP (Lawrence et al., 1996), Conopt (Drud,1996) and Minos (Murtagh and Saunders, 1987)are used for solving the resulting optimizationproblem. For the reasons that are discussed in de-tail by Makowski (1998a) a problem speci�c modelgenerator has been implemented in C++ for thismodel.The task of implementation of software that usesseveral solvers is interesting from the softwareengineering point of view. Each solver has a di�er-ent interface (the way of speci�cation of an opti-mization problem). However, most of the softwarecomponents are common to all the solvers. There-fore, object-oriented programming approach was



a natural choice because it greatly simpli�es thesoftware development by handling common partsin base classes and by providing solver-speci�c in-terfaces through inherited classes. The approach isconceptually very simple. Each of the above men-tioned solvers is available as a library of Fortransubroutines. The generator has C++ classes thatare speci�c for each solver. These classes are inher-ited from base classes that handle a common partof the generator. A problem speci�c report writerprocesses the results into a form that eases theirinterpretations. Another class supports a portableinterface between C++ and Fortran. Hence, threeversions of executables can easily be produced,each is composed of the generator, report writer(postprocessor) and one of the solvers.A nonlinear solver requires routines that com-pute values and Jacobian of the constraints andof the goal function. A remarkable part of totalcomputation time is used for execution of thesefunctions, therefore e�ciency of their implemen-tation is important. The code for the Jacobian hasbeen generated by Mathematica (Wolfram, 1996)with a prior use of the FullSimplify operator thatsubstantially simpli�es the formulas. This is aneasy way to generate a bug free and e�cient code.Finally, one should notice that the dimensionsof the model are not �xed. For some scenariosa part of the constraints and/or variables does notneed to be generated. Moreover, the dimensions ofmatrices and vectors used in the model de�nitionvary substantially for various types of analysis.Fortunately, constructors of C++ classes handlesuch problems in a natural and e�cient way.4.2 Data handlingThe model has a large number of parameters, butthis itself would not be a problem. The challengecomes from the fact that various parts of the pa-rameters are provided as a result of data process-ing that is performed on various computers. Datahandling for the model has to meet the followingrequirements:� e�cient handling of a large amount of data,� binary compatibility, at least for Unix and NT,� easy handling of basic data structures (sparseand dense matrices having elements of basictypes),� no royalty fees.The HDF (Hierarchical Data Format) public do-main software by Koziol and Matzke (1998) isused for handling data in the model. The basicdata structures are handled by a collection of welltested C++ classes that are also used for the LP-DIT. A C++ interface class has been implementedfor an easy and e�cient handling of the used datastructures by the HDF library.

4.3 Conversion of PWL functionsCosts of emission reductions are given as PWLfunctions of the emission level. PWL functionsare not smooth. Therefore, in order to be ableto use e�cient nonlinear solvers (which requiresmooth functions), the PWL cost functions arerepresented by corresponding smooth functions.However, the PWL functions (11, 12, 13) arereplaced by sets of inequalities. Due to the spacelimitations these conversions are not presentedhere.4.4 Preprocessing of the optimization problemPreprocessing of an optimization problem is aimedat generating another problem that has the samegoal function value as the original problem andful�lls its constraints, but which is easier to solve.It is a commonly known fact that a preprocess-ing of a large optimization problem can dramat-ically reduce computation time and memory re-quirements. Preprocessing is a standard featureof any good LP solver. However, preprocessing ofnonlinear models is a much more di�cult task,see e.g. (Drud, 1997). Generally, preprocessing ofan optimization problem in a problem generator ismuch more e�cient than an attempt to preprocessa nonlinear problem by a solver. Some instancesof the model presented in this paper contain over10,000 variables and contraints, therefore its pre-processing is essential.Preprocessing in the generator is composed of thefollowing elements:� Outcome variables de�ned by equations (6)through (13) are not generated. The a�ectedconstraints are reformulated to equivalent formswithout using these outcome variables (auxil-iary functions are implemented to provide valuesof outcome variables for the report writer).� The variables enj and nlvj and equations (3, 4)are eliminated and eq. (7) is modi�ed accord-ingly.� All linear constraints are combined into theLP-DIT format by Makowski (1998b), and thepreprocessing implemented in LP-DIT, which issimilar to that implemented by Gondzio (1997),is applied to these constraints. Only preprocess-ing methods based on the analysis of the primalproblem can be applied. Nevertheless, for manytypes of scenarios even a majority of linear con-straints can be removed from the optimizationproblem.4.5 ScalingScaling of nonlinear models is an important el-ement of a model speci�cation. The experiences
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