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Key points 

• Process-based crop models forced by observational weather data can explain more than 50% of 
reported yield fluctuations in some major producing countries.  

• Water limitation seems to be major driver of the observed variations in most of these countries. 
 
 
 
Abstract 
Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers 
and may trigger significant global price fluctuations, with severe consequences for people in developing 
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countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, 
and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield 
variability is essential for adaptation strategies, so far it has only been addressed by empirical models. 
Here we provide conservative estimates of the fraction of reported national yield variabilities that can be 
attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed 
weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, 
Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, 
including the US. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in 
Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water 
limitation is a major driver of the observed variations in most of these countries. 
Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening 
fluctuations, but is also important in the context of the debate on the attribution of loss and damage to 
climate change. Since process-based crop models not only account for weather influences on crop 
yields, but also represent human-management measures, they could become essential tools for 
differentiating these drivers, and for exploring options to reduce future yield fluctuations.       
 
1 Introduction 
 
Year-to-year variations in crop yields pose a significant risk to subsistence farmers or people depending 
on local supply. In addition, yield variations on a national level can trigger chain reactions on the global 
market, leading to large increases in crop prices, such as occurred in 2008. These global fluctuations can, 
in turn, affect local prices and food supply in developing countries, which are not directly affected by 
the initial crop failure [Ivanic and Martin, 2008; Headey, 2011; Schewe et al., 2017]. 
  
Annual crop yields depend on several factors. In addition to weather conditions, the occurrence of 
weeds, diseases and pests can result in yield fluctuations [Gregory et al., 2009]. Management decisions 
regarding fertilizer use, irrigation, changes in land-use patterns and crop rotations [Brisson et al., 2010] 
are expected to cause changes not only in the long-term-yield means, but also in year-to-year crop 
yields. For example, irrigation will help to mitigate yield reductions in particularly dry and hot years, or 
crop yields may be increased by investments in intensification in response to high crop prices [Haile et 
al., 2016].  
 
Identifying the main causes of yield variability and designing strategies to minimise them, is essential 
for reducing the associated risks. Our analysis is mainly dedicated to a quantification of weather-induced 
yield variability - a component that is expected to increase under climate change [Challinor et al., 2014].  
  
There have been several approaches to attribute long-term trends in historical yield data to climate 
change based on process-based or statistical models [Maltais-landry and Lobell, 1998; Lobell and Field, 
2007; Brisson et al., 2010; Lobell et al., 2011a]. However, an explicit quantification of the weather-
induced variability around the long-term mean change has so far been limited to empirical studies 
[Lobell and Field, 2007; Ray et al., 2015; Lesk et al., 2016]. Here, we introduce historical simulations of 
eight process-based Global Gridded Crop Models (GGCMs) as an alternative tool. In contrast to 
simplified empirical models, the process-based models represent implementations of our current 
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knowledge about crop phenology, in particular accounting for: 1) potentially complex non-linearities in 
crop responses to weather variables on a daily time scale; 2) variations in crop responses in terms of the 
phenological state of the crop; 3) interaction between temperature, precipitation and other weather 
variables, such as radiation, as well as delayed effects due to e.g. water storage in the soil. On the other 
hand, empirical models allow for the detection of simplified relationships between weather indicators 
and crop yields that may go beyond our current understanding or implementation of the underlying 
physiological processes. For example, empirical methods may detect the effects of pests and diseases on 
crop-yield variability, insofar as they can be linked to weather fluctuations. To this end and for 
comparison we also consider four different empirical approaches to estimate the faction of variability 
attributable to weather.       
 
The process understanding embedded in the GGCMs offers additional opportunities to identify the main 
processes inducing the observed weather sensitivity of crop yields. For example, the sharp drop of US 
maize yields above a certain temperature threshold found in an empirical analysis [Schlenker and 
Roberts, 2009] was traced back to associated variations in water supply and demand within a process-
based model [Lobell et al., 2013]. Here, we use the GGCMs to quantify the reduction in the fraction of 
the variability that is attributable to weather when assuming full irrigation. The reduction can be taken as 
a measure of the degree to which observed yield fluctuations are driven by water availability. In this 
way, we can identify the countries where irrigation has a high potential to reduce crop yield fluctuations. 
We apply our approach to average national yields. At this scale, adaptation measures can be 
implemented that are capable of reducing annual yield fluctuations in the form of regulations, 
recommendations and subsidies (see for example the National Adaptation Strategies of EU member 
states [Biesbroek et al., 2010], or National Adaptation Plans  by developing countries as part of the 
Cancun Adaptation Framework [Expert Group, 2012]).  
      
 
2 Methods 
 
2.1 Process-based crop model simulations 
 
We analyse an ensemble of crop-model simulations generated within Agricultural Model 
Intercomparison and Improvement Project AgMIP and the Inter-Sectoral Impact Model Intercompsiron 
Project, Phase 2a (ISIMIP2a). Six of the eight GGCMs also participated in the ISIMIP Fast Track 
(EPIC-BOKU [Williams, 1995], GEPIC [Williams et al., 1989], LPJ-GUESS [Lindeskog et al., 2013], 
LPJmL [Bondeau et al., 2007], pDDSAT [Jones et al., 2003], PEGASUS [Deryng et al., 2011, 2014]). 
EPIC-IIASA and pAPSIM [Keating et al., 2003] later joined the evaluation exercise of the crop-model 
intercomparison. Models are classified as either 1) site-based crop models (EPIC-BOKU, EPIC-IIASA, 
GEPIC, pAPSIM, and pDSSAT) originally designed to simulate processes at the field scale, including 
dynamic interactions between crop, soil, atmosphere, and management components; and 2) agro-
ecosystem models (LPJ-GUESS, LPJmL, and PEGASUS), which were originally developed to simulate 
terrestrial carbon dynamics, surface energy balance, and soil water balance [Rosenzweig et al., 2014].  
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For the historical simulations considered here, all crop models were forced by the same daily climate-
input data (AgMERRA, Ruane et al 2015). The data set is a bias-corrected version of re-analysis data 
(NASA's Modern-Era Retrospective analysis for Research and Applications, MERRA [Rienecker et al., 
2011] and NCEP's Climate Forecast System Reanalysis, CFSR [Saha et al., 2010]) on a 0.5 x 0.5 degree 
grid, where models use information about daily mean, maximum and minimum temperatures, 
precipitation, solar radiation, relative humidity, and wind speed (see Section 1 of the SI for the model 
specific input). The bias correction is based on an ensemble of gridded observational data from weather 
stations and satellites. To test the sensitivity of the maximum variance explained by the GGCMs to the 
climate input data, we also used GGCM simulations forced by an alternative set of observational climate 
input data (WFDEI, Weedon et al., 2014) based on the ERA-Interim re-analysis product [Dee et al., 
2011]. While most of the model simulations are based on a daily time step, temperature and radiation are 
downscaled to hourly for all calculations within pDSSAT, and temperature is downscaled to 3-hourly for 
the determination of phenology within pAPSIM (see Section 1 of the SI). Models are designed to 
represent the cumulative effect of weather variations across the growing season on annual crop yields. 
However, they also account for effects of weather conditions before planting via soil water conditions. 
In many cases, this is achieved by conducting transient simulations, which propagate water deficit or 
excess through the entire simulation period, or at least from the 3 months prior to planting (see section 
1.2 of the SI for more details). Additional details about model-specific representation of CO2 
fertilization, management, and calibration are provided in Section 1 of the SI and in the online 
documentation (www.isimip.org).  
Model performance on the global scale is further evaluated by Müller et al 2016. In addition, many of 
the models have also been evaluated at field-scale trials and have contributed to site-specific model-
intercomparison exercises [Asseng et al., 2013, 2014; Bassu et al., 2014]. The ensemble of models 
considered here has also been shown to reproduce the strong drop observed in reported US crop yields at 
high temperatures [Schlenker and Roberts, 2009; Schauberger et al., 2017]. 
    
Given the lack of temporally and spatially-explicit observational data sets, modelling groups used their 
own default settings for uncertain management choices such as sowing dates, harvesting dates, fertilizer 
applications rates, and crop varieties and soil conditions, to imitate present day conditions. The model 
settings were deliberately not harmonized in order to capture the associated uncertainties as present in 
the multi-model ensemble. Fertiliser application rates were held constant (PEGASUS, pDSSAT, 
pAPSIM) or were adjusted flexibly according to N stress (EPIC-IIASA, EPIC-BOKU, GEPIC) through 
time, whilst planting dates decisions were based on daily weather conditions within a fixed (pDSSAT 
and LPJmL) or dynamic planting window (EPIC-BOKU, LPJ-GUESS, GEPIC, and PEGASUS). 
Harvesting dates were specified by the choice of cultivars (in terms of heat unit requirement to reach 
maturity). For PEGASUS, LPJ-GUESS, and to some extent in GEPIC (regarding the selection of winter 
and spring wheat), the cultivar choice was allowed to vary in time according to changes in temperatures. 
Cultivars in LPJ-GUESS and GEPIC are only adjusted according to decadal temperature change, and the 
adjustment in PEGASUS is made in response to inter-annual temperature variability (see SI). All models 
describe yield responses (for wheat, maize, rice, and soy) to weather conditions (see SI for the list of 
variables considered by the individual models) within the limitations imposed by global coverage. They 
do not account for yield reductions due to floods, storms and hail. None of the models is systematically 
adjusted to reproduce the reported variability of national crop yields [FAO, 2013]. In contrast, 
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management settings were only selected to reproduce average levels of observed yields (but not yield 
variability) within a reference period. LPJ-GUESS and EPIC-BOKU provide uncalibrated yields 
assuming minimal nutrient constraints (Table S1 in the SI). All models provide “pure crop runs” where 
the considered crop is grown everywhere on the global land area where permitted by soil and weather 
conditions. For each crop, two different simulations were provided: one assuming rain-fed conditions 
and another assuming full irrigation without accounting for water constraints. To calculate country-
specific average yields (t/ha), the associated annual yield patterns were multiplied by fixed land-use and 
irrigation patterns for the year 2000 (MIRCA2000, Portmann et al 2010). To test to what degree the 
simulated yields are constrained by water supply, we also calculate the yield fluctuations under full 
irrigation. This was done by multiplying the simulated patterns of crop yields (t/ha) under full irrigation 
by the total harvested areas (rain-fed + irrigated) for the considered crop, before calculating the national 
averages. 
 
2.2 Weather indicators used in the empirical models 
 
In addition to the process-based crop models, we also calculated three sets of weather indicators to 
quantify the fraction of the reported yield variability that can be explained by these indicators. All 
indicators were calculated based on daily air surface temperature (tas) and precipitation (pr, GPCC), as 
provided in the AgMERRA data set. We used the fixed sowing and harvesting dates described in the 
AgMIP protocol [Elliott et al., 2014] to calculate 1) growing season mean values of temperature and 
precipitation (ܶ, ܲ); 2) mean values of temperature and precipitation over the reproductive growth 
period, defined as the second half of the growing season (ܶ௥௘௣, ܲ௥௘௣); 3) the 10th and 90th percentile of 
the growing season temperatures (ܶ௠௜௡, ܶ௠௔௫); and 4) the integral of temperatures below and above a 
crop specific threshold (Growing and Extreme Degree Days, ܦܦܩ and ܦܦܧ see section 2 of the SI for 
more details). The temporal aggregation was applied at each grid point. Spatial aggregation on the 
national level was done after application of the MIRCA2000 land-use patterns [Portmann et al., 2010], 
i.e. national averages include a spatial weighting according to the area where the crop is grown. 
 
2.3 Statistical analysis  
To calculate the fraction of the reported variability [FAO, 2013] that can be explained by the purely 
weather-dependent GGCM simulations or climate indicators, all time series, observed ( ௢ܻ௕௦) and 
simulated yields ( ௦ܻ௜௠), as well as the climate indicators, were de-trended at country level (quadratic fit). 
We use the ∆ symbol to refer to remaining fluctuations after de-trending. The reported explained 
variances are derived from the following statistical models:	∆ ௢ܻ௕௦,௜ ଴ߙ =  + ∆	ߙ	 ௦ܻ௜௠,௜ + ∆ ,௜ߝ	 ௢ܻ௕௦,௜ ଴ߙ = + ∆	ߙ	 ௜ܶ + ∆	ߚ	 ௜ܲ ,௜ (following Osborne and Wheeler 2013)ߝ	+ ∆ ௢ܻ௕௦,௜ = ଴ߙ + ∆	ߙ	 ௜ܶ௥௘௣ ∆	ߚ	+ ௜ܲ௥௘௣ ∆	,௜  (following Iizumi et al 2013)ߝ	+ ௢ܻ௕௦,௜=+0ߙ	ߙ	∆ ௜ܶ௠௜௡+	ߚ	∆ ௜ܶ௠௔௫+	ߛ	∆ ௜ܲ+	ߝ௜  (similar to 
Lobell and Field 2007), and ∆ ௢ܻ௕௦,௜ = ଴ߙ + ௜ܦܦܩ∆	ߙ	 + ௜ܦܦܧ∆	ߚ	 + ∆	ߛ	 ௜ܲ +  ௜  (following Schlenkerߝ	
and Roberts 2009 and Lobell et al 2011a), where ݅ indicates the year and ߝ describes the residual 
variations not explained by the models.  
 
Some of the divergence between reported and simulated yields could be due to differences between 
actual growing season and simulated growing season. Since there is insufficient information about the 
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temporally-varying growing seasons, they cannot be fully constrained by observations. Therefore, if 
harvest is close to the end of the year, the correlation between reported and simulated yields might be 
low if individual yields were reported for different calendar years due to differences in the timing of 
simulated and actual harvests. On the other hand, some of the divergences may be due to systematic 
differences in the reporting of the yields. For example, yields might routinely be counted as yields for 
the previous year if harvest took place at the beginning of a year or vice versa. To test for the sensitivity 
of the results to these potentially systematic shifts, we also shifted the simulated time series by one year 
back and forth (see section 3 of the SI).  
 
2.4 Selection of countries 
Analysis was done for main producers, which accounted for at least 90% of the global production 
averaged over 2000-2011. Some countries have been excluded because their time series ended before 
2000 or had only sporadic data. For wheat, we compared the explained variances for the following 22 
countries: Argentina, Australia, Brazil, Canada, China, Denmark, Egypt, France, Germany, Hungary, 
India, Iran, Italy, Morocco, Pakistan, Poland, Romania, Spain, Syria, Turkey, UK, and the USA. For 
maize we included 21 countries: Argentina, Brazil, Canada, China, Egypt, France, Germany, Hungary, 
India, Indonesia, Italy, Mexico, Nigeria, Philippines, Romania, South Africa, Spain, Thailand, Tanzania, 
the USA, and Vietnam. For rice we considered 14 countries: Bangladesh, Brazil, China, Egypt, India, 
Indonesia, Japan, Myanmar, Pakistan, Philippines, South Korea, Thailand, the USA, and Vietnam, and 
five for soy: Argentina, Brazil, China, India and the USA.  
 
2.5 Testing the sensitivity of annual crop yield variability to underlying long term changes in 
management 
 
Annual weather-induced crop-yield fluctuations are expected to depend on the underlying management 
assumptions. To test the sensitivity of the weather-induced yield fluctuations on long-term changes in 
management, we conducted additional simulations with the GGCM LPJmL, for which model parameters 
were adjusted to reproduce long-term trends in reported national yield data. LPJmL does not have an 
explicit representation of the nitrogen cycle. Instead, the Leaf Area Index (LAI), the Harvest Index (HI), 
and a scaling factor representing the homogeneity and density of the crops in the field, were varied to 
simulate changing management. In the default experiments, these parameters were only adjusted once to 
reproduce mean national yield levels in the reference period 1996-2000. For the sensitivity experiment, 
the parameters were repeatedly adjusted to reproduce decadal average yields at country level. To 
generate a continuous time series of historical yields under changing management, the parameters for 
each decade were interpolated to annual time steps. The simulated time series, based on these 
temporally-varying parameters, were de-trended and correlated to the reported yields analogously to the 
default “fixed management” case (see section 9 of the SI). 
In a second sensitivity experiment, we varied the irrigation fraction according to the temporally resolved 
“fraction of the cultivated area equipped for irrigation” reported by the FAO, while the irrigated land 
was kept constant in the default analysis (see section 10 of the SI). In a third experiment we also 
accounted for historical expansion or shrinkage of agricultural land based on HYDE3 [Klein Goldewijk 
and van Drecht, 2006] (see section 11 of the SI). We also tested the sensitivity to a flexibilisation of the 
planting dates by comparing the explained variances of the default LPJmL configuration (based on fixed 
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sowing dates) to the explained variances (based on simulations allowing for grid-cell-specific 
adjustments) (see section 12 of the SI). 
 

 
2.6 Testing the sensitivity of simulated crop yield variability to spatial resolution of climate input 
data 
 
The climate data used as input for the crop-model simulations (AgMERRA, Ruane et al 2015) do not 
capture weather fluctuations within the 0.5°x0.5° grid cells. To our knowledge, there is no higher-
resolution observational data set with global coverage that provides all the variables needed as input for 
the GGCMs. However, for Europe there is a high-resolution climate data set generated by dynamically 
downscaling observation-based re-analysis data [Lucas-Picher et al., 2013]. To test the sensitivity of the 
results to the spatial resolution of the climate input data, we compared national yields simulated by 
LPJmL when forced by the high-resolution (12 km) climate data, to time series of national yields based 
on model simulations forced by a low-resolution version of the same data. The climate data were 
remapped to a 0.5°x0.5° grid by: 1) linear interpolation, and 2) a conservative remapping that computes 
the weighted sum of all contributing source cells (by contributing area) for each target cell (see section 6 
of the SI).  
 

3 Results 

 
3.1 Weather variations can explain more than half of the observed variability in crop yields in 
individual major-producing countries  
 
Individual process-based models driven by weather variations produce yield fluctuations ∆	 ௦ܻ௜௠ that 
closely reproduce the observed yield variability ∆	 ௢ܻ௕௦	[FAO, 2013]  (Fig. 1). Overall, these models 
explain more than half of the year-to-year variability in 15 countries (Fig. 2): Australia, Canada, Spain, 
Hungary, and Romania for wheat; South Africa, Romania, France, the US, Hungary, Germany, and Italy 
for maize; Japan and South Korea for rice; Argentina for soy (see world maps of the maximum 
explained variances per country in section 13 of the SI). For most countries, the maximum explained 
variances derived from the WFDEI-forced model simulations are similar to those derived from the 
AgMERRA forcing (see Figure S7 of the SI). 
 
 
The explained variances are a conservative estimate of the weather-induced variability of actual yields, 
since several factors are expected to reduce the correlation between observed and simulated yield 
variations: i) the potential within-grid-cell structure of relevant weather events not resolved in the 
climate input data set (0.5 x 0.5 degree resolution); ii) deficiencies of the crop models in reproducing 
yield responses such as e.g. underestimated sensitivities to extreme heat [Lobell et al., 2012]; iii) 
potential influence of floods, storm, hail or weather induced pests etc.; iv) short-term weather induced 
management adjustments not included in the models (e.g. variations in planting and harvesting dates 
beyond the adjustments resolved in the models (see Table S1 of the SI)); and v) reporting errors in the 
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FAO time series. Therefore, low explained variances do not necessarily imply a low sensitivity, but high 
explained variances mean that there a process-based crop model can plausibly explain the reported crop-
yield fluctuations using weather fluctuations. 
   
No single model provides the highest explained variance in all regions. Simulation teams were asked to 
run their models assuming their model’s “best guess” representation of “present-day conditions” without 
any harmonization, except for the climate input data (see section 1 of the SI). Therefore, simulations 
cover a broad range of model choices with regard to uncertain inputs and processes such as fertilizer 
application rates, crop varieties, representation of soil characteristics, biological processes, and plant 
parameters, which may lead to model-specific strengths in some regions and poorer performance in 
others. For each country, the different model settings represent a range of potential real-world 
management conditions. In this setting, the time series of the multi-model means calculated for each 
year provides a relatively high explanatory power (Fig. 2, black line) because model-specific biases can 
cancel out. While countries in Fig. 2 are ordered according to the highest explained variance provided by 
individual models, deriving the explained variances from the multi-model mean time series does not 
change this order significantly. The general conclusion is not affected by the temporal shifting of the 
time series to account for potentially systematic differences in the timing of the simulated and actual 
harvests or the associated reporting. The temporal shifting of the simulated time series by one year back 
and forth implies correlations increases by more than 0.2 for only a very limited number of crop models 
and the correlation between the time series of the multi-model mean yields and the reported data is 
rarely affected (see Fig. S3 of the SI). Sub-grid-scale weather events do not seem to have a major 
influence on the national yield statistics (see section 6 of the SI for a sensitivity experiment based on 
higher resolution data for Europe). Results are not strongly affected by the considered modifications in 
long-term management (see Fig. S10 - S14 of the SI). Furthermore, maximum explained variances do 
not seem to be related to the crop-specific harvested areas within a country and are only to a limited 
extent linked to the standard deviations of the reported crop yields (Fig. S5 and S6 of the SI, 
respectively).  
 
 
3.2 Individual process-based models explain more of the observed variability than the considered 
empirical approaches  
As a comparison to process-based crop yield simulations, we also provide results from four empirical 
approaches. One of these empirical approaches addresses the issue of non-linear crop responses to 
temperature fluctuations by integrating temperatures below and above a certain threshold over time, and 
allowing for differential responses [Schlenker and Roberts, 2009; Lobell et al., 2011b] (see Methods and 
SI). The empirical approaches are restricted to the derivation of highly-simplified relationships between 
yields and spatially and temporally-aggregated weather indicators, but could indirectly account for the 
effects of flood, storms, hail or weather-related occurrence of weeds, diseases or pests, in so far as they 
are correlated with weather indicators. The highest fraction of weather-induced variability derived from 
the four empirical models (Fig. 2, red diamonds) is generally lower than the highest explained variance 
provided by the process-based models, except for soy yields. This is remarkable and underlines the good 
performance of the process-based models for the following reason: the regression models include two to 
three predictors and associated fit parameters (see section 2.2.and 2.3), compared to one predictor ∆	 ௦ܻ௜௠ 
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and the associated fit parameter used in the regression based on the process-based crop models’ 
simulations. This higher number of fitting parameters affords a purely statistical “advantage” when 
estimating the explained variances. This artifact most likely explains the generally superior performance 
of the statistical models based on three indicators compared to the models using only two climate 
indicators (Fig. S4 in the SI), but does not seem to be sufficient to outperform the process-based models 
except for soy.   
 
 
3.3 Water stress appears to be a major driver of crop yield fluctuations in most considered 
countries  
With regard to adaptation options, it is important to identify the critical drivers of yield variations. 
GGCMs offer alternative ways of looking into this question compared to simplified statistical models 
[Lobell et al., 2013]. In particular, they allow for an artificial reduction of water stress by assuming 
optimal irrigation at each grid point. Here we calculate the explained variances assuming full irrigation 
for the model providing the highest variance in Fig. 2. The reduction in water stress reduces the 
explained variances to 20% or below for all countries where the assumed present-day irrigation fraction 
is below 40%, except for maize in the US and rice in Brazil (see Fig. 3).  
 
 

 
 
 
For wheat in Australia, Spain, Iran and Morocco and maize in South Africa, Romania, France, Hungary, 
Argentina, and China there is no positive correlation. This supports the hypothesis that water stress is a 
key driver of the observed yield variations, or at least mediates the effects of temperature fluctuations in 
a way that can be strongly reduced by irrigation [Lobell et al., 2013].  
 
 
The simulated yield variability is often higher than the observed variability (see Fig. 4). On the one 
hand, a smaller variability of the observational data could be explained by ad hoc interventions of 
farmers reacting to climate extremes, and a generally larger diversity of management decisions, making 
the real world conditions more resilient to weather fluctuations than the associated model 
representations. On the other hand, models providing a higher standard deviation may also overestimate 
the yield responses to weather fluctuations. The overall standard deviation of the simulated yield 
fluctuations can be significantly reduced by irrigation in individual countries (see Fig. S8 and S9 of the 
SI). 
 
 
4 Discussion 

 
The identification of the main sources of variability is critical when thinking about measures to 
minimize overall yield fluctuations. Here, we estimate to what degree reported national crop-yield 
fluctuations can be explained by our current understanding of the complex relationship between weather 
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and yields, as implemented in process-based GGCMs. We show that individual GGCMs when solely 
accounting for weather fluctuations can explain more than 50% of the reported variability of yields in 
individual countries. Water stress is identified as the main driver of historical reported yield fluctuations 
by showing that, in most of the countries, the variance of the reported yields that is explained by the 
simulations is strongly reduced when water stress is avoided in the simulations.   
 
An alternative study estimating the weather contribution to reported crop-yield variability on the global 
scale, used empirical models to come to the conclusion that there is a significant influence of weather on 
crop yields on about 70% of maize harvesting regions, 53% of rice harvesting regions, 79% of wheat 
harvesting regions and 67% of soybean harvesting regions [Ray et al., 2015]. Averaged over these 
regions they found that about one third of the reported crop-yield variability was induced by weather for 
each of the four crops, where regionally their numbers also exceeded 75%. Since their analysis has been 
carried out on the finer spatial scale of 13,500 sub-national political units, instead of the national level 
used here, their estimates cannot be directly compared to our numbers. Even a spatial averaging of their 
explained variances across countries is not expected to provide the explained variances that could be 
derived by directly applying the statistical model on the national scale, due to additional aggregation 
effects [Gornott and Wechsung, 2016]. That is why we independently fitted different empirical models 
to the national yield statistics in our study.     
 
To improve our understanding of the effect of weather influences on crop-yield variability, and to reduce 
the inter-model spread in explained variances, studies would benefit substantially from detailed 
temporally and spatially-resolved information about human management, such as fertilizer input, tillage, 
sowing and harvesting dates, and cultivar selection. Better knowledge of these practices would allow for 
a better adjustment of process based models to regional conditions [Asseng et al., 2013]. In light of the 
current lack of detailed information about regional management and soil characteristics, the considered 
default simulations, which cover a wide range of different implementations, could potentially be used to 
inversely derive a proxy for these conditions. This may be done by comparing simulated yields to 
observed yields and, for example, choosing country-specific settings based on the model that provides 
the highest agreement with reported crop yields. Such an approach will have to be carefully evaluated. 
For example, whether or not the derived input data also explain a higher variance across other GGCMs 
would need to be tested, and data will have to be adjusted in light of new reported data.          
 
Temporally-resolved information would even allow for testing to what degree the remaining 
unexplained variance can be resolved by these processes. The same applies to a reporting of the 
occurrence of diseases, pests and weeds that would allow for explicit estimation of the influence of these 
drivers, which is still hidden within the unexplained variances reported in this study. Ideally, changes in 
crop yields from one year to the next could be fully explained by process-based models, which account 
for management changes (and the occurrence in diseases, pests and weeds) and weather fluctuations. In 
this case, weather-induced effects could be estimated from the difference between year-to-year changes 
in crop yields, which are derived from model runs accounting for the combination of all effects, together 
with a run where weather conditions are held constant from year to year. In our sensitivity experiment, 
potential long-term variations in LAI and HI, as well as illustrative variations in crop densities or 
reported increases in irrigation areas, show only minor effects on the correlation between the reported 
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and simulated time series. Thus, this particular representation of potential management changes does not 
interact strongly with yield responses to weather fluctuations. However, the considered management 
influences cover by no means the full range of potential management-induced changes of crop yield 
responses to weather fluctuations. More research has to be done to get a better idea of the interaction 
between management changes and weather-induced crop-yield fluctuations. That is particularly 
important for dampening crop-yield fluctuations.          
Given the limited information about regional management conditions and uncertainties in the 
representation of crop-model responses to weather fluctuations, the multi-model mean seems to be better 
suited to quantifying weather-induced variabilities than a single model. The multi-model ensemble 
provides an implicit sampling of: 1) possible real-world conditions such as temporally and spatially-
resolved information about sowing and harvesting dates or fertilizer application rates; and 2) different 
implementation of processes across the models [Asseng et al., 2013] leading to errors cancelling out. 
While the “ensemble” mean does not offer a physiologically-coherent explanation of observed crop-
yield fluctuations as provided by individual crop models, ensemble means could still be relevant for 
projecting short-term national yield fluctuations across different regions if associated weather 
predictions were available. In addition, the analysis of the multi-crop model ensemble reveals a large 
potential for learning from each other by e.g. identifying the differences in model-specific 
implementations of national management conditions. 
Apart from reporting detailed management conditions on the regional level, our understanding of the 
weather signal in reported crop-yields fluctuations could significantly benefit from a separate reporting 
of irrigated and rain-fed crop yields. These data would allow for direct quantification of the fraction of 
the observed yield variability of irrigated crops that is still due to weather. Except for rice, current 
national crop-yield variability is dominated by yields under rain-fed conditions, with little possibility of 
separating the responses of irrigated crops.    
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Figure 1: Reproduction of recorded annual yield variations by global gridded crop models. Black 
curves: De-trended recorded time series of national yields. Red curves: De-trended simulated yield 
variations ∆	 ௦ܻ௜௠ for the process-based crop model that explains the highest country-specific fraction of 
the variance of the FAO time series (model name and r2 given in lower part of the panel). Blue curves: 
De-trended time series of multi-model mean yields. Results are shown for the three countries with the 
highest explained variance provided by an individual process-based model for each crop. Simulated and 
reported time series were scaled by the maximum of the absolute values of all three time series. 
 
 
Figure 2: Quantification of lower bounds of weather-induced yield variability. Colored symbols: 
Fraction of the variance of the reported year-to-year variability that is explained by individual crop 
models. Red diamonds: Highest variance explained by simple climate indicators (= CIs; see Fig S4 for 
the individual results of the three applied regression approaches). Black diamonds: Variance of reported 
yield fluctuations explained by the multi-model mean of simulated yields. Countries are ordered 
according to the highest variance explained by individual crop models. Grey polygons show the range 
from zero to the highest explained variance provided by the process-based crop models for each country. 
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Figure 3: Similar to Fig 2, but only showing the highest explained variances per country (colored bars 
identical to Fig 2) and the explained variances of the same model but assuming full irrigation (colored 
circles). Numbers indicate the “present-day” irrigation fractions (MIRCA2000) underlying the “default” 
simulations represented by the colored bars. Explained variances with full irrigation are not shown if the 
underlying correlation is negative. 
 
Figure 4: Comparison of the magnitude of observed and simulated yield fluctuations. Light blue 
columns: Standard deviation of the de-trended observational time series (FAO). Colored bars: Standard 
deviation of the de-trended simulated time series. Black bars: standard deviation of the de-trended time 
series of the multi-model mean. We only show model results that provide an explained variance > 10%.   
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