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APW78 METHOD SOLVING NONCONVEX NONLINEAR 
PROGRAMI'4ING PROBLEMS--USER'S GUIDE 

INTRODUCTION 

In the last decade a rapid growth of the number of algorithms 
for mathematical programming can be observed.   his reflects a 
growing interest in applications of computer aids to both research 
and project stages of scientific work, and certainly has a posi- 
tive influence on the effectiveness and simplicity of these 
algorithms, but this development also has negative consequences. 
Many researchers are simply lost in the variety of existing 
methods of mathematical programming, and their attempts to 
verify some new suggestions by means of testing examples can 
very often be interrupted by difficulties which arise in pre- 
paring the problem, choosing a particular method (or, most often, 
methods) from an existing computer library, and then in dis- 
cussing the outputs obtained. 

This paper presents a new method, entirely developed at 
IIASA (Wierzbicki 1978) and implemented on the 11-ASA computer 
CDC 1 1 .  It is not the aim of this paper to develop further 
theoretical justificaiton of effectiveness of this new algorithm 
(the reader interested in details is directed to Wierzbicki 1978) 
but contains a description of the implemented algorithm and 
gives sufficient information for easy application of this al- 
gorithm. The reader not acquainted with numerical methods of 
mathematical programming can follow the general instructions 
given in Basic Instructions and, after confirming his under- 
standing in An Example, can easily attempt to solve his problem. 
In some cases obtained outputs might not be sufficiently clear-- 
then Extended Description of Output Messages should provide the 
reader with the desired information, and Detailed Description of 
In-Line Searching Procedure could help him in his own modifica- 
tions of the program, which might be necessary in the case of 
particulary difficult problems. 



BASIC INSTRUCTION 

The algorithm solves a general problem of mathematical 
programming of the form: 

min imize  F (X) 

with respect to v a r i a b l e  X E Xo C RN 

N under c o n s t r a i n t s  Xo = {XER :GHi(X)<O, - i=l, ..., LG 

GHi (X) =O, I=LG+l , . . . , LG+LH) . 

This problem does not necessarily have a solution and usually 
some sufficient assumptions should be fulfilled to assure its 
existence. Also the algorithm is efficient only under some 
regularizing assumptions. The reader interested in these details 
is directed to Wierzbicki (1978). For practical applications, 
however, it is sufficient to deal with a problem with accessible 
first derivatives, and with (not explicitly given) continuous 
second derivatives. 

The algorithm has been written in FORTRAN, and has been 
implemented under the password APW78. This algorithm is kept 
on a magnetic tape accessible in the System and Decision Sciences 
Area. The user is obliged to follow the following instruction: 

1. Write the subroutine "SUB.f4pU described below con- 
taining a description of the problem. 

2. Write data consisting of parameters, dimensions, 
starting points, etc. 

3. Make a compilation of "SUB.f4pN obtaining "SUB.objM. 
4. Make a linkage between "APW78.ob-j" and "SUB.objW, 

obtaining "APW78.0utn. 
5. Run a program "APW78.outW with the written data. 

ad. 1 

The file with a subroutine SUB can be obtained as follows: 

$ ed SUB. f4p (+  carriage return) 

? file ( * I  



1 contents of SUB.f4p 

nnn ( * I  

The above description, which repeats both user and computer 
(denoted by ( * ) )  lines, is given to allow even the most inexpe- 
rienced programmer to make use of APW78.  

The contents of SUB.f4p (the part in brackets) has the 
form : 

SUBROUTINE sub (X, LB) 

IMPLICIT DOUBLE PRECISION (B,G,X) 

DIMENSION X (J )  

COMMON /f gh/F, GH k2%? + L8P) 

F = . . . (arithm. expression for F (X) ) 
GH (1 ) = . . . (arithm. expression for GH, (:O ) 

I 

?H!~J% t.55) = . . . (arithm. expression for GH LG+LH (XI 
IF(LB.EQ.%) RETURN 

aF B(1) = . . . (arithm. expression for 
3F B ( J )  = . . . (arighm. expression for - 
a X ~  

B(-N + 1) = . . . (arithm. expression for aGH1) 
ax, 



B ( A .  . (519 + ,y;p+ 1 ) ) = . . . (a r i thm.  exp res s ion  f o r  
J 

RETURN 

END 

Comment: Symbols N,$!S3 and6PFdenote  e x p l i c i t l y  w r i t t e n  v a l u e s  
of N,.. LG, and LH. 

ad.  2 

Data can  be s u p p l i e d  d i r e c t l y  from a  t e r m i n a l  a f t e r  g iv ing  
a  command i n  p o i n t  5: 

b u t  t h i s  d a t a  can a l s o  be prepared i n  a  f i l e  w i th  a  name, s ay ,  
DATA, and i n  p o i n t  5  w e  w i l l  w r i t e  a  command 

% APW78.out < DATA (+  c - r . )  

An o r d e r  i n  prepared d a t a  i s  s u f f i c i e n t l y  c l a r i f i e d  by an 
exp lana t ion  of how t o  p repa re  a  f i l e  DATA: 

% ed DATA (+  c - r . )  

? f i l e  ( *  1 

DATA ( * )  

[ c o n t e n t s  of DATA 

nnn ( * )  



1st line: 

explanation: These numbers are read in a forr,at 4i3. Number 
500 means that APW78 obt.ained working space of a 500 double 
precision number. The user cannot change this value without 
changing a proper value in a CO~IMON/space/x(500) in the APW78 
program. 

2nd line (ev. next lines): 

explanation: These numbers are read in a format 5f10.2. They 
define an initial evaluation of the solution (starting point), 
which shouid be given by the user (at least it is allowed to 
put O., O., ... there). It should be stressed that better or 
worse evaluation of this starting point can have a strong influ- 
ence on both computation time and (in some cases) the effective- 
ness of an algorithm at all. 

3rd line: 

ip, itmax 

explanation: These integer numbers are read in a format 2i3. 
"ip" should be equal to 1, 2, 3, 4, 5, or 6, and means an in- 
creasing level of outputs (during computations). "itmax" is 
a maximal number of iterations given by the user. 

4th line: 

explanation: In this line a single letter should be given 
indicating that we do not want to supply the program with 
additional information ("n" E not), or we want to change some 
(usually given automatically) -~alues. 

4th-bis line: 

explanation: This line should be given only in the case when a 
letter "y" has been given in line 4. These numbers are read 
in a format 2f10.5 and mean values of norms of Lagrangian's 
gradients with respect to x and y, respectively, which decide 
when the first iteration can be regarded as successful. The 
automatic choice of these values ("nu in the 4th line): 0.1, 0.1. 



5 t h  l i n e :  

e x p l a n a t i o n :  I f  you a c c e p t  t h e  s t a r t i n g  v a l u e  of p e n a l t y  c o e f -  
f i c i e n t  p = 0 . 2 ,  p u t  "y".  I f  n o t ,  w r i t e  "n" and s u p p l y  l i n e  
5 t h - b i s .  

5 t h - b i s  l i n e :  

e x p l a n a t i o n :  T h i s  number i s  r e a d  i n  a  f o r m a t  f10 .4 .  

6 t h  l i n e :  

Y 

e x p l a n a t i o n :  You t o l d  t h e  program " y e s ,  you can  s t a r t " .  

ad .  3 

The c o m p i l a t i o n  o f  SUB.f4p can  be done by e i t h e r  an  f 4 p  
o r  a n  f t n  c o m p i l e r .  You c a n  do  t h i s  e a s i l y  by t a k i n g  a  f i l e  
c a l l e d  " f o r "  from a  t a p e  on which APW78 i s  r e c o r d e d ,  and w r i t i n g  

% f o r  SUB.f4p (+  c . r . )  

You s h o u l d  o b t a i n  t h e  answer: 

none o f  t h e  e r r o r s  d e t e c t e d  ( *  

9 E r r o r s  De tec ted  

% 

ad .  4 

You c a n  o b t a i n  a  l i n k a g e  between APW78.obj and SUB.obj by 
g i v i n g  a  command: 

% l i n k e r  -i APW78.obj ~ U B . o b j  -1 -c (+  c . r . )  

and you s h o u l d  o b t a i n  t h e  answer:  

CULC Linkage E d i t o r  ( * I  

fl E r r o r s  D e t e c t e d  ( * I  



ad.  5 

NOW y o u  have a n  execu tab l e  p r o g r a m  A P W 7 8 . o u t  and  y o u  w i l l  
o b t a i n  a s o l u t i o n  by w r i t i n g  

% A P W 7 8 . o u t  < DATA ( t  c . r . )  

o r  g i v i n g  DATA f r o m  a t e r m i n a l  a f t e r  w r i t i n g  

% APW78.  o u t  ( t  c . r . )  

AN EXAMPLE 

2  m i n i m i z e  ( x  + x ) 
1  2  

under  c o n s t r a i n t s  x + x < - ?  1  L . , x = x  2  - -  1  2  

W e  have : 

N  = 2 ,  LG = 1 ,  LH = 1 ,  and 

SUBROUTINE sub  ( X ,  L B )  

I M P L I C I T  DOUBLE P R E C I S I O N  ( B , G , X )  

D I M E N S I O N  X  ( 2 )  

COI4I.ION / f gh/F , GH ( 2  ) 

COMMON / b f g h / B ( G )  

COMMON . c o u n t e r / N l ,  N2  

I F  ( L B . E Q . - 1 )  GO TO 1  

N1 = N1 = 1  

F = X ( 1 ) * * 2  + X ( 2 ) * * 2  

G H ( 1 )  = X ( 1 )  + X ( 2 )  + 2  

G H ( 2 )  = X ( 1 )  - X ( 2 )  

I F ( L B . E Q . % )  RETURN 

1  B ( 1 )  = X ( 1 )  + X ( 1 )  

B ( 2 )  = X ( 2 )  + X ( 2 )  

B ( 3 )  = 1 .  

B ( 4 )  = 1 .  

B ( 5 )  = 1 .  



RETURN 

END 

DATA : 

Obtained outputs: 

WELL, NOW GIVE ME NUMBERS N, LG, LH, IN1 
IN A FORIJ1AT 413, EG.: 
9 1  1, 1, 58g 

AND NOW GIVE ME INITIAL VECTOR X IN A FORIVIAT 5F10.2 EG.: 
18., 2.1 8.1 8.1, 1. 
3.1 8.1 81 

I HAVE TO ASK YOU ALSO HOW MANY ITERATIONS SHOULD 
I GIVE YOU AND WHAT IS THE MAXINAL NUMBER OF ITERATIONS 

GIVE ME THIS INFORMATION AS NUMBERS IP AND ITMAX IN A 
FORiiT 213 

YOU MAY ALSO HAVE SOME OPTIONS. 
I SHALL LIST THEM NOW BELOW AND YOU WILL DECIDE 
WHETHER YOU WANT TO DECLARE THESE VALUES. 
IF YOU DO NOT, PRESS BUTTON "li", PLEASE. 
IF YES, PRESS "Y". AND I SHALL ASK YOU FOR DATA 

EX, EY? 

DO YOU WANT TO CHOOSE ROB? 
PiiESS BUTTON "Y" OR "N" 

I REPEAT: 
YOU GAVE ME 
N = 2 LG = 1 LH = 1 IN1 = 58% 
EX = 8.88~ + %% EY = 8.8%~ + 8% RO = j3.88E + 8% 
IP = 1 ITMAX = 5 
x = -18.8888 18.8888 
NOW PUSH ME PRESSING "Y" (Now begin by pressing "Y") 



1 ITERATION AS PHASE I WITH EX = %.1%~ + fig EY = g . 1 8 ~  + 8% 
T = g.lj3ggE - 81 
T = %.4167E + Bj3 

RO INCREASED TO VALUE % . 1 % ~  + 

2 ITERATION AS PHASE I WITH EX = %.1%E + 8% EY = 8.10E + $4j?l 
T = g.1gggE + g1 
T = %.27%3E + jJj?l 

3 ITERATION STARTS AS PHASE I1 
EX CHANGED TO %.1%E - EY CHANGED TO %.1%~ - $1 

S T O P  
AFTER 3 ITERATIONS 

XFIN GHFIN C .VIOLFIN YFIN 
-%~1%%%%888~+%1 %-8@E+%% 8 %.2%%%%%%%E + %1 
-%-188888g%E+%1 8-@BE+%% 8!! %.%B%~%%%%E + %% 

F = %.28g%%B%%~ + 
MAX CONSTR. VIOL. = 8.%8@a%%%%E + 8% 
~ 0 %  8.1%~ + 

DURING COMPUTATIONS I NEEDED 7 VALUES OF F AND GH 
AND 5 VALUES OF DERIVATIVES B 

Comments: The first part of the output messages (including 
the line "NOW PUSH...") has a meaning when we run a program 
giving data directly from a terminal. Numbers denoted by T 
are the step coefficients which are used during in-line minimi- 
zation. THe two exclamation marks which are standing in column 
C-VIOLFIN (final constraints violations) indicate a constraint 
which is violated the most. In a case when there are some 
constraints with the same violation, these marks stand by the 
last of these constraints. 

EXTENDED DESCRIPTION OF OUTPUT MESSAGES 

Given a higher level of outputs (ip = 2,3,4,5, or 6) you 
will obtain the extended information about the minimization 
process. This information will be listed below and explained 
briefly . 
1. 
BEFORE UFO AUGLAG = ... 
This is a value of augmented Lagrangian before unconstrained 
minimization. 

2. 
NGRADX = . . . NGRADY = . . . 

2 a~ a~ These are 1 norms of - and -, where x !-a a primal and y is a ax ay 
dual variable. 



3 .  
TAU% = . . . 
This is the initial value of the step coefficient for the pro- 
cedure MINIX (see next chapter). 

4. 
COS(D,G) = ... 
This is a cosinus of an angle beyween a direction D and a 
gradient G. This value should be equal to -1. at the beginning 
(the steepest descent direction). 

5 
Yg = ... , PO = ... , DELTA = ... 
These are values of a minimized functional, a scalar product 
<DIG> and a parameter 6 in MINIX (see next chapter). 

6. 
D = ... 
This a vector being the current direction of minimization. 

7. 
T = ... 
This is a value of step coefficient. 

8. 
X = ... 
This is a current point at which a value of a minimized functional 
is evaluated. 

9. 
Y, YOPT = ... 
These are values of a minimized functional at the current point 
X which have already obtained the best (optimal) value in the 
current direction D. 

10. 
z1, 22 = ... 
These are numbers corresponding to the two-side Goldstein test 
in MINIX (see next chapter). 

11. 
IT, INTO 
These are indicators of what is a current position of the value 
of a minimized functional with respect to the Goldstein test 
(see next chapter). 

12. 
Ti'lIN, TMAX, TOPTI KL 
These are lower bound, upper bound, and current optimal values 
for the step coefficient T. Indicator KL might be helpful in 
following the algorithm of MINIX (with no importance for a user). 
Negative values of TMIN or TMAX mean that they are not yet known. 

13. 
TAU1 = .. . 
This is the best value of step coefficint T chosen by MINIX. 
TAU1 = 0. means that on given direction D MINIX did not find 
a better solution. 



14. 
XI, G1 = ... 
X2, G2 = ... 
These are coordinates of points and gradients taken for variable 
metric evaluation. 

15. 
DX, DG = ... 
These are differences of X1 - X2 and G1 - G2. 

16. 
<XS - XN, GS - GS> = ..., KEY = ... 
The first number should be positive--it is a necessary condition 
for the positive definitness of a variable metric. 
KEY = 1 means that the variable metric will be used in further 
minimizations. 
KEY = 0 means that the variable metric will be used as a part 
of the augmented Lagrangian's hessian. 

17. 
AL, A, BE, A = ... 
These numbers correspond to details of the variable metric 
method which will not be described here. 

18. 
VARIABLE METRIC ON ix VECTORS 
The integer number ix gives information on which number of 
differences DX and DG has been used for construction of a 
variable matrix. 

19. 
A NEW DATA NOT ACCEPTED 
This means that obtained DX and DG cannot be used for actualizing 
the variable matrix. 

20. 
ikIATRIX = I 
This message appears when the program starts again with steepest 
descent. This happens when, e.g., due to rounding errors 
< D I G >  > 0. - 

21. 
DIFG.IIN FAILED 
This message indicates that MINIX cannot find a better solution 
even on the sttepest descent direction. Usually it happens 
in a very small neighborhood of the solution where some pro- 
tections in MINIX (see next chapter) do not allow further 
searching. It can also happen, however, far from the optimum 
for strongly curved problems. In such cases a change in the 
starting point XJl is recommended. 



DETAILED DESCRIPTION OF AN IN-LINE SEARCHING PROCEDURE 

The subroutine which finds a subsequent point X in a given 
(by means of variable metric method) direction D is called MINIX. 
The principles of this algorighm are based on (Wierzbicki 1978). 
Generally, the computed step coefficient T should satisfy the 
two-side Goldstein test: 

where 6 is a given number from the interval (g,!). It has been 
assumed that 6 = 8.3. The initial coefficint TAU% is estimated , 

by means of the rule 

A0 
TAU = (min - 1 ~ 1 1  ' ' 

where A0 is a step obtained in the last minimization. In the 
first iteration TAU% = B.81. After evaluating f(x+TAUfl-~), a 
quadratic approximation is performed (indicated by INTO = 2 in 
output messages). Afterwards, the step coefficient is either 
decreased or increased by an adapted factor and in a case when 
a condition ( * )  is satisfied, T is regarded as the final (opti- 
mal) value of a step coefficient. During computations the 
following numbers are evaluated: 

When two subsequent values TMIN and TMAX satisfy conditions 
Z1 (TMIN) > 0 and Z2(TIJIAX) > 0, then T is computed as a geometrical 
mean value: 

I 
T = (TMIN TIAX) ' . 

The searching process is stopped when one of the following 
conditions occurs: 

1. Condition ( * )  is satisfied, 

where fi-l, fit fi+l are the last three values of f. 

As a final value of T this value is given for which the value of 
f is minimal. 



PLANNED DEVELOPMENTS 

The proposed algorithm is comparable in its effectiveness 
with the methods described in Coope and Fletcher (1979) and 
Powell (1977). Several tests have been applied to check the 
features of the algorithm and the results are satisfactory. 
Similarly as in Coope and Fletcher (1979) and Powell (1977) 
it has been noticed that a quadratic programming algorithm 
used for solving an approximate problem (PHASE 11) is a weak 
point of the whole algorithm. Actually APW78 uses a certain 
adaptation of an algorithm described in Panne (1975), but it 
is planned to replace it by a more efficient algorithm. Also 
a method used for constructing the ,approximation of a Lagrangian's 
hessian may probably be chosen more robustly (now is a certain 
version of symmetric rank-one correction), and, e.g., a method 
described in Fortuna (1978) will be tested. 

An extended "conversational" version of the algorithm 
will be prepared. To make this possible the user interrupts 
and after analyzing plotter drawings characterizing the already 
known properties of the problem, he starts the method with 
changed coefficients. This version wil help the user to obtain 
a solution even for very irregular problems. 

It should be stressed that the algorithm has not been 
thoroughly tested and is not error free. Any comments and 
suggestions directed to the author will help to improve the 
algorithm, and might make it very useful in many IIASA appli- 
cations. 
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