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A Decision Model for R & D Expenditures:

Some Remarks

Manne and Marchetti [1] consider the following decision
problem: Given that each line of research has an identical
and independently distributed probability of success (1l-p)
and the cost associated with each line of research is a
proportion ¢ of the benefits B accruing if one or more of
the lines turn out to be successful, determine the optimum
number n* of lines of research to be undertaken in order to

maximize the expected value of benefits less costs. They

Log [c/-Log p]
Log p )

They also consider a sequential extension of this model.

show that this number is approximately

It can be seen that n* approaches zero if (l-p) the
probability of success approaches either its lower bound c
or its upper bound 1. This is easily established. The
expected value of net benefits if n lines of research are
simultanecusly pursued is given by f(n) = B[l - pn - cn].
Trie marginal value of an additional experiment when n exper-
iments are being pursued is f(n+l) - f(n) = B[pn(l—p) - c].

This is a decreasing function of n. The optimum number n*

c
l_
Log p

Log

[for c < 1—p]l/ is given by [ J where [x] denotes

l/The case ¢ > 1l-p is uninteresting since f(n) < O for
n > 1 and hence the optimum number of experiments is zero.
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the largest integer less than or equal to x. [Since for values

of p close to 1 we can approximate 1l-p by -Log p we get

n* - Log Egé-gog P]]' Now as p + upper bound (l-c) it is clear

Log T%E o

Log p

. Lim
that n* -+ 0. As p + 1 also n* + 0 since p+1-0

In other words it does not pay to conduct many experiments if
the probability of success is either too low relative to costs
(the case of 1-p + c¢ from above) or sufficiently high (the case
of 1-p = 1). However, and this is important to note, in one
case the probability of success is very high and in the other
very low, even though the expected net benefits are being

maximized with few experiments.

The above argument leads on to a consideration of risk
and attitudes towards risk. The expected net benefit maximizer
is a risk neutral individual. In order to explore non-neutral

attitudes to risk, two approaches are outlined here.

In the first one, risk is measured by the probability pn
of none of the lines of research succeeding when n experiments
are being puréued. We then draw up a trade-off curve between
expected net benefits and risk. Thus, denoting the risk measure
pn by m, we can express the expected net benefits

f(n) = B[1 - pn - nc] as a function of 7 by writing

f(n) =g(w) =1 -7 - ¢ %%g—% . (1)



g(m)

Figure 1

In Figure 1 we have drawn the graph g(n) (which is concave
iro 1) as a function 7 for tne case -Log p > ¢ (corresponding to
the cordition ¢ < _-p). [If -Log p < c, the curve g(w) never
rises apcve the horizontal axis and as such expected net
benefits are negative as long as any experimentation is under-
taken at all!] The point {n*,g(w*)} corresponds to expected
benefit maximizaticn while the point {nO,O} corresponds to
risk minimization subject to the condition that the expected
net tenefits are non-negative. There is a trade-off between

risk and expected nret benefit in the region (no,n*). As long



as expected net berefits are required to be non-negative and
the utility function of the individual is non-decreasing in
expected net benefits and non-increasing in risk, his choice
is restricted to the interwval (no,n*). Any choice of nm < =*

will mean more experiments than n* being conducted.

In the second approach we consider an individual whose
current income is Yo and utility function U(Y). The case of
linear U(Y) corresponds to a risk neutral individual. A
strictiy concave (convex) U will correspond to risk averse
(ioving) individuai. We confine ourselves here to a risk
averse individual, i.e., U(Y) is strictly concave in Y with
positive marginal utilities. His problem now is to maximize
his expected utility. His utility will be U[YO - Ben] if
none of the n experiments succeed and U[Yo + B - Ben] if at
least one succeeds. Given the probabilities pn and l—pn
respectively of no success and at least one success, we get

the expected utiliuy as
. ¢ p n ‘
EU = p U[Y, - Ben] + (1-p") U[Y_  + B - Ben]

Treating n as a non-negative real number rather than a
ncn-negative integer and differentiating we get the first
order condition for maximization (for an interior solution)

of EU as
n . n
g5 = -Be[plU'iz ) + (1-p") ut(z, o+ B)]

+ p" Log p [u(z,» - u(z + B)] =0 ,

(2)

(3)
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where Zn = Yo - Ben. It can be varified that d g < O when
dn

%%A= 0 so that we do indeed get a maximizing (in fact unique)

solution with optimum n > O provided %% >0 at n = 0. This

BU'(YO)
will hold as lcong 2s -log p > ¢ UTYO T B) - U(ng > c.

Defining the Tfailure probability pn corresponding to the
solution for n from the above equation as 7** and recalling
that the expected rnet benefit maximizing failure probability n*

¢ » _ . dE
equals Toz b we get on re-arranging an

BU'(Z_ + B)
=T B S T S ez = v+ 7T - (B
n n n n

=0

-n'**

Unfortunately,l/ even with the assumption of concavity of
U, it is rot possible in general to conclude anything about the
relative magnitudecs of n** and m*. However, the expectation
that a risk averter will, in his optimum, choose a larger number
of experiments (i.e., lower w**) than the number n* (and failure
probability w*) chosen by a risk neutral individual, 1s borne
out if a quadratic approximation of U(Zn + B) at Zn is good
enough. 1n other words let

2

v » ~ ) ' B_ "
U(zn + B, b(Zn) + BU (Zn) t 5 U (Zn) ,

) AY -~ [] Iy "
¥ (zn + B) U (An) + BU (Zn) .

l/By assuming an exponential utility function Jean-Pierre
Ponssard is able to show that w** < w*. See Ponssard [2].
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- U'(zn) + BU"(Zn)
TEE . ¥ U'(Zn) e BU“(Zn) ¥ BU"(ZH)(“* - 0,57 . (5)

Under the reasonable assumption that w* < 0.5, we see that
T** < w* 5r the risk averter will pursue more lines of research

than a risk neutra. individual.

We can go a l1little further without making further assump-
tions abcout U. We noted earlier that a risk neutral individual
will undertake exparimentation if and only if = > -Log p > ¢

whereas for a risk averse individual these inequalities turn
BU'(YO)

-Log; - Thus i

out to be = > -Log p > ¢ U(Yo T B) - U\YST > c. hus 1f

BU'(Y,)
Ciutyo +B) - U(Y_)

} > -Log p > ¢, while a risk neutral individ-

ual will andertake some experiments, the risk averse one will
_ .. -c

not. Thus, fcr values of p close to its upper bound e ~, the

risk averter will conduct fewer experiments than the risk

neutral individual.

Now as p tends to its lower bound namely zero, the
optimum number of experiments chosen by both types of individ-
uals tends to zero as is to be expected since with p close to
zero the probability of success of a single experiment is close
tc 1. We have established this result for the risk neutral
case already. For the case of risk avert individual, let us
first note that his choice of 7 for any given p is restricted

to (ﬂo,l) where T is that value of m < 1 which yields



EJ = U(YO), i.e., his choice of m (and hence the number of
experiments n since m = pn) should make him no worse off as
compared to a situation in which he conducts no experiments
and continues to enjoy his income of Yo. Given that p is

less than e_c, it can be easily shown that a unique LIS less

than unity yields ©rU = U(YO).

Now
50— = p" Log p [U(Y, - Ben) - U(Y_ + B - Ben)] > 0

Hence as p decreases to zero, T increases to 1. This
implies that w** wnich lies between T and 1 tends to 1 as
rp tends tc zero or the optimal number of experiments n**

tends to uzero as p tends to zero.

Now from (4) we know

T** B

T+ {U(Zn + B) - U(zn)} j “*{ U'(Zn) ] 1}
B)

T (7 1
U (L.rl + B) U (Zn +

Uz, + B) - U(Z)

Giver strict concavity U,

U'(Zn T E) >B. As p + O,
-c U'(Zn)
. = . .
L§ Tog D + 0. Hence, provided U'(Zn + B) is bounded above,
x %
:, < 1 for values of p close to zero. Thus, for values of p

close to zero, the optimal number of experiments conducted by a
risk averter will be larger than the number conducted by a risk

neutral individual.



The Manne-Mar:hetti model assumes that the failure prob-

anility of each line of research was the same and independent

cf others. It is perhaps more realistic to assume that there
is some ordering of possible lines of research according to
their (researcher's) subjective probability of success. Thus
if n experiments are to be performed, then the first n exper-
iments ir the ordered set of possible experiments will be
chosen. et us maintain the independence assumption and
postulate that the probability of failure of the i th experi-

ments in the ordernd set is

p, = 1 - (1-p) (1-a)¥° 1 | k= 1,2,...

where O < p < 1 and O < o < 1. With the independence assumpticn,
the probability of none of the experiments succeeding when n
experiments are performed is
n
mn. = I p
n . k
K=1

It i3 easily seen that a = O corresponds to the Manne-

Marchetti model. As can be varified Lim P = 1 while Lim n_ = O
k+x n-« n

sc that tre probability of at least one experiment succeeding
can be made arbitrarily close to 1 by choosing a sufficiently

large n.



To keep matters simple let us confine ourselves to the
case of a risk-neutral researcher. If cost per experiment is
a constant. proportion ¢ of benefits B then he maximizes

expected net benefits as given by

H(n) = B{1 - n_ - cn] . ' (6)
Now

H(n+l) - H(njy = Blr - n ., -¢c] ,

TS Moy T jn(l-pn+l) = -rrn(l—p)(l—u)n . (7)
Since L and (l—a)n decrease as n increases, H(n+l) - H(n)

is a decreasihg function of n. It is clear that for the optimal
number of experiments to be at least one, H(1l) > O, that is

¢ < 1-p, a conditicn identical to a similar condition in the
Manne-Marchetti mocdel. Assuming this to hold, theloptimal

number of experiments is given by n where

\%
o

H(n) - H(n-1) > (8)

and

A

H(n+l) - H(n) < 0 . (9)

It ic easily seen that n is approximately the solution of
H(n) - H{n-1) = O (10)

or

Tae) (1-P) (=)™ = e (11)
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We remarked earlier that a = O corresponds to the Manne-
Marchetti model. The effect of positive a on nis easily seen.

. . n
For, an increase in a decreases both (l1-a) and LI for any

given n. As such n, the solution of nﬁ_l(l—p)(l-a)n_l = ¢
must decrease as a increases. This is to be expected since
with an increase in a, the failure probability of every

experiment other than the first in the ordered set is increased.
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