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FOREWORD

The public provision of urban facilities and services often
takes the form of a few central supply points serving a large
number of spatially dispersed demand points: for example,
hospitals, schools, libraries, and emergency services such as
fire and police. A fundamental characteristic of such systems
is the spatial separation between suppliers and consumers. No
market signals exist to identify efficient and inefficient geo-
graphical arrangements, thus the location problem is one that
arises in both East and West, in planned and in market economies.

This problem is being studied at IIASA by the Normative
Location Modeling Task, which started in 1979. The expected
results of this Task are comprehensive state-of-the-art survey
on current theories and applications, an established network of
international contacts among scholars and institutions in
different countries, a framework for comparison, unification, and
generalization of existing approaches, as well as the formulation
of new problems and approaches in the field of optimal location.

This paper reports on some of the first exploratory findings
in the direction of a unified framework. It presents a way of
generalizing both the usual allocation rules and objective func-
tions in standard location models, and proposes a set of alterna-
tive mathematical programming formulations.

Andrei Rogers
Chairman

Human Settlements
and Services Area
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ABSTRACT

This paper shows the eguivalence among some different
formulations of a simple location-allocation problem. A feature
shared by all the formulations is an allocation subproblem (the
distribution of users among the facilities) based on spatial-
interaction theory (gravity models). The initial mathematical
programming formulation, useless for computation, is shown to be
equivalent to some much simpler mathematical programs, built up
by suitably widening the feasible region.

Finally, a duality relationship is shown to hold between the
location models where accessibility is maximized (having the
location and size of the facilities as control variables) and
those where travel cost is minimized (having the allocation of
users to the facilities as control variables). The last ones are
shown to tend to the usual location-allocation models with linear
cost function as the distance decay effect increases.
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ON THE FORMAL EQUIVALENCE OF SOME
SIMPLE FACILITY LOCATION MODELS

INTRODUCTION

The existing literature on location-allocation models is
almost entirely concerned with systems where the nearest-facility
allocation rule holds. This rule is indeed the optimal one for
plant and warehouse location problems, where both the costs of
establishing the facilities and the transport costs must be paid
by the same decision maker (the producer), and goods have to be
delivered from the facilties (plants or warehouses) to the demand

locations.

On the other hand, the allocation to the nearest facility is
not generally accepted as a sound behavioral assumption in many
service location problems, where no delivery to demand locations
takes place, but rather the users have to travel from their place
of residence to the available facilities.' If the allocation
decision is left to the users, then it is highly improbable that
they will all choose the nearest facilities. Some empirical
evidence would rather suggest that smoother behavioral models,
like the ones developed in spatial interaction theory {(sometimes

called "gravity models"), give a better description of reality.

The interest on spatial-interaction based location-allocation

models seems to be increasing (see Wilson, 1976; Coelho and
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Wilson, 1976; Hodgson, 1978; Leonardi, 1978; Beaumont, 1979).

Although most of the proposed models seem quite different, paths
towards unification have been shown recently (Coelho and Wilson,
1977: Harris and Wilson, 1978; MacGill and Wilson, 1979). These
notes are written in the same spirit, and a further step towards

unifying results 1is proposed.

In what follows, the formal equivalence is stated among
some different formulations of a class of simple location problems.

By formal equivalence it is meant that:

1. Every location problem belonging to the class considered
here can be formulated in terms of any one of the
eguivalent models.

2. The optimal solution is the same for all the equivalent
models, i.e., solving one of them implies solving all
of them.

Some of the equivalent models vary in the form assumed by the
objective function. These forms are usually given different
interpretations in the available literature, ranging from entropy
(Wilson, 1970 and 1974), to what some authors call "locational
surplus" or "consumers' surplus" (Neuberger, 1971; Coelho and
Wilson, 1976; Williams, 1976; Williams and Senior, 1977) to
accessibility (Hansen, 1959; Weibull, 1976; Leonardi, 1978;
Williams and Senior, 1978). Here no attempt will be made to go
deeply into the economic, physical, and methaphysical interpre-
tations of the above concepts. Users' benefit measures based on
accessibility and spatial discount concepts are preferred, because
of their easily understandable physical meaning. However, from a
formal point of view, it is possible to start from any one of the

objective functions considered.

1. STATEMENT OF THE PROBLEM AND BASIC ASSUMPTIONS

The following problem of distributing facilities among zones
will be considered: Given a set of places of residence for the
users, and a set of possible locations for the facilities,

determine the size (possibly zero) of the facility in each loca-



tion,

in order to maximize a measure of benefit for the users and

to meet some physical and/or economic constraints.

It will be assumed that:

1.

2

the locational decision maker controls the size, or
capacity, of the facilities;

the users make trips from their places of residence, or
demand points, to the facilites;

the trips made by the users from the demand points to
the facilities are generated by a doubly-constrained
spatial interacpion model with exponential distance
decay (see Wilson, 1971)1;

the benefit accruing to the users from a given distribu-
tion of the facilities over the zones is a measure of
the accessibility of the users to the facilities (Hansen,
1959; Leonardi, 1973; Weibull, 1976; Leonardi, 1979);
the spatial discount factor used in the accessibility
measure is equal to the distance decay rate appearing in
the spatial interaction model;

no special assumption is made on the physical and
economic constraints on the sizes of the facilities,

except that their set of feasible solutions is compact.

In order to state assumptions 3-5 in mathematical terms, the

following definitions are needed:

H

i]

is the set of subscripts labeling the zones which are
places of residence for the users; the number of zones
in this set is n;

is the set of subscripts labeling the zones which are
possible locations for the facilities; the number of
zones in this set is m;

is the number of users (the demand) living in zone i,
ieH;

is the size (capacity) of the facility in zone j, jeL;

is the vector whose components are xj, jeL;
is the cost of a trip from zone i to zone j, 1i¢eH,
jeL;



3] is a spatial discount rate (also, a distance decay rate);
is the set of feasible solutions for the physical and
economic constraints, so that for a feasible X it
must be XeT;

Sij is the number of users living in zone i and choosing
the facility in zone j, ieH, jelL.
According to assumption 3, vectors of weights W = (w1,...,

wm) exist such that:

~

-BC
w. e 1]
S = P i
1j i ~8C; ’ 1eH, JelL (1)
E w.e J
jeL
and
X .Sij = xj , jeL (2)

ieH

Loosely speaking, the weights wj can be looked at as a
measure of the attractiveness of the facilities, as perceived by
the users. [For a more technical treatise on the relationships
between the weights and decay functions observed in the spatial
interaction behavior and the weights and discount factors by
means of which each user builds up its own utility function,
see Smith (1976).] They are defined up to a multiplicative
constant, since if W is any solution to equations (2), then also
aW is, for any o« > 0. In order to eliminate this arbitrariness,
the vector W is usually required tb be normalized. The most
common normalization rule ;s an additive one, such as:

E w. =1
jeL ]

However, in the models and generalizations of the following

sections, it will be useful to have a multiplicative normaliza-



tion rule like:

T w.%3 =1 , where 8. =x./ I x. , JeL (3)
] ] Ser

jeL
By means of (3), a constraint is placed on the geometric mean of
the components of W, weighted with the relative sizes of the
facilities. Given any vector Y = (y1,...., ym) which

solves (2), a vector W satisfying (3) can be constructed by

means of the formula:
jevL

where

and clearly W is a solution to (2).

It will be stressed again that the normalization rule (3)
has been chosen for convenience only, since it will simplify
some results in the following sections. However, the choice
of a normalization rule is quite arbitrary, as long as users do
not perceive it [the normalizing factor disappears in (1),
independently of the method used to build it]. Therefore, rules
other than (3) could be employed, if needed.

By means of equations (1), (2), and (3) a one-~-to-one mapping
between the X vectors and the W vectors is established, provided
the needed existence and uniqueness requirements are met
l[equivalence of equations (1), (2), and (3) to a biproportional
adjustment problem can be seen, so that these requirements are
actually met under very general conditions, see Deming and
Stephan (1940), Sinkhorn (1967), Ireland and Kullback (1968),
Bacharach (1970), and many others].




The notations W(X) (for the vector) and wj(x) (for each
component) will be used for this mapping. Substitution into
equation (1) yields

w. (X) e~ "Ci]

= P, ] ieH, jeL, (4)

-BC. .
I w.(X)e 1]
jeL

By means of (4) the dependence of the flow variables, Sij’ on

the control vector X is evidenced.
The accessibility measure from i, consistent with (1), or
(4), is defined as:

~BC. .
. = I w.e 1] , ieH (5)

. jeL

and this is the sum of the relative weights wj, exponentially

discounted over space with discount rate B.

In order to construct an overall accessibility measure, a
composition rule is needed. Let I & L be a subset of zones;

I will be called an aggregation of zones.2 The aggregation I

can be treated as a new zone, replacing all jeI. Two definitions

are needed:

QI is the relative weight, or measure of attractive-

ness, for the aggregation I;

CiI is the cost of a trip from a zone ieH to the

aggregation I.

According to the doubly-constrained spatial interaction
model, in order to assure the consistency between the Sij and wj
variables before and after the aggregation has been introduced,

the following equations must be satisfied:

- 5. _ A
wo o= TijJ , where B, =8,/ 6, , jeI (6)

jeI Jel



—BC. s
I w.e 13
jeI
P' =
1 'Bcij ~BC. .
T w.e + z w. e 1]
jel ] jeL-1 ]
(7)
QIe_BCiI
= P,
1 = —BEI _Bcl
woe i+ ¢ w. e J
jeL-I

Equation (6) assures that the normalizing condition (3) is met.

Substitution of (6) into (7) yields for EiI the solution:

= 1 v -8Cj 5

Cig =~ glogz —1 ¢ ' ieH (8)
jeI w,aJ

jeI J

This is a well known result. It states that the right-hand
side of (8) is the only composition rule assuring consistent
aggregations in exponentially decaying spatial interactions
(see Wilson, 1974; Batty, 1976; Williams, 1977). If, as a limit,
I = L, substitution in (8) and use of (3), (5), and (6) yield

- __l .
CiL= Blog - , ieH (9)

If the right-hand term of (8) is looked at as a special averaging
operator applied to the travel costs the result in (9) may be
called the average cost of a trip, as perceived by a user living

in 1 e H. The sum of the average costs over all users is given

by

I P.logo, (10)



and this quantity is minimized if the function

Yy = .Z Pilogéi (11)
ieH

is maximized. This function (Leonardi, 1973; 1978) is a very
intuitive measure of total benefit, since it is the sum of the
logarithms of the accessibilities, weighted with the corresponding
demands. The average discount factor corresponding to (10) can be

computed as

= P./P
-BC/P
eB/ = exp L P. logo, = [ o, (12)
. i i . i
P jeH ieH
where

P= ¥ P.

ieH 1

The right-hand side of (12) is the geometric mean of the
accessibilities from each zone. Maximization of the function

¥, as defined by (11), is thus equivalent to maximization of
the geometric mean of accessibilities.

2. THE OPTIMIZATION MODELS

According to the assumptions, definitions, and results of
Section 1., the optimal location problem can be formulated as a

mathematical program as follows

~BC3s 2
max <2 Pilog T w.(X) e 8 1] (13)
X 1ieH jeL
subject to
I x..= P (14)

jeL J



Xerl (15)
where

P = z Pi is the total demand. (16)
ieH

The objective function (13) is the total accessibility measure
defined by (11), and it has to be maximized. The dependence on
the vector X is made explicit, so that the functions wj(X) are
determined by equations (1), (2), and (3). The choice of X is
subject to constraint (14), which requires a total capacity equal

to the total demand, and to the physical and economic constraints
{15) .

The formulation given by (13)-(15) is surely the closest one
to the real problem, but is not the best one for computation.
The mapping W(X) cannot be expressed in closed form, and the
values of W can be computed only numerically, by solving equations
(1), (2), and (3). Other formulations are therefore needed,
which solve problem (13)-(15) and require less computational
effort. 1Indeed, it will be shown that many very simple formula-
tions equivalent to (13)-(15) exist. The resulting Location

Models (LM) are listed below, and discussed in Section 3.

L‘M_1 'Bcij
max 2 Pilog I w.e (17)
X,W ieH jeL
subject to

D. (W) = x. , j e L 18
J( ) xJ je (18)
L x.logw., =0 (19)
I X, =P (20)

jeL J
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XeT

where the functions Dj(W) are defined as

_BCy.
wje 1]
D,.(W) = I P, P jE‘L
J . 1 -BC4 =
1eH T ow. e B 1]
jeL
LM2 -B.Ci'
max I P;log I w.e J
X,W ieH jeL
subject to
L x. logw, = O
Jel ™) J
L x. =P
JeL J
XeT
LM3 W _BCj4
max I Pilog z J 1]
X,W-ieH jekL x./P
w: J
jeL ]
subject to
XeT
or
-Bcij

max <2 Pilog L w.e - I x.logw.
X,W ieH jeL I jeL J

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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subject to

Xe T (30)
LMU4 min £ I S..(logS.,. + BC,.) (31)
S ieH jeL 7 1] +J

subject to

z Sij =P, ' ieH (32)

JeL

iiHSij = Xj ’ jel (33)

XeTl (34)
where

S = (8..) is the matrix whose elements are the trips

for each origin-destination pair, as

defined in Section 1.

3. THE EQUIVALENCE RESULTS

It will now be shown that problems LM1, LM2, LM3, and LMi
are all equivalent to problem (13)-(15).

3.1 Equivalence for LMI1

The equivalence for LM1 to problem (13)-(15) is seen at
once. Indeed, LM1 is the same as (13)-(15), except for the way
it accounts for the mapping W(X). While in (13)-(15) the mapping

is introduced explicitly in the ohjective function, in LM1 the
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W vector is added to the list of decision variables, and equa-
tions (2) and (3) are introduced as constraints [see constraints
(18) and (19)°].

3.2 Equivalence for LM2

Problem LM1 is almost as difficult to solve as problem
(13)-(15), due to the nonlinearity and nonseparability of the
functions defined by (22). The difficulty in handling constraints
such as (18) in optimization problems has been noticed by many
authors (e.g. Wilson, 1976; Coelho and Wilson, 1976; Hodgson,
1978). In problem LM2 constraint (18) has been eliminated, so
that LM2 has a wider feasible region than the one of LM1, and
includes it. On the other hand, the Lagrange optimality

conditions for W in 1LM2 are

oY _ .
3;;-- ij/wj =0 ' jel (35)

where

v 1s a Lagrange multiplier

¥ 1is the objective function (23), as defined in (11).

Derivation of (23) and substitution from (22) yield

-BC;
¥ _ 5 op S = D. (W) /w j e L (36)
oW .. | eH i _BC; = j j ’ J
] 1€ I w. e 1]
jeL J
Substitution of the left-hand term of (36) into (35), summation
over j and substitution from (25) give for v the value v = 1.

The final form assumed by (35) is thus

Dj(W) = X. ’ jel (37)
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and it is identical to (18).

It can be concluded that the optimal solution for LM2 is a
feasible solution for LM1. Since 1LM2 is less constrained than
LM1, its solution is optimal for LM1 too, i.e., LM1 and LM2 are

equivalent.

3.3 Equivalence for LM3

Constraints (19) and (24) force the optimal W for LM1 and
LM2 to be unique. This is rather artificial, however, since
according to (1) users perceive only relative values, i.e., they
do not distinguish between W and aW, for any a > 0. Problem
LM3 takes this into account, by means of the objective function
(27), which is invariant under multiplication of W by a scalar.
This property is accomplished by incorporating the normalization
(3) in the objective function, instead of keeping it as a

constraint.

It will be shown that the optimal solution to LM2 is also
one of the optimal solutions to LM3. Since W is unconstrained in
LM3, the derivatives of (27), or (29), with respect to wj, jel,

must vanish at the optimal points. This implies

Dj(W) = Xj ’ Jel (38)

where Dj(W) are the functions defined by (22). But equations
(38) are the same as (37), and they are satisfied by the solution
of LM2. Let W be this solution, then the whole set of solutions
to LM3 is given by oW, a > 0. It follows that LM2 and ILM3 are

equivalent.

3.4 Equivalence for LMY

Problem LM4 is formulated in terms of the flow variables
matrix S, rather than in terms of the attraction weights W. It
is well known (see Coelho and Wilson, 1977, for instance) that
the minimization of a function like (31), subject to constraints
like (32) and (33) implies that the Sij are given by (1), if the
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components of the W vector are assigned the values
w. = e , jeL (39)

where the uj are the Lagrange multipliers of constraints (33).
It is readily seen from (1) and (22) that constraints (33) can

be rewritten as

Dj(W) = X, ' jel (40)

where W is defined by (39). Comparison of (40) with (38) shows
that the weights computed by (39) are optimal for LM3 and, by
introducing suitable multiplicative factors, for LM1 and LM2 as
well.

Since the W vector defined by (39) depends on the dual
variables uj, problems LM1, LM2, and LM3 are different versions
of the dual problem corresponding to LM4 (here only duality
between S and W is considered, while X is kept constant). The
duality relationship between problem LM4 and problems LM1, LM2,
LM3 is another well known result in spatial interaction theory
(Wilson and Senior, 1974; Nijkamp and Paelink, 1974; Evans, 1976;

Champernowne et al, 1976).

4. DISCUSSION

A brief discussion is worthwhile on the relative advantages,
or disadvantages, of models LM1, LM2, LM3, LM4. Model LM1
is useless for computation, and will be excluded from now on.
Models LM2 and LM3 are very similar. However, LM2 is better for
computation, since its solution is forced to be unique by the
normalizing constraint (24). On the other hand, LM3 is theoreti-
cally the soundest, since it uses an accessibility measure which
is independent from the absolute value of the wj. Both LM2 and
LM3 have less variables than LM4. This makes them better than

LM4 for computation (indeed, the solution to LM4 must always be
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expressed in terms of the dual variables - the balancing factors
in the biproportionality method). Model LM4 has an objective
function with no intuitive physical meaning [although many efforts
have been carried out to give it one, see Neuberger (1971),
Coelho and Wilson (1976), Williams (1977), Coelho and Williams
(1977) ], while accessibility can be easily interpreted.
Formulation LM4 has a theoretical advantage on LM2 and LM3,
however. 1In LM4 the relationship between the models discussed

in this paper and the classical location-allocation models in
discrete space (Balinski, 1961; Efroymson and Ray, 1966;

ReVelle and Swain, 1970; Scott, 1971; Erlenkotter, 1978) can be
seen immediately. Indeed,.if B is very large, i.e., the spatial
discount effect is very strong, the users will tend to choose
only the nearest facility. The terms containing logSij can thus
be neglected and, if I' is suitably defined, a linear-integer
location-allocation model is obtained. In other words, classical
location-allocation models are included in LM4 as limiting cases.
This property is quite analogous to the limiting relationship
existing between the doubly-constrained spatial interaction
models and the linear programming transportation problem (Evans,
1973; Wilson and Senior, 1974). By means of the equivalence
relations stated in Section 3, it can be concluded that all the
models discussed in this paper are generalizations of a location-

allocation problem.

5. AN EXAMPLE
Let the set T be defined as

r = {X:x>0 , ¢ f.x.)=R (41)
jeL ]

where
R is a total given budget

f .(x,) 1is the cost for establishing a facility of
33 capacity xj in location j, jeL
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The functions fj are further assumed to have the general form

0 ’ if x =0
fj(x) = ’ jelL (42)
a. + b.x ’ if x > 0

where

aj is a fixed charge, independent of the size x

bj is a unit cost

Due to the fixed charges aj, economies of scale are
introduced, and usually some xj will be zero in the optimal

solution. Let the boolean wvariables be introduced
§. = , jeL (43)

For every combination of 6j values, the notation

T

will be used for the set of chosen locations.

With reference to LM3, the following optimal location

problem can be formulated

-BCi5
max T P;log I w.e - T X. logwj (uy)
J,X,W ieH jeg jeg
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subject to

£ (a. + b.x.) =R (45)
j€J j J

JCL (46)
Problem (44)-(45) looks a bit different from the ones considered
so far, because of the combinatorial problem inplied by the
choice of the subset J. However, if J is kept fixed, the
general form LM3 still applies for the resulting subproblem. It

can be rewritten as

-Bcij
max Pilog I w, e - I x.logw. (47)
X,W ieH jed J jed ] J
subject to
£ b.x. =R (48)
jed ]
where
R=R- I a,
jed ]
The optimality conditions for W are given by (38). The

optimality conditions for X are

—logwj - Abj = 0 ' jed (49)

where

A 1is the Lagrange multiplier associated with constraint
(48)
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From (49) it follows that

’ jEJ (50)

The unknown multiplier )X can be computed as the root of the

equation

5 b.D. (e P3)
jed

= R (51)

where Dj(-) are the functions defined by - (22). When (50) is
substituted in the objective function (47), and the subset J is
allowed to vary again, the following purely combinatorial
problem is obtained

-(BC3;+ + Abs
max L Pilog L e 8 1J J) + AR - AL a.
JCL ieH jeJd jed

This problem can also be expressed in terms of the boolean
variables defined in (43)

_(BC;+ + b
max L P, log L 8. e B3 J)+>\R—,\Z §.a. (52)
A ien T jelL jeL

where
b= (8qreees 8

It must be stressed that problem (52) is more difficult than it
looks at first sight, because the X multiplier is not a constant,

but a function of A

The equivalent formulation of (44)-(46) in the form LM4 is

min ¥ & S..(logS.. + RC..) (53)
J,S ieH jeg I 13 ]
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subject to

L S.. = P, , i1eH (54)
jeJd 1] .

L {(a. +b. £ S8..) =R (55)
jed J Jieg
J CL (56)

Problem (53)-(56) can be restated in terms of the boolean
variables defined by (43):

min I I S..(logS.. + BC..) (57
A,S ieH jeL 1t 1) 1] )
subject to
LI S, = P, , igH (58
jeL T * )
L S < . M j
. - Jel (59
1cH 1] )
L a,d8. + I b. £ s . =R (60)
jer, 3 3 jeL I ieg 1J
dj = 0,1 jel (61)

where
M 1is a very large number

Constraints (58)-(61) are the usual ones for an investment-
constrained location problem (ReVelle and Rogeski, 1970; Hansen
and Kaufman, 1976;‘Bigman and ReVelle, 1979). 1Indeed, problem
(57)-(61) is a plant location problem with a nonlinear objective

function, the nonlinearity arising from the presence of lOgSij'
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When B is very large, the term logSij can be neglected and
(57)-(61) reduces to

min I I S..C..
A,S icH jeL 11 1]

subject to

constraints (58)-(61) and to Sij >0, ieH , jeL

The above problem is a classical plant location problem with a

linear objective function.

6. CONCLUDING REMARKS

The relationship between LM4 and the other modelé is a
special case of a well known duality result concerning Kullback's
divergence minimization and biproportional matrices. This result

can be summarized as follows:

given nonnegative real constants

al, bj’ i3 with ; ai = ; bi
1 J
let
Xi.
Q@ =min % x;. log —f——J (62)
X ij I ij
subject to
; xij = a, (63)
J
Ix.. = b. 4
*i3 j (64)
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and
sy, £..
ij 1]
Y = max I a; log—a— (65)
Y i i
subject to
£b.logy. =0 (66)
03 7995

J
then these egualities hold
Q=Y (67)

v, £..
= a _J_lfl_ (68)

Since (65)-(66) is the general form assumed by the accessi-
bility maximizing problems, the above duality implies that a
close relationship exists between such problems and the
Kullback's divergence minimization problem (62)-(64). It must be
rointed out that this is just a formal result and, while accessi-
bility has been given a physical interpretation, no real
"information" is implied in (62). Starting from the above duality,
many generalizations are possible. 1If, for example, different
kinds of facilities are introduced, the primal problem (62)-(64)
assumes the form of a multiproportional adjustment problem, very
closely related to the ones discussed in Willekens, Por, and
Ragquillet (1979). Different constraints can be placed on the flow
variables, varying from the usual ones on total demand and total
capacity, to constraints on the land availability, on the capacity

of the transport network links, and so on.

The link between the location models discussed in this paper
and the methods for bi - or multiproportional adjustment broadens
the range of application for these methods, which seem to play

the role of a factotum in Regional Science. However, it should
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be recalled that the really awkward part of a location problem
lies in the topology of the feasible set for the control vector
(the sizes and locations of the facilities), so that the availa-
bility of multiproportionality techniques solves only a sub-
problem. The real difficulties lie in problems like (52), which
are purely combinatorial, and for which no really efficient

algorithm has been found as yet.

From the applied point of view, the most useful property of
the equivalences stated in Section 3 is that they all have
assumptions 1-5 of Section 1 as a starting point. Among these,
assumption 3 is of special importance, since it roots the location
models to an empirically observable and testable physical phenomenon,
namely, doubly-constrained spatial interaction. Assumption 4 is
also important, since it introduces a measure of benefit which is
both intuitive and consistent with the behavioral assumption 3.
Entropy and related concepts have never been used explicitly, nor
taken as starting axioms. This is apparently in contrast with
the more usual approach (e.g., Wilson and Zenior, 1974; Coelho
and Williams, 1977; Coelho and Wilson, 1977) where models related

to LM4 are assumed as starting points.

However, due to the equivalence results, and more generally,
to the duality relationship, no real difference exists between
the two formulations. This is true for the mathematical form,
although it may not be so for the interpretation of the models.
The discussion on the real meaning of concepts such as entropy,
locational surplus, and accessibility, leads to problems of a

philosophical nature, which are outside the scope cof these notes.
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NOTES

We note that this is a behavioral assumption, not a normative
rule. The spatial interaction model is assumed to arise as
the pooled output of many individual choices, which are not
controlled directly by the locational decision maker. Users'
choices can be influenced only indirectly, by changing the
size, and hence the attractiveness, of the facilities.

The zones belonging to I are assumed to form a connected geo-
graphical area. This is not a mathematical requirement, but

it is a sensible physical assumption, if I has to be consid-

ered as an "aggregation" of smaller zones.

Constraint (19) is obtained by taking logarithms on both sides
of equation (3), and drqpping the multiplicative constant 1/P.
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