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Highlights

• We develop a scenario model to support the selection of strategic actions

• The model admits incomplete and action-dependent scenario probability information

• Decision recommendations are based on dominance relations between action portfolios

• Non-dominated portfolios can be used to derive action-specific recommendations

• The model is applied to a real case for building a strategy for a platform ecosystem
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Abstract

In order to address major changes in the operational environment, companies can (i) define scenarios that
characterize different alternatives for this environment, (ii) assign probabilities to these scenarios, (iii) evaluate
the performance of strategic actions across the scenarios, and (iv) choose those actions that are expected to
perform best. In this paper, we develop a portfolio model to support the selection of such strategic actions when
the information about scenario probabilities is possibly incomplete and may depend on the selected actions. This
model helps build a strategy that is robust in that it performs relatively well in view of all available probability
information, and proactive in that it can help steer the future as reflected by the scenarios toward the desired
direction. We also report a case study in which the model helped a group of Nordic, globally operating steel and
engineering companies build a platform ecosystem strategy that accounts for uncertainties related to markets,
politics, and technological development.

Keywords: decision support systems, portfolio selection, scenarios, incomplete probabilities

1. Introduction

To retain their competitive edge, organizations must be able to respond to major changes in their operational
environment. By making high-quality strategic decisions, these organizations can mitigate threats and to seize
opportunities offered in their changing environment. Traditional strategic planning approaches build on forecasts
based on trend extrapolation. Such approaches are, however, inadequate in highly uncertain, intensive and
complex environments (Bunn and Salo, 1993; Chermack et al., 2001; Varum and Melo, 2010). Consequently,
strategic planning in organizations has increasingly been complemented and even replaced by scenario planning,
which, instead of focusing on the future that is perceived as the most likely, considers a set of plausible futures,
called scenarios (Schoemaker, 1995; Peterson et al., 2003). Specifically, scenarios draw the decision-makers’
(DMs’) attention to uncertainties and help them build a robust strategy that performs relatively well across
different operational environments (Wilson, 2000; Lempert et al., 2006; Lindsay, 2015).
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It is often useful to think of strategy not in a holistic sense, but rather as a combination or portfolio of
(possibly interdependent) courses of action, such as investments in a given technology, project, or business
model (Courtney et al., 1997; Luehrman, 1998; Beinhocker, 1999; Raynor and Leroux, 2004; Lin et al., 2005).
The portfolio approach enables the development of a large number of alternative strategies with reasonable
effort, but also facilitates strategy implementation. Decisions about which action portfolio (i.e., strategy) to
select can be supported by methods of Portfolio Decision Analysis (PDA; see Salo et al., 2011 for an overview).
In particular, these methods deploy decision-analytic models to capture preferences and uncertainties about the
actions’ impacts, and use mathematical optimization to identify the most preferred portfolio under resource
and other constraints (see, e.g., Jackson et al., 1999; Argyris et al., 2014; Vilkkumaa et al., 2014a; Fasth et al.,
2016; Fliedner and Liesiö, 2016).

One approach to scenario-based portfolio selection is to assess the probability of the scenarios, to evaluate
the impacts of the actions in each scenario, and, finally, to select the action portfolio with the highest expected
utility in light of the available information (e.g., Poland, 1999). This approach, however, entails some challenges.
First, it may be difficult to estimate precisely how probable the different scenarios are – for instance, to say that
the probability that a given smartphone operating system becomes the industry standard is precisely 40% (Liesiö
and Salo, 2012). Second, the actions may affect the scenario probabilities: for example, the probability that a
given operating system becomes the industry standard may be increased by large investments made by a major
smartphone manufacturer (Hagel III et al., 2008; Toppila et al., 2011). Failing to account for the impacts of
such proactive actions may lead to poor strategic decisions (Reeves et al., 2012).

In this paper, we develop a scenario model to support the selection of portfolios consisting of strategic
actions when (i) information about the scenario probabilities may be incomplete and (ii) the selection of some
actions can affect these probabilities. Information about scenario probabilities is modeled by bounding the
set of feasible probabilities through constraints that may depend on which actions are selected. Dominance
relations are employed to identify those action portfolios that are not outperformed by any other portfolio
for any feasible scenario probabilities. To compute these non-dominated portfolios, we develop an efficient
computational algorithm that avoids the need to enumerate all feasible portfolios. In this algorithm, (i) the
set of feasible portfolios is partitioned with respect to those actions that affect the scenario probabilities, and
(ii) a multi-objective zero-one linear programming (MOZOLP) problem is solved within the partitioned sets to
identify those non-dominated portfolios that satisfy the resource and other feasibility constraints.

To our knowledge, we present the first decision-analytic portfolio model which accommodates incomplete
and action-dependent scenario probability information. In particular, the model provides recommendations
for choosing action portfolios that are (i) robust across the range of future scenarios in view of incomplete
information about scenario probabilities, and (ii) proactive in that they help steer the course of change by
influencing these probabilities. The resulting decision recommendations help prioritize actions by dividing them
into three categories: (i) core actions that should be selected (included in all non-dominated portfolios), (ii)
exterior actions that should not be selected (not included in any non-dominated portfolios), and (iii) borderline
actions (included in some non-dominated portfolios but not all).

We also report a real case study in which this modeling approach was used for building a strategy for a
group of Nordic, globally operating steel and engineering companies looking to establish a multi-sided plat-
form ecosystem. The participating companies sought to develop a strategy that would be robust across three
alternative scenarios of the future operational environment. Yet, because the ecosystem would be one of the
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pioneers on the market, its strategy was seen to potentially influence which of the future scenarios would be
realized. Our model supported the strategy process by helping to identify those actions that the ecosystem
should definitely pursue (core actions) as well as actions in which the ecosystem should make smaller, initial
investments for possible later expansion (borderline actions).

The rest of the paper is structured as follows. Section 2 discusses earlier literature on scenario-based strategy
building. Section 3 introduces our modeling framework, and Section 4 discusses computational issues. The case
study is presented in Section 5, and Section 6 concludes.

2. Earlier approaches to scenario-based strategy development

Scenario planning emerged in the aftermath of World War II as a method for military planning. Later,
it was extended to support social forecasting, public policy, and strategic management (Bunn and Salo, 1993;
Van der Heijden, 1996; Varum and Melo, 2010). The early scenario planning methodologies can be divided
into three schools. First, there is the intuitive logics school comprising of qualitative methods for developing
scenarios and evaluating strategies against these scenarios (Bunn and Salo, 1993; Bradfield et al., 2005). Second,
the probabilistic modified trends school generates scenarios by asking experts to provide subjective probability
estimates about the occurrence of unprecedented events. Trend-impact analysis (TIA) uses these probabilities
and the expected impacts of the events to perturb trends extrapolated from historical data. Cross-impact
analysis (CIA) incorporates an additional layer of complexity in that it is also necessary to elicit probabilities
for events conditioned on the occurrence or non-occurrence of some other events (Godet, 1987; Bradfield et al.,
2005). The third school, La Prospective (Godet, 2000), can be viewed as an elaborate, complex and somewhat
mechanistic blending of the intuitive logics and the probabilistic modified trend methodologies (Bradfield et al.,
2005).

These early methodologies have been criticized for not providing sufficient support for the evaluation of dif-
ferent strategies across the full range of scenarios (Wilson, 2000; Goodwin and Wright, 2001). The comparison of
strategies without the help of formal methods is particularly difficult if the DM has multiple objectives (Kahne-
man and Tversky, 1982; Goodwin and Wright, 2001). In consequence, several approaches have been developed to
integrate scenarios within a Multi-Criteria Decision Analysis (MCDA) framework (Stewart, 1997, 2005; Wright
and Goodwin, 1999; Belton and Stewart, 2002; Montibeller et al., 2006; Stewart et al., 2013). These approaches
help make trade-offs between possibly conflicting objectives and make it possible to compare strategies across
all scenarios – for instance, based on the total multi-attribute value (e.g., Goodwin and Wright, 2001; Karvetski
and Lambert, 2012), or the regret of each strategy in every scenario; here, regret is defined as the difference
between the value of the strategy in the given scenario and that of the best-performing strategy in the same
scenario (Lempert et al., 2006; Ram et al., 2011).

Many approaches for strategic prioritization use probabilities to describe the relative likelihoods of dif-
ferent scenarios (Kirkwood and Pollock, 1982; De Kluyver and Moskowitz, 1984; Brauers and Weber, 1988;
Godet, 2000; Millett, 2003, 2009). Yet, some authors have argued against the use of scenario probabilities,
for instance because of the psychological biases associated with subjective probability estimation, including
overconfidence (Tversky and Kahneman, 1974; Goodwin and Wright, 2001). The use of probabilities has also
been criticized for filtering out important information about vulnerabilities and opportunities, and for forcing
stakeholder consensus (Karvetski and Lambert, 2012); moreover, probability estimation has been seen as tan-
tamount to forecasting (Mobasheri et al., 1989). Bunn and Salo (1993), however, point out that if scenario
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analysis is to support strategic choices, then some judgement about the relative likelihood of scenarios is implicit
even in those methods that deliberately attempt to avoid assessing these likelihoods. Unless these judgements
are made explicit, both scenario generating teams and executives have been noted to gravitate toward those
scenarios that they find most attractive, thereby running the risk of dismissing scenarios that are plausible but
unattractive (Millett, 2009). It may therefore be beneficial to make this important aspect explicit by introducing
information about scenario probabilities in a flexible way.

In this paper, we assume that the scenarios are exhaustive and mutually exclusive descriptions of possible
futures, so that beliefs about their relative likelihoods can be expressed through probabilities. Thus, it is
important to highlight that the decision recommendations resulting from this model are to be interpreted
subject to the condition that exactly one of the scenarios will in fact be realized in the future. Nevertheless,
our model can be used to generate decision recommendations even if the DMs are not willing or able to express
any statements about scenario probabilities (Goodwin and Wright, 2001; Montibeller et al., 2006; Ram et
al., 2011; Stewart et al., 2013). In this setting, the set of recommended action portfolios consists of Pareto
optimal portfolios, i.e., those that are not outperformed by any other portfolio in each scenario. Yet, if the
resulting decision recommendations are not conclusive enough for making strategic choices, our model provides
a justifiable way to accommodate as much information about scenario probabilities as can be elicited with
reasonable effort.

3. Model framework for action portfolio selection

3.1. Portfolio selection with complete probability information

Consider a DM who wants to select a portfolio consisting of a subset of m proposed actions. The impacts of
these actions are evaluated in n mutually exclusive and collectively exhaustive scenarios. The probabilities of
these scenarios are denoted by vector p = [p1, . . . , pn], where pi is the probability of scenario si. By definition, p
is in the n-dimensional simplex ∆n = {p ∈ [0, 1]n|∑n

i=1 pi = 1}. The real-valued outcome of action j in scenario
i, denoted by xji ∈ R, can represent, for instance, the net present cash flow of the action in scenario i, or the
cardinal multi-attribute value of the action, as derived through conventional MAVT analysis (see, e.g., Dyer
and Sarin, 1979).

An action portfolio is a subset of the m available actions, represented by a binary row vector z =

[z1, . . . , zm] ∈ {0, 1}m where zj = 1 if and only if action j is included in the portfolio. Given scenario probabilities
p, the expected utility of portfolio z is defined as

EU(z, p) =

n∑

i=1

piui(

m∑

j=1

zjx
j
i ), (1)

where u1, . . . , un denote the scenario-specific utility functions which are only assumed to be strictly increasing.
In particular, we do not assume that the utility functions are either convex or concave, and thereby make no
assumptions about the DM’s risk attitude. These utility functions can be used to model, for instance, non-
constant marginal portfolio value which can be different in each scenario. The elicitation of utility functions is
discussed in Section 3.7.

Portfolios are usually selected subject to limited resources and/or other restrictions. We assume that the
set of feasible portfolios ZF ⊆ {0, 1}m which satisfies these restrictions is defined through q linear feasibility
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constraints, whose coefficients are contained in matrix A ∈ Rq×m and vector b ∈ Rq×1 so that

ZF = {z ∈ {0, 1}m| AzT ≤ b}. (2)

This formulation is relatively general as many common constraint types can be modeled as linear inequalities
(see Stummer and Heidenberger, 2003; Liesiö et al., 2008; Mavrotas et al., 2008). For instance, a constraint
which states that action j can only be selected if action ` is selected can be modeled with inequality zj ≤ z`.
Also, a balance constraint which requires that at least m0 actions of the subset M0 ⊆ {1, . . . ,m} are selected
can be modeled as

∑
j∈M0

zj ≥ m0. If there are synergies (or cannibalization effects) among the actions, the
overall value of a set of actions differs from the sum of the individual actions’ impacts. These effects can
be captured through linear feasibility constraints by introducing dummy actions. For instance, assume that
synergy x◦i > 0 (or cannibalization effect x◦i < 0) occurs in scenario i if at least m0 actions from the subset
M0 are selected. This synergy effect can be modeled by introducing dummy action z◦ to the problem with
scenario-specific impacts x◦1, . . . , x◦n and linear constraints

∑
j∈M0

zj −m0 + 1 ≤ m · z◦ ≤
∑

j∈M0
zj −m0 + m

which ensure that the synergy is realized (i.e., z◦ = 1) if and only if
∑

j∈M0
zj ≥ m0. Thus, even though

synergies and cannibalization effects are non-additive, they can be modeled by introducing additional dummy
binary variables and linear constraints such that the functional form of expected portfolio utility (1) remains
the same. Synergies in resource consumption can be modeled in a similar fashion (Liesiö et al., 2008).

A rational DM would seek to maximize the expected utility of the selected portfolio. If scenario probabilities
p are known, the feasible portfolio that maximizes this expected utility can be obtained by solving the non-linear
zero-one programming problem

max
z∈ZF

EU(z, p) = max
z∈{0,1}m

{ n∑

i=1

piui(
m∑

j=1

zjx
j
i )

∣∣∣∣AzT ≤ b
}
. (3)

Throughout the paper, the decision variables of optimization problems are marked beneath the max /min

operator. The decision tree corresponding to optimization problem (3) is shown in Figure 1.

Figure 1: Decision tree for portfolio selection with scenario probabilities which do not depend on the selected actions.
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3.2. Action-dependent scenario probabilities

In some contexts, scenario probabilities depend on the selected actions. For instance, if scenarios are
characterized by the level of regulation and market demand, a company may steer the course of change toward
their desired scenario by making investments in lobbying or marketing (Hagel III et al., 2008; Reeves et al.,
2012). We therefore relax the assumption that the probability vector p = [p1, . . . , pn] is an exogenous constant
and, instead, consider it to be endogenous so that it may depend on the selected portfolio. Whereas the
probabilities of the n scenarios may depend on which actions are selected, we assume that the contents of
these scenarios are fixed. This is in line with the usual definition of scenarios as descriptions of the external
operational environment in which the organization acts (Coates, 2000; Ram et al., 2011).

Technically, we assume that the set of feasible portfolios ZF is partitioned into K disjoint sets
Z1, . . . ,ZK (∪Kk=1Zk = ZF ) such that if portfolio z ∈ Zk is selected, then the scenario probability vector
is [Pk,1, . . . , Pk,n] ∈ ∆n. In particular, we assume that for each portfolio of actions that affects scenario proba-
bilities differently, there is a different vector of scenario probabilities. For instance, consider a situation in which
the set of feasible portfolios is ZF = {0, 1}m, the selection of action j = 1 affects the scenario probabilities
in one way, and the selection of both of actions j = 2 and j = 3 affects them in some other way. Then, ZF
is partitioned into four sets Z1, . . . ,Z4 which correspond to those portfolios which (i) include at most one of
actions j = 2 and j = 3 but do not include action j = 1, (ii) include action j = 1 but at most one of actions
j = 2 and j = 3, (iii) contain both actions j = 2 and j = 3 but not action j = 1, and (iv) contain all three
actions j = 1, 2, 3. That is,

Z1 =
{
z ∈ ZF |z1 = 0 ∧ (z2 = 0 ∨ z3 = 0)

}
, (4)

Z2 =
{
z ∈ ZF |z1 = 1 ∧ (z2 = 0 ∨ z3 = 0)

}
, (5)

Z3 =
{
z ∈ ZF |z1 = 0 ∧ z2 = z3 = 1

}
, (6)

Z4 =
{
z ∈ ZF |z1 = z2 = z3 = 1

}
. (7)

Given K portfolio sets Zk, K × n scenario probabilities need to be estimated. These estimates can be
represented by matrix P ∈ ∆n

K , {P ∈ [0, 1]K×n | Pk,· ∈ ∆n} with rows Pk,· = [Pk,1, . . . , Pk,n] such that

P =

Scenario s1 . . . Scenario sn





P1,1 . . . P1,n Portfolios z ∈ Z1
∑

i = 1,

...
. . .

...
...

...

PK,1 . . . PK,n Portfolios z ∈ ZK
∑

i = 1.

(8)

With action-dependent scenario probabilities, the expected utility maximization problem (3) can be formulated
as

max
z∈ZF

EU(z, Pκ(z),·), (9)

where κ(z) denotes the row index of matrix P containing the scenario probabilities resulting from choosing
portfolio z, i.e.,

κ(z) = k ⇔ z ∈ Zk. (10)

The decision tree for this problem is shown in Figure 2.
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Figure 2: Decision tree for portfolio selection with action-dependent scenario probabilities.

3.3. Incomplete probability information

Due to elicitation costs and time constraints, it may be difficult to obtain estimates for the K × n proba-
bilities for matrix P in (8). In particular, the precise assessment of scenario probabilities conditioned on the
DM’s choices may in practice be cognitively too demanding and prone to psychological biases, such as overcon-
fidence (Tversky and Kahneman, 1974; Goodwin and Wright, 2001). Moreover, if the probability estimates are
elicited from several experts, it may be challenging to aggregate these estimates into a single probability matrix.
Thus, it is instructive to admit incomplete probability information which spans all stated probability estimates,
and to examine which decision recommendations are compatible with this information (cf. e.g., White et al.,
1982; Hazen, 1986; Walley, 1991; Moskowitz et al., 1993; Liesiö and Salo, 2012).

We model incomplete probability information by set inclusion. That is, instead of a single scenario proba-
bility matrix P , we consider a set of feasible probability matrices P ⊆ ∆n

K , which satisfy linear constraints that
correspond to statements about scenario probabilities. The rows of P are assumed to be independent, whereby
these constraints are of the form

∑n
i=1 ciPk,i ≤ d . The set Pk of feasible k-th row vectors of matrix P is

Pk = {[Pk,1, . . . , Pk,n] ∈ ∆n |
n∑

i=1

ci`Pk,i ≤ d` ∀` = 1, . . . , Lk}, (11)

where Lk is the number of linear constraints on scenario probabilities for action portfolios in set Zk.
Consider, for instance, the previous example where the selection of action 1 affects the scenario probabilities

in one way, and the selection of both of actions 2 and 3 affects them in some other way. In this case, the set of
feasible portfolios ZF was partitioned into four sets Z1, . . . ,Z4 defined by (4)-(7). Consider a setting with three
scenarios. Stating that scenario s2 is more probable than scenario s3 regardless of what actions are selected can
be modeled as

Pk,2 ≥ Pk,3 ∀k = 1, . . . , 4. (12)
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A statement that the selection of action 1 makes the realization of scenario s1 more probable than the realization
of one of scenarios s2 and s3 can be modeled as

Pk,1 ≥ Pk,2 + Pk,3 for k = 2, 4. (13)

Similarly, consider a statement that choosing actions 2 and 3 jointly (i) increases the probability of scenario s1

so that it is at least 50% and (ii) decreases the probability of scenario s3 so that it is at most 10%. Then, we
have constraints

Pk,1 ≥ 0.5

Pk,3 ≤ 0.1

}
for k = 3, 4. (14)

Using constraints (12)-(14), the set of feasible probability matrices for the four portfolio sets Zk, k = 1, . . . , 4

and three scenarios becomes

P = {P ∈ ∆3
4 | Pk,2 ≥ Pk,3 ∀k = 1, . . . , 4,

Pk,1 ≥ Pk,2 + Pk,3 for k = 2, 4, (15)

Pk,1 ≥ 0.5 for k = 3, 4,

Pk,3 ≤ 0.1 for k = 3, 4},

so that

P1 = {[P1,1, . . . , P1,4] ∈ ∆4 | P1,2 ≥ P1,3},
P2 = {[P2,1, . . . , P2,4] ∈ ∆4 | P2,2 ≥ P2,3, P2,1 ≥ P2,2 + P2,3},
P3 = {[P3,1, . . . , P3,4] ∈ ∆4 | P3,2 ≥ P3,3, P3,1 ≥ 0.5, P3,3 ≤ 0.1},
P4 = {[P4,1, . . . , P4,4] ∈ ∆4 | P4,2 ≥ P4,3, P4,1 ≥ P4,2 + P4,3, P4,1 ≥ 0.5, P4,3 ≤ 0.1}.

3.4. Dominance structures

If information about scenario probabilities was complete, the DM would select the feasible portfolio z ∈ ZF
with the highest expected utility EU(z, Pκ(z),·). However, different selections of the scenario probability matrix
P from the feasible set P associate different expected utilities with each portfolio z. To determine which
portfolios outperform others, we define dominance as follows.

Definition 1. Portfolio z dominates z′ with regard to the set of feasible probability matrices P denoted z �P z′
if and only if

EU(z, Pκ(z),·) ≥ EU(z′, Pκ(z′),·) for all P ∈ P (16)

EU(z, Pκ(z),·) > EU(z′, Pκ(z′),·) for some P ∈ P, (17)

where κ(·) is given by (10).

Thus, portfolio z dominates portfolio z′ if (i) the expected utility of z is at least as high as that of z′ for all
feasible scenario probabilities, and (ii) the expected utility of z is strictly higher than that of z′ for at least some
feasible scenario probabilities. Even though different scenario probabilities may be used for the computation of
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the expected utilities for portfolios z and z′, the relation �P is transitive, which is a desirable property for any
partial ordering used for normative decision support. All proofs are in Appendix A.

Lemma 1. The dominance relation �P is transitive.

Dominance between two portfolios can be readily checked by minimizing and maximizing the utility difference
between them subject to the requirement that scenario probabilities P belong to P. These are linear problems
whose optimal solutions are attained at some extreme point matrix of P. The set ext(P) of such extreme point
matrices is

ext(P) = {P ∈ ∆n
K | Pk,· ∈ ext(Pk) ∀k = 1, . . . ,K}, (18)

where Pk is the set of feasible k-th row vectors of P as defined in (11), and ext(Pk) is the set of extreme points
of Pk. That is, the set ext(P) consists of matrices whose rows are different combinations of the extreme points
of the sets Pk.

To check dominance relations among many portfolios using the same probability information, it is typically
faster to determine the set of extreme points ext(P) first and to then compare the expected utility differences
between the portfolios in these points. This is because the number of linear programming problems needed to
identify ext(P) grows linearly as a function of the number of extreme points (e.g., Dyer and Proll, 1982), whereas
the number of linear programming problems needed to establish dominance relations through (16)-(17) grows
polynomially as a function of the number of portfolios. Moreover, in practical problems, there are typically
fewer than a dozen extreme points, while there may be hundreds of portfolios. Efficient algorithms to compute
the set ext(P) are presented by, e.g., Matheiss and Rubin (1980), Dyer and Proll (1982), and Avis and Fukuda
(1992).

Theorem 1. Let z, z′ ∈ ZF , and let the set of feasible probability matrices be P ⊆ ∆n
K . Furthermore, denote

D(P ) =

( n∑

i=1

Pκ(z),iui(
m∑

j=1

zjx
j
i )−

n∑

i=1

Pκ(z′),iui(
m∑

j=1

z′jx
j
i )

)
.

Then, z �P z′ if and only if

min
P∈ext(P)

D(P ) ≥ 0 and (19)

max
P∈ext(P)

D(P ) > 0, (20)

where ext(P) is the set of extreme points of P.
Figure 3 illustrates dominance relations among three portfolios z1, z3 ∈ Z1 and z2 ∈ Z2 for two scenarios

s1 and s2 such that the set of feasible probability matrices is

P = {P ∈ ∆2
2 | P1,1 ≤ 0.6

P2,1 ≥ 0.5}.

Then, ext(P1) = {[0, 1], [0.6, 0.4]} and ext(P2) = {[0.5, 0.5], [1, 0]}, and thus

ext(P) =

{[
0 1

0.5 0.5

]
,

[
0.6 0.4

0.5 0.5

]
,

[
0 1

1 0

]
,

[
0.6 0.4

1 0

]}
. (21)
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Portfolio z2 is dominated by portfolio z1, because its expected utility (ranging from 0.1 to 0.5) is less than or
equal to that of portfolio z1 (ranging from 0.5 to 0.75) for all extreme point matrices in (21). Also, portfolio
z1 dominates portfolio z3, because its expected utility is 0.15 units greater than that of portfolio z3 for each
feasible extreme point [P1,1, P1,2] ∈ ext(P1) = {[0, 1], [0.6, 0.4]}.
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Figure 3: Expected utilities of portfolios z1, z3 ∈ Z1 and z2 ∈ Z2.

Because a rational decision maker would not choose a dominated portfolio, it is reasonable to focus on
feasible portfolios which are not dominated by any other feasible portfolio.

Definition 2. The set of non-dominated portfolios with regard to the set of feasible probability matrices P is

ZN (P) = {z ∈ ZF | @z′ ∈ ZF such that z′ �P z}. (22)

A non-dominated portfolio is both (i) robust in that it is not outperformed by any other feasible portfolio
and (ii) proactive in that it accounts for the effect that the actions may have on scenario probabilities. In the
example of Figure 3, there is only one non-dominated portfolio so that ZN (P) = {z1}.

3.5. Additional information

During the decision support process, additional statements about scenario probabilities may be elicited.
Such statements correspond to additional linear constraints on scenario probabilities, which reduce the set of
feasible probability matrices to P̃ ⊆ P. Unless P̃ is a subset of the ‘border’ of P, then ZN (P̃) is a subset
of ZN (P), meaning that the introduction of additional probability information may reduce the set of non-
dominated portfolios but cannot generate new non-dominated portfolios. However, if P̃ is a subset of the
border of P, then ZN (P̃) may contain two portfolios whose expected utilities coincide on this border, while one
has strictly lower expected utility everywhere else in P and, thus, does not belong to ZN (P).

This situation is illustrated in Figure 3, where portfolio z1 dominates z2. Assume that the addi-
tional information reduces the set of feasible probabilities for portfolios z1, z3 ∈ Z1 to the single point
P̃1 = [P1,1, P1,2] = [0.6, 0.4], and that for portfolio z2 ∈ Z2 to the single point P̃2 = [P2,1, P2,2] = [1, 0].
Here, the expected utilities of portfolios z1 and z2 are equal (=0.5) so that z1 no longer dominates z2. To rule
out this possibility, we assume that P̃ includes some points from the relative interior of P.

Theorem 2. Let P̃ ⊆ P such that int(P) ∩ P̃ 6= ∅. Then, ZN (P̃) ⊆ ZN (P).
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Because P and P̃ ⊆ P are closed, convex, and bounded polytopes, int(P)∩P̃ = ∅ if the extreme points of P̃
lie on the same face of P. Algorithms for enumerating the faces of a convex polytope are presented by Fukuda
and Rosta (1994). Having established the set ext(P̃) of extreme points of P̃ with a suitable algorithm (e.g.,
Avis and Fukuda, 1992), it remains to check whether all points in ext(P̃) satisfy the equation for the hyperplane
corresponding to some face of P.

3.6. Implications for decision support

It is reasonable to recommend only portfolios in the set ZN (P), because any portfolio outside this set of
non-dominated portfolios is outperformed by at least one non-dominated portfolio. Furthermore, by Theorem 2,
no portfolio outside ZN (P) can become non-dominated as a result of introducing additional information about
scenario probabilities, unless this information P̃ contains no interior points of P. It is therefore advisable to
start with loose statements about scenario probabilities so that the feasible region does not become empty, and
to tighten these statements only if the initial recommendations are not conclusive enough (Moskowitz et al.,
1989; Salo and Hämäläinen, 2010),

Deciding which one of the non-dominated portfolios to select can be cognitively demanding, especially if the
number of non-dominated portfolios |ZN (P)| is high. Yet, the set of non-dominated portfolios can be examined
to derive recommendations about whether a given action should be included in the portfolio or not. Such
action-specific recommendations are based on the concept of core index, defined as follows (cf. Liesiö et al.,
2007).

Definition 3. For a given set P of feasible probability matrices we define

Core index of action j : CIj(P) = |{z ∈ ZN (P)|zj = 1}|/|ZN (P)|
Core actions : XC(P) = {j ∈ {1, . . . ,m} | CIj(P) = 1}
Borderline actions : XB(P) = {j ∈ {1, . . . ,m} | 0 < CIj(P) < 1}
Exterior actions : XE(P) = {j ∈ {1, . . . ,m} | CIj(P) = 0}.

All core actions should be selected, because they belong to all non-dominated portfolios even if additional
information about scenario probabilities was given. Similarly, all exterior actions can be rejected, because they
do not belong to any non-dominated portfolios even in light of additional information. This result is formalized
in Corollary 1.

Corollary 1. Let P̃ ⊆ P such that int(P) ∩ P̃ 6= ∅. Then, XC(P) ⊆ XC(P̃) and XE(P) ⊆ XE(P̃).

Action-specific recommendations facilitate decision-making by helping to identify core actions that should
definitely be pursued and exterior actions that should not, after which further discussion can be focused on
a smaller set of borderline actions. Nevertheless, when deciding which combination of borderline actions to
ultimately select, it is important to ensure that the resulting portfolio is feasible and non-dominated, i.e., belongs
to set ZN (P). Recommendations for selecting one out of |ZN (P)| non-dominated portfolios can be based on
decision rules that have been developed to identify preferred alternatives when the model parameters (such as
scenario probabilities or attribute weights) are set-valued (see, e.g., Sarabando and Dias, 2009). Examples of
robust decision rules are maximin and minimax regret (Kouvelis and Yu, 1997; Salo and Hämäläinen, 2001).
The maximin portfolio zmm yields the highest worst-case expected utility, whereas the minimax regret portfolio
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zmmr results in the lowest maximal regret in expected utility when compared to the best-case performance of
any other portfolio. More formally,

Maximin portfolio: zmm ∈ argmax
z∈ZN (P)

min
P∈P

EU(z, Pκ(z),·),

Minimax regret portfolio: zmmr ∈ argmin
z∈ZN (P)

max
z′∈ZN (P)
P∈P

[
EU(z′, Pκ(z′),·)− EU(z, Pκ(z),·)

]
.

Other commonly used decision rules include maximax and Hurwicz rule (Hurwicz, 1951; Salo and Hämäläi-
nen, 2001). The maximax portfolio yields the highest best-case expected utility and can be computed by
replacing the min operator by a max operator in the above definition of the maximin portfolio zmm. The
Hurwicz portfolio maximizes the weighted average of the worst-case and best-case expected utility and can be
computed by replacing minP∈P EU(z, Pκ(z),·) by w ·minP∈P EU(z, Pκ(z),·) + (1− w) ·maxP∈P EU(z, Pκ(z),·) in
the definition of zmm, where w ∈ [0, 1] is the weighting coefficient. Yet, recommendations based on maximax
amd Hurwicz decision rules are not robust in that their worst-case performance can be relatively poor (unless
the weighting coefficient w is close to 1, in which case Hurwicz rule is equivalent to the maximin rule).

3.7. Elicitation of utility functions

The choice of a suitable approach for eliciting the utility functions ui depends on the application under
consideration. The most straightforward case is when (i) outcomes are measured on a single attribute and (ii) the
utilities of outcomes are not contingent on the scenario (i.e., ui(·) = u(·) for all i ∈ {1, . . . , n}). Then, the utility
function u(·) can be assessed through standard approaches that utilize hypothetical lotteries between outcomes,
such as certainty- and probability-equivalent techniques (Clemen, 1996). As an alternative approach, Wakker
and Deneffe (1996) propose the gamble-tradeoff method which does not require the specification of numerical
values for lottery probabilities. Arguably, this method is less sensitive to misconceptions about probabilities
and behavioral violations of the assumptions of expected utility theory.

In applications where outcomes are measured with respect to multiple attributes, a common approach is
to convert all outcomes onto a single monetary scale (cf. ‘pricing-out’ approach; see, e.g., Clemen and Smith,
2009). Then, outcomes xji in the scenario model are unidimensional, whereby the above methods can be used to
assess the utility function over their value scale. As an alternative to the pricing-out approach, a multiattribute
portfolio value function can be built to aggregate the multiattribute outcomes of a combination of actions to
an overall portfolio value (Golabi et al., 1981; Liesiö, 2014). For instance, the additive-linear portfolio value
function (Golabi et al., 1981) uses a standard additive value function to evaluate the overall value of each action,
and portfolio value is then obtained as the sum of the overall values of those actions that are included in the
portfolio. In this case, outcome xji in our scenario model would correspond to the overall value of action j in
scenario i. The above methods can be used to assess a utility function over this portfolio value scale to capture
the DM’s risk preferences (cf. utility over value approach by Matheson and Abbas, 2005). However, this requires
that the DM is able to compare lotteries (or gamble-tradeoffs) between multiattribute consequences of action
portfolios.

In some applications it may be appropriate to relax the assumption of the same utility function across
scenarios. Indeed, some studies that use linear-additive multiattribute value functions to compute the decision
alternatives’ scenario-specific values report that the attribute-specific value functions and attribute weights
vary across scenarios (see, e.g., Montibeller et al., 2006). In such cases, the above methods can be used to
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elicit multiattribute portfolio value functions for each scenario separately. Moreover, these approaches can be
used to specify the utility function (possibly over value) for a single scenario, say u1(·). The question is then
how to assess utility functions u2(·), . . . , un(·) such that the utilities from these functions are commensurable
with those obtained from u1. This can be achieved by considering outcome levels `01 and `1 in scenario s1, and
levels `02 and `2 in scenario s2, where `01, `02 correspond to worst outcomes in scenarios s1 and s2, respectively.
Without loss of generality, the scenario-specific utility functions can be scaled such that u1(l01) = u2(l02) = 0.
The DM is asked to consider two alternative portfolios: The first one yields outcomes `01 and `2 in scenarios
s1 and s2, respectively, while the second one yields outcomes `1 and `02. Then, given a fixed level of `1, the
DM is asked to consider a situation where the scenarios are equally likely and to adjust the level of `2 until
the two portfolios are equally preferred. Setting the expected utilities of the resulting portfolios equal yields
u1(`1) = u2(`2). Repeating this line of questioning for multiple different levels of `1 makes it possible to assess
the utility function u2 with desired accuracy. A similar procedure can be used to elicit each of the remaining
utility functions u3(·), . . . , un(·).

It is important to highlight that the above approach for eliciting scenario-specific utility functions assumes
that the DM can comprehend the concept of scenarios being equally likely. This assumption seems reasonable
in practical applications, and much of decision-theoretic work on expected utility builds on it (De Groot, 1970).
However, there also exists a substantial body of literature on State-Dependent Utility Theory (SDUT) that
avoids this assumption by developing axiomatisations of expected utility, in which both unique state-specific
utilities and state probabilities are derived from preferences between decision alternatives (Schervish et al.,
1990; Karni and Schmeidler, 2016). Based on this theory, both scenario probabilities and scenario-specific util-
ity functions could be derived by asking questions about the DM’s preferences between hypothetical portfolios.
However, the benefits from following this route seem to be outweighed by the heavy workload of the result-
ing elicitation procedure, especially because our model does not require exact numerical values for scenario
probabilities.

4. Computation of non-dominated portfolios

In principle, the set of non-dominated portfolios ZN (P) could be computed by first enumerating all feasible
portfolios and then by checking the dominance relations by using Theorem 1. However, computation can be
more efficient if the partition of portfolios z ∈ ZF into sets Z1, . . . ,ZK is utilized. In particular, let ZkN (P)

denote the set of portfolios that are non-dominated among Zk, i.e.,

ZkN (P) = {z ∈ Zk | @z′ ∈ Zk s.t. z′ �P z}.

For each non-dominated portfolio z ∈ ZN (P) there exists a set Zk among which z is non-dominated, i.e.,
z ∈ ZkN (P). This result is formally stated by the following lemma.

Lemma 2. Let P ⊆ ∆n
K . Then, ZN (P) ⊆ Z1

N (P) ∪ . . . ∪ ZKN (P).

An implication of this lemma is that if sets Z1
N (P), . . . ,ZKN (P) are known, then ZN (P) can be readily

determined by checking dominance relations (Theorem 1) between all pairs (z, z′) of portfolios that are included
in different sets z ∈ ZkN (P), z′ ∈ Z`N (P), k 6= `. This is because the transitivity of the dominance relation
guarantees that any dominated portfolio is dominated by at least one non-dominated portfolio.
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To our knowledge, algorithms for solving the set ZkN (P) directly do not exist. Hence, we use an approach in
which the set ZkN (∆n

K) of non-dominated portfolios among Zk given no probability information is solved first,
after which the set ZkN (P) is obtained through dominance checks between all portfolios in ZkN (∆n

K) (Theorem
1). Here, we utilize the fact that set ZkN (P) is a subset of ZkN (∆n

K) (cf. Theorem 2). To solve the set ZkN (∆n
K),

we note that the difference between the expected utilities of portfolios z, z′ ∈ Zk at any extreme point of
∆n
K is ui(

∑m
j=1 zjx

j
i ) − ui(

∑m
j=1 z

′
jx
j
i ) for some i = 1, . . . , n (cf. Theorem 1). If ui is strictly increasing, then

ui(
∑m

j=1 zjx
j
i )) ≥ (>)ui(

∑m
j=1 z

′
jx
j
i ) if and only if

∑m
j=1 zjx

j
i ≥ (>)

∑m
j=1 z

′
jx
j
i . Thus, the set ZkN (∆n

K) can be
obtained by solving the Pareto optimal solutions to the n-objective zero-one linear programming (MOZOLP)
problem

v–max
z∈Zk

[
m∑

j=1

zjx
j
1,

m∑

j=1

zjx
j
2, . . . ,

m∑

j=1

zjx
j
n], (23)

for which there exist several solution algorithms (Villareal and Karwan, 1981; Kiziltan and Yucaoğlu, 1983;
Liesiö et al., 2008; Gutjahr et al., 2010). This result is formally stated by the following lemma.

Lemma 3. Let the set of feasible probability matrices be P = ∆n
K , and let z, z′ ∈ Zk. Then, z �P z′ if and

only if 


∑m
j=1 zjx

j
1

...∑m
j=1 zjx

j
n


 




∑m
j=1 z

′
jx
j
1

...∑m
j=1 z

′
jx
j
n


 ,

where  denotes that the inequality is strict on at least one element.

Based on the above results and the pairwise dominance check of Theorem 1, the algorithm to obtain the set
of non-dominated portfolios ZN (P) can be formulated as follows:

1. For each k ∈ {1, . . . ,K}, obtain ZkN (∆n
K) by solving the MOZOLP problem (23).

2. For each k ∈ {1, . . . ,K}, obtain ZkN (P) by pairwise dominance checks within ZkN (∆n
K):

ZkN (P)← {z ∈ ZkN (∆n
K) | @z′ ∈ ZkN (∆n

K) s.t. z′ �P z}.

3. For each k ∈ {1, . . . ,K}, obtain ZN (P) by pairwise dominance checks between ZkN (P) and Z`N (P) for
each ` 6= k:

(a) ZkN (P)← {z ∈ ZkN (P) | @z′ ∈ ⋃ `=1,...,K
` 6=k

Z`N (P) s.t. z′ �P z},

(b) Set ZN (P)← Z1
N (P) ∪ · · · ∪ ZKN (P).

4.1. Computational tests

The effort of computing the set ZN (P) increases as a function of the number of actions m, the number
of scenarios n, the number of extreme points of the set of feasible scenario probability matrices P, and the
number K of sets into which the action-dependent scenario probabilities partition the set of feasible portfolios
ZF . Table 1 illustrates the average time required for computing the set ZkN (P) and the size of this set as
a function of the number of scenarios n and the number of actions m. For each combination of n and m,
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100 problem instances were solved using RPM-Decisions software1 in Step 1 and Matlab in Steps 2 and 3
of the algorithm on a standard laptop (2.60 GHz, 8 GB memory). In each instance, there was one budget
constraint corresponding to one third of the combined cost of all proposed actions. The constraints on scenario
probabilities corresponded to a complete ranking and a lower bound 1/(3n) on the least probable scenario (i.e.,
Pk,1 ≥ Pk,2 ≥ . . . ≥ Pk,n ≥ 1/(3n)) so that the number of extreme points of the set of feasible Pk,· was n.
In each problem instance, the actions’ impacts and costs were generated from a uniform distribution. In each
scenario, a logarithmic utility function ui(·) = ln(·) was used to map portfolio impact to portfolio utility.

Table 1a shows that, for instance, it takes on average 987.9s ≈ 16 min to compute the set ZkN (P), when
there are m = 50 actions and n = 5 scenarios. If the set of feasible portfolios ZF is partitioned into K = 8

sets, the combined computation time of ZkN (P) for all k = 1, . . . , 8 (i.e., Steps 1 and 2 in the algorithm) is
8× 987.9s ≈ 2h.

n
3 4 5

m

30 0.4 1.2 3.8
40 1.5 9.5 70.0
50 5.7 108.1 987.9

(a) Average computation time for set Zk
N (P) in seconds.

n
3 4 5

m

30 7 10 11
40 11 15 21
50 17 26 36

(b) Average number |Zk
N (P)| of non-dominated portfolios.

Table 1: Average computation time and size of Zk
N (P) as functions of the number of actions m and the number of

scenarios n. Number of problem instances for each combination of n and m is 100.

The computation time for carrying out the pairwise dominance checks in Step 3 of the algorithm is negligible
compared to the combined computation time of Steps 1 and 2. Figure 4 illustrates the computational effort
required by these dominance checks as a function of the number of portfolios in each ZkN (P) for different values
of K. With 50 actions and five scenarios, there are approximately 36 non-dominated portfolios in each set
ZkN (P), k ∈ {1, . . . ,K} (see Table 1b). Given K = 8, the combined computation time for carrying out the
pairwise dominance checks for each of the 36 portfolios in each portfolio set is 0.11ms.

5. Application to ecosystem strategy building

5.1. Case description

In the fall of 2015 a group of Nordic, globally operating steel and engineering companies were developing
a multi-sided, economic ecosystem around a technology platform called SmartSteel. With the help of digital
marking on raw materials and cloud storage, the SmartSteel platform would enable a real-time documentation
and tracking of all activities in the manufacturing process of steel into a final construction. In addition to
generating reliable audit trails and reducing documentation costs and errors, data collected through this platform
would create new technology- and service-related business opportunities for the ecosystem.

Platform ecosystems are a relatively new phenomenon (Evans and Gawer, 2016; Van Alstyne et al., 2016),
and multisided data exchange has not been used in engineering (Hermann et al., 2016). Hence, the participating
companies felt that the strategy for developing the ecosystem should be robust across alternative scenarios of
the future operational environment. Moreover, because SmartSteel ecosystem was one of the pioneers on the

1http://rpm.aalto.fi/rpm-software.html
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market, the strategy it would adopt was seen to have a potential impact on which of the alternative scenarios
would be realized.

The strategy process was carried out with a team of R&D leaders from the participating companies in
four workshops between which data was collected using web-based questionnaires. At the first stage of this
process, the participants developed three alternative scenarios for the operational environment of global platform
ecosystems in year 2030. Then, the participants defined a set of actions that would need to be taken for the
SmartSteel ecosystem to succeed in each scenario. Finally, the participants provided subjective assessments
about (i) the performance of these actions in each scenario, (ii) the scenario probabilities, and (iii) the actions’
impacts on these probabilities.

5.2. Definition of scenarios and actions

To define scenarios, we utilized morphological analysis (Godet, 2000; Ritchey, 2006). The process of mor-
phological analysis begins by identifying (i) key uncertainties which affect the operational environment and (ii)
the possible outcomes of these uncertainties. Then, the consistency of each pair of outcomes on each pair of key
uncertainties is assessed. Based on these assessments, a small number (e.g., three to five) of internally consistent
and sufficiently dissimilar outcome combinations are selected to serve as bases for scenario descriptions (Schoe-
maker, 1995; Peterson et al., 2003; Raynor and Leroux, 2004).

In our case, the workshop participants identified five key uncertainties for global platform ecosystems (tech-
nological development, globalisation, internet, political environment, and consumer values), each with three
potential outcomes (see Figure 5). Based on pairwise consistency assessments, EIDOS Option Development2

tool was used to visualize the dissimilarity and internal consistency of all 35 = 243 combinations of outcomes
(Figure 6). This visualization supported the creation of three consistent and sufficiently dissimilar scenarios for
further analysis: ‘Internet havens’, ‘Fast transition’, and ‘Stuck in tar’. Brief descriptions of these scenarios are

2https://www.parmenides-eidos.com/eidos9/us/
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given in Figure 7.

Figure 5: Key uncertainties and their possible outcomes.

Figure 6: Visualization of the similarity and internal consistency of different combinations of outcomes of the five key
uncertainties.

Once the scenarios had been defined, the participants were asked to develop courses of action that would
need to be taken now to enable success for the SmartSteel ecosystem in each future scenario. Moreover, the
participants were asked to think of actions that could be taken to increase or decrease the likelihood of different
scenarios being realized. For each scenario, 4-15 actions were identified. By combining similar actions, a list of
altogether m = 23 actions was generated. This list is shown in Figure 8, where those seven actions that were
seen by the workshop participants to have a potentially significant impact on scenario probabilities are marked
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Figure 7: Descriptions of the three scenarios.

with asterisks.

5.3. Feasibility constraints

Because the actions were short thematic descriptions rather than detailed execution plans, we assumed that
each of these actions, if implemented, would consume roughly the same amount of resources. Therefore, a single
feasibility constraint was imposed to limit the number of selected actions in the portfolio. More specifically, the
set of feasible portfolios was

ZF = {z ∈ {0, 1}23|
23∑

i=1

zi ≤ b}, (24)

where b ∈ {0, . . . , 23} is the limit on the number of actions that could be selected.

5.4. Assessment of actions’ impacts and scenario probabilities

Assessments about the actions’ impacts and scenario probabilities were gathered using a web-based question-
naire. First, each respondent was asked to assess the impact xji of each action j in each scenario si, i ∈ {1, 2, 3}
on a scale 0-100. The average scenario-specific assessments are shown in Figure 8. Due to limited time, we did
not elicit scenario-specific utility functions, but decided to use a single linear utility function ui(x) = x instead.

After having assessed the actions’ impacts, the respondents were asked to rank the scenarios in order of
their probability of occurence. Because the respondents’ rank orderings were different, it was decided that a
lower bound of 10% would be set on the probability of each scenario. When asked about the actions’ impacts
on scenario probabilities, the respondents agreed on the four statements shown in Figure 9. Although there are
in total 24 = 16 combinations of conditions on selected actions that impose different statements, some of these
combinations imply the same set of feasible probabilities. For instance, when conditions 3 and 4 hold (i.e., both
projects z6 and z7 are selected), then the set of feasible probabilities is the same regardless of whether neither,

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 8: Average assessments about the actions’ impacts xji in scenarios si, i ∈ {1, 2, 3} on a scale 0-100. Actions zj
that have an impact on scenario probabilities are marked with asterisks.

one, or both of conditions 1 and 2 hold. As a result, there are only seven unique probability sets, which are
shown in Table 2.

Portfolio sets: Probability sets:
Z1 =

{
z ∈ ZF |z1, . . . , z7 = 0

}
P1 =

{
P1,· ∈ ∆3|P1,i ≥ 0.1 ∀i

}

Z2 =
{
z ∈ ZF |

∑3
j=1 zj ≥ 1 ∧ (z6 = z7 = 0)

}
P2 =

{
P2,· ∈ ∆3|P2,i ≥ P2,3 ≥ 0.1, i = 1, 2

}

Z3 =
{
z ∈ ZF |z4 + z5 ≥ 1 ∧ zj = 0 ∀j ∈ {1, 2, 3, 6, 7}

}
P3 =

{
P3,· ∈ ∆3|P3,2 ≥ P3,3 ≥ 0.1, P3,1 ≥ 0.1

}

Z4 =
{
z ∈ ZF |z6 = 1 ∧ zj = 0 ∀j ∈ {1, 2, 3, 7}

}
P4 =

{
P4,· ∈ ∆3|P4,2 ≥ P4,i ≥ 0.1, i = 1, 3

}

Z5 =
{
z ∈ ZF |z6 = 0 ∧ z7 = 1

}
P5 =

{
P5,· ∈ ∆3|P5,2 ≥ 2P5,3, P5,1 ≥ P5,3 ≥ 0.1

}

Z6 =
{
z ∈ ZF |

∑3
j=1 zj ≥ 1 ∧ z6 = 1 ∧ z7 = 0)

}
P6 =

{
P6,· ∈ ∆3|P6,2 ≥ P6,1 ≥ P6,3 ≥ 0.1

}

Z7 =
{
z ∈ ZF |z6 = z7 = 1

}
P7 =

{
P7,· ∈ ∆3|P7,2 ≥ 2P7,3, P7,2 ≥ P7,1 ≥ P7,3 ≥ 0.1

}

Table 2: Portfolio and probability sets. For instance, if portfolio z does not contain action z6 but does contain action z7,
then z belongs to portfolio set Z5, for which the set of feasible probabilities is P5

.
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Figure 9: Actions’ impacts on scenario probabilities. IH = Internet havens, FT = Fast transition, ST = Stuck in tar.

5.5. Computation

The set of non-dominated portfolios was computed on a standard laptop (2.60 GHz, 8 GB memory) for
each value of b ∈ {0, . . . , 23} (limit on the number of actions that can be selected). The computation of
sets Z1

N (P1), . . . ,Z7
N (P7) in Steps 1 and 2 of the algorithm was done by using RPM-Decisions software, which

implements the dynamic programming algorithm by Liesiö et al. (2008). Pairwise dominance checks to obtain set
ZN (P) in Step 3 were done by Matlab 2016b. The combined computation time for all 24 sets of non-dominated
portfolios corresponding to different values of b ∈ {0, . . . , 23} was less than two minutes.

5.6. Results

Figure 10 shows the number of non-dominated portfolios |ZN (P)| as a function of the limit b on the number
of selected actions. The number of non-dominated portfolios is highest (i.e., 36) when the portfolio contains at
most either six or seven actions. Yet, this number is considerably lower than the number of feasible portfolios
in either case:

∑6
j=0

(
23
j

)
= 145, 499 and

∑7
j=0

(
23
j

)
= 390, 656, respectively.
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Figure 10: The number of non-dominated portfolios given different limits b on the number of selected actions.
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The compositions of the non-dominated portfolios for different values of b are illustrated in Figure 11a by
the actions’ core indices (cf. Definition 3). The darker the shade of the cell, the higher the core index. All
non-dominated portfolios containing fewer than ten actions are combinations of eleven actions: z1, z3, and z5

through z13. Moreover, actions z5 and z8 (‘EU steel legislation’ and ‘Platform investment’) are included in
all non-dominated portfolios that may contain at least seven actions, as is z3 (‘Information security’) in all
non-dominated portfolios containing at least nine actions.

(a) Actions’ core indices, when action-dependent probability information is taken into account.

(b) Actions’ core indices, when action-dependent probability information is neglected.

Figure 11: Actions’ core indices given different limits b on the number of selected actions.

For comparison, Figure 11b shows the actions’ core indices when the actions’ impacts on scenario probabilities
are neglected. The differences between the non-dominated portfolios resulting from action-dependent probability
information and action-independent probability information reflect the possibility of making proactive choices
which help steer the future toward the desired scenarios. For instance, without the action-dependent information,
z4 (‘Sector-focused development’) is a borderline action for all values of b between 9 and 11 (topmost dashed
rectangle in Figure 11b). However, if the action-dependent information is taken into account, then z4 should
not be selected within this range of b (topmost dashed rectangle in Figure 11a). This is because z4 would be
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an optimal choice in scenario ‘Stuck in tar’, the probability of which is decreased by selecting actions such as
z3 and z5 (‘Information security’ and ‘EU steel legislation’). For the same reason, z7 (‘Partnering’) is a core
action in portfolios containing 7 to 15 actions when action-dependent probability information is neglected, but
only a borderline action when action-dependent probability information is taken into account (middle dashed
rectangles).

On the other hand, actions z11, z12, and z13 (‘Service business’, ‘Certification’, and ‘Speed and agility’)
are included in all non-dominated portfolios containing 10 to 15 actions when action-dependent probability
information is taken into account, but only in some non-dominated portfolios when such information is neglected
(bottom dashed rectangles in Figures 11a and 11b). This is because these three actions are optimal choices in
the ‘Fast transition’ scenario, the probability of which is increased by selecting actions such as z3 and z5.

In order to prioritize actions, it was decided that those portfolios which contained b = 8 actions (ca. one
third of the 23 proposed actions) would be studied in more detail. The core indices corresponding to these 26
non-dominated portfolios are shown in Figure 12. Maximin and minimax regret decision rules were applied to
obtain a portfolio-level recommendation, which turned out to be the same for both rules (i.e., zmm = zmmr).
Actions included in this recommended portfolio are marked with (R). Looking at the actions’ scenario-specific
performances in Figure 8, it can be seen that the recommended portfolio is a balanced combination of (i) actions
that perform relatively well across all scenarios (‘Platform investment’, ‘EU steel legislation’, ‘Information
security’, and ‘New sources of income’) and (ii) actions that perform very well in one scenario (‘Open interfaces’
and ‘Traceability requirements’ in ‘Internet havens’ scenario; ‘Speed and agility’ in ‘Fast transition’ scenario;
and ‘Partnering’ in ‘Stuck in tar’ scenario). Moreover, this portfolio belongs to set Z7, in which the realization
of ‘Fast transition’ scenario is most likely (Table 2).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Core index

Antenna capability
No novel technologies
Sensor layer for IoT
Energy storage tag

Active tag
Passive location tag
Early investments

Technology business
Cost savings

Institutional actors
Sustainability requirements
Sector-focused development

Central corporation / foundation
Traceability requirements (R)

Partnering (R)
Open interfaces (R)

Certification
Speed and agility (R)

Service business
New sources of income (R)

Information security (R)
EU steel legislation (R)
Platform investment (R)

Figure 12: Core indices corresponding to the 26 non-dominated portfolios, when the limit on the number of selected
actions is b = 8. Actions included in the portfolio recommended by both maximin and minimax regret decision rules are
marked with (R).

Finally, to study the sensitivity of our results to the choice of a linear (risk neutral) utility function ui(x) = x,
we recomputed the results for a logarithmic (risk averse) utility function ui(x) = lnx. The actions’ core indices
for the logarithmic utility function are shown in Figure 13. Comparing Figures 11a and 13 shows that the choice
of utility function makes hardly any difference. In fact, the sets of non-dominated portfolios ZN (P) are exactly
the same for linear and logarithmic utility function whenever at least b = 10 actions can be selected.
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Figure 13: Actions’ core indices with logarithmic utility function ui(x) = lnx.

Experiences from the above process suggest several benefits in using the proposed model to support strat-
egy development. The model was transparent and could be readily explained to managers without a strong
mathematical background. Due to the use of incomplete probability information, the managers could provide
probability statements they were comfortable with, which is likely to have increased their confidence in the
resulting decision recommendations. Moreover, these recommendations could be intuitively justified by com-
paring the scenario-specific impacts of those actions that were included in most recommended portfolios with
those that were included in none. Because the actions were short thematic descriptions rather than detailed
execution plans, the generation of several decision recommendations instead of a single ‘optimal’ action portfolio
was appreciated. In fact, given the uncertainties about the future operational environment, the managers were
reluctant to make large, irreversible investments in actions whose benefits were highly contingent on how these
uncertainties would unfold. Based on the actions’ core indices, the managers were able to identify (i) core
actions that should be pursued immediately and (ii) borderline actions in which small initial investments should
be made to create opportunities for later expansion or abandonment.

6. Discussion and conclusions

To succeed in an unpredictable environment, a company must adopt a robust strategy that can perform
well in a variety of possible future environments (Lindsay, 2015; Ilmola and Rovenskaya, 2016). Yet, adopting
a purely reactive stance may lead to suboptimal decisions. For instance, in young, high-growth industries with
low entry barriers, high innovation rates, and unpredictable demand, a company may be able to radically shift
the course of industry development through some innovative move. On the other hand, a mature industry that
is either fragmented, or stagnant and ripe for disruption, is likely to be similarly malleable (Reeves et al., 2012).
In such cases a company can be better off by executing a proactive strategy through which it seeks to shape
the operational environment toward the desired direction (Hagel III et al., 2008).

In this paper, we have developed a scenario-based portfolio model to support the building of a strategy that is
(i) robust in that it performs relatively well across the possible future scenarios and (ii) proactive in that it helps
steer the course of change toward the desired scenario. In particular, our model generates recommendations
about which portfolio of strategic actions should be selected when information about scenario probabilities
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may be incomplete and depend on selected actions. This model can account for factors that make traditional
methods of, e.g., cost-benefit analysis difficult to apply, namely (i) different kinds of action interdependencies,
including balance constraints and logical interdependencies, and (ii) actions that yield utility only indirectly
through increasing the probability of the most desirable scenarios. To facilitate decision-making, the model
helps identify core actions that should definitely be pursued and exterior actions that should not, after which
further discussion can be concentrated on a smaller set of borderline actions.

Importantly, recommendations about individual actions as well as entire action portfolios can be generated
even in the absence of information about scenario probabilities. In this case, the set of non-dominated portfolios
consists of Pareto optimal portfolios, i.e., those that are not outperformed by any other portfolio in each
scenario (Goodwin and Wright, 2001; Montibeller et al., 2006; Stewart et al., 2013). Moreover, this set contains
decision recommendations suggested by scenario models that do not use scenario probabilities, such as the
portfolio that yields the smallest worst-case regret in scenario-specific portfolio utility (Lempert et al., 2006;
Ram et al., 2011). Yet, if information about scenario probabilities is elicited during the strategy process, the
updated set of non-dominated portfolios can be computed on the fly by carrying out pairwise dominance checks
among the non-dominated portfolios in the original set. This makes it possible to provide interactive decision
support in workshops, for instance.

There are several avenues for future work. First, the model could be extended to explicitly account for
multi-period portfolio selection processes in which the DM has the opportunity to revisit the initial selection
decision later (cf. Huchzermeier and Loch, 2001; Kettunen et al., 2010; Vilkkumaa et al., 2015). Second,
uncertainty about the actions’ impacts in different scenarios could be accommodated. Earlier work on this
subject suggests that, to curtail the complexity of the model, such action-specific uncertainties should be
characterized as intervals (Liesiö et al., 2008; Vilkkumaa et al., 2014b), instead of dividing the scenarios further
into sub-scenarios, each of which would correspond to specific realizations of these action-specific uncertainties.
Finally, the model could be integrated with a game-theoretic framework to support the selection of actions when
the actions’ impacts and scenario probabilities can be affected by the actions of others. Such an integrated
framework could support corporate strategy development, in which key uncertainties often relate to the actions
of competitors.
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Appendix A. Proofs

Proof of Lemma 1: Assume z �P z and z′ �P z′′. Then for any P ∈ P: EU(z, Pκ(z),·) ≥ EU(z′, Pκ(z′),·) ≥
EU(z′′, Pκ(z′′),·). Also, there exists P ∈ P such that EU(z, Pκ(z),·) > EU(z′, Pκ(z′),·) ≥ EU(z′′, Pκ(z′′),·). These
inequalities together imply that z �P z′′�.

Proof of Theorem 1: We show that the two conditions of Definition 1 for portfolios z and z′ hold if and only
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if the minimization and maximization conditions of Theorem 1 hold.

EU(z, Pκ(z),·) ≥ EU(z′, Pκ(z′),·) ∀P ∈ P ⇔
D(P ) ≥ 0 ∀P ∈ P ⇔

min
P∈P

D(P ) ≥ 0 ⇔
min

P∈ext(P)
D(P ) ≥ 0,

where D(P ) =
∑n

i=1 Pκ(z),i ·ui(
∑m

j=1 zjx
j
i )−

∑n
i=1 Pκ(z′),i ·ui(

∑m
j=1 z

′
jx
j
i ), and the last equivalence follows from

that fact that the sets of the row vectors Pκ(z),· of P ∈ P are convex polytopes, and
∑n

i=1 Pκ(z),i ·ui(
∑m

j=1 zjx
j
i )

is linear in Pκ(z),·. These convexity and linearity properties also imply the second condition, i.e.,

∃P ∈ P s.t. EU(z, Pκ(z),·) > EU(z′, Pκ(z′),·) ⇔
∃P ∈ P s.t. D(P ) > 0 ⇔

max
P∈P

D(P ) > 0 ⇔
max

P∈ext(P)
D(P ) > 0.�

Proof of Theorem 2: Assume contrary to the claim that ∃z′ ∈ ZN (P̃), z′ /∈ ZN (P). Then, ∃z ∈ ZF such
that z �P z′, which is equivalent to

D(P ) ≥ 0 ∀P ∈ P ∧ ∃P ∈ P s.t. D(P ) > 0. (A.1)

Because P̃ ⊆ P, it holds that D(P ) =
∑n

i=1 Pκ(z),i · ui(
∑m

j=1 zjx
j
i )−

∑n
i=1 Pκ(z′),i · ui(

∑m
j=1 z

′
jx
j
i ) ≥ 0 ∀P ∈ P̃.

By assumption, there exists P̂ ∈ int(P) ∩ P̃, and by (A.1) there exists P ∗ ∈ P s.t. D(P ) =
∑n

i=1 Pκ(z),i ·
ui(
∑m

j=1 zjx
j
i )−

∑n
i=1 Pκ(z′),i · ui(

∑m
j=1 z

′
jx
j
i ) > 0. Let P ◦ = P̂ + ε(P̂ − P ∗). Because P̂ ∈ int(P), ∃ε such that

P ◦ ∈ P. By rearranging the terms we have

P̂ =
1

1 + ε
P ◦ +

ε

1 + ε
P ∗ ≡ αP ◦ + βP ∗.

Note that α, β > 0. But then,

D(P̂ ) = D(αP ◦ + βP ∗) = αD(P ◦) + βD(P ∗) > 0,

where the second equality follows from the linearity of D(P ) in P , and the last inequality from D(P ◦) ≥ 0

by (A.1), D(P ∗) > 0, and α, β > 0. This last inequality, together with the fact that D(P ) ≥ 0 ∀P ∈ P̃, implies
that z �P̃ z′. Thus, z′ /∈ ZN (P̃), which is a contradiction�.

Proof of Corollary 1: The result follows directly from the result ZN (P̃) ⊆ ZN (P) of Theorem 2�.

Proof of Lemma 2: Assume z ∈ ZN (P) ⊆ ZF . By Definition 2, @z′ ∈ ZF such that z′ �P z. Because
Z1 ∪ . . . ∪ ZK = ZF , there exists k such that z ∈ Zk. Now, @z′ ∈ Zk ⊆ ZF such that z′ �P z, whereby
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z ∈ ZkN (P)�.

Proof of Lemma 3: Because z, z′ ∈ Zk, we have Pκ(z),· = Pκ(z′),· = Pk,·. Thus by Theorem 1, z �P z′ if and
only if minP∈ext(P)D(P ) ≥ 0 and maxP∈ext(P)D(P ) > 0, where

D(P ) =

( n∑

i=1

Pk,iui(
m∑

j=1

zjx
j
i )−

n∑

i=1

Pk,iui(
m∑

j=1

z′jx
j
i )

)

Furthermore, since P = ∆n
K , for any extreme point matrix P ∈ ext(∆n

K) there exists one scenario i∗ such that
Pk,i∗ = 1 while Pk,i = 0 for all i 6= i∗. Hence, we may write

min
P∈ext(∆n

K)
D(P ) = min

i∈{1,...,n}

(
ui(

m∑

j=1

zjx
j
i )− ui(

m∑

j=1

z′jx
j
i )

)

max
P∈ext(∆n

K)
D(P ) = max

i∈{1,...,n}

(
ui(

m∑

j=1

zjx
j
i )− ui(

m∑

j=1

z′jx
j
i )

)
.

Therefore, minP∈ext(∆n
K)D(P ) ≥ 0 holds if and only if

ui(
m∑

j=1

zjx
j
i ) ≥ ui(

m∑

j=1

z′jx
j
i ) ∀ i ∈ {1, . . . , n} ⇔

m∑

j=1

zjx
j
i ≥

m∑

j=1

z′jx
j
i ∀ i ∈ {1, . . . , n},

since each ui is a strictly increasing function. Similarly, maxP∈ext(∆n
K)D(P ) > 0 holds if and only if there exists

i ∈ {1, . . . , n} such that
∑m

j=1 zjx
j
i >

∑m
j=1 z

′
jx
j
i , which proves the Lemma�.
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