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Abstract 

Climate change impacts on water availability and hydrological extremes are major concerns as 

regards the Sustainable Development Goals. Impacts on hydrology are normally investigated as part 

of a modelling chain, in which climate projections from multiple climate models are used as inputs to 

multiple impact models, under different greenhouse gas emissions scenarios, which are resulting in 

different amounts of global temperature rise. While the goal is generally to investigate the relevance 

of changes in climate for the water cycle, water resources or hydrological extremes, it is often the 

case that variations in other components of the model chain obscure the effect of climate scenario 

variation. This is particularly important when assessing the impacts of relatively lower magnitudes of 

global warming, such as those associated with the aspirational goals of the Paris Agreement.  

In our study, we use ANOVA (ANalyses Of VAriance) to allocate and quantify the main sources of 

uncertainty in the hydrological impact modelling chain. In turn we determine the statistical 

significance of different sources of uncertainty. We achieve this by using a set of 5 climate models 

and up to 13 hydrological models, for 9 large scale river basins across the globe, under 4 emissions 

scenarios. The impact variable we consider in our analysis is daily river discharge. We analyze overall 

water availability and flow regime, including seasonality, high flows and low flows. Scaling effects are 

investigated by separately looking at discharge generated by global and regional hydrological models 

respectively. Finally, we compare our results with other recently published studies. 

We find that small differences in global temperature rise associated with some emissions scenarios 

have mostly significant impacts on river discharge – however, climate model related uncertainty is so 

large that it obscures the sensitivity of the hydrological system.  

 

Keywords: Climate change uncertainty, multi-model assessment, hydrology, water resources, 

ANOVA, Paris climate agreement. 
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1 Introduction 

The hydrological cycle is an essential part of the climate system and therefore very sensitive to 

climate variability and changes. Small, sometimes insignificant variations in climate often lead to 

significant changes in hydrological processes (Hattermann et al. 2011). Generally, it is expected that 

an increase in temperature will intensify the hydrological cycle (Kundzewicz and Schellnhuber 2004), 

but the feedback is nonlinear because different climate variables may have opposing effects on 

specific components of the water cycle. Increases in temperature and radiation, for example, 

stimulate evapotranspiration and may lead to lower water availability in a certain region, while 

increases in precipitation without notable changes in evapotranspiration would increase water 

availability.  

 

Figure 1: Mean trend in annual precipitation until end of this century under RCP8.5 scenario conditions 

(2010-2099, using linear regression of the annual sums) of 18 global climate model results of the Coupled 

(climate) Model Intercomparison Project (CMIP5). Shaded areas indicate where at least 80 % of the model 

ensemble agrees in the direction of the trend. The red polygons show the locations of the river basins 

considered in this study (1 – U. Mississippi, 2 – U. Amazon, 3 – Rhine, 4 – U. Niger, 5 – Blue Nile, 6 – Ganges, 7 

– U. Yangtze, 8 – U. Yellow, 9 – Lena).  
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Important for the water cycle is how climate trends manifest in a certain region or river basin. 

Moreover, in large scale river basins, it might be that opposing trends in climate will develop in 

headwaters and lowlands, i.e. increases in precipitation in upstream parts may result in higher 

discharge while precipitation downstream may even decrease. The Nile basin shows such opposing 

trends, with increases in projected precipitation in the headwaters of the Blue and White Nile and 

decreases downstream (Teklesadik et al. 2017, Liersch et al. 2016). Mishra et al. (2016) found that 

evapotranspiration will increase under scenario conditions in all seven large scale basins they 

investigated, among them the Blue Nile, but this increase is compensated by an increase in 

precipitation in five out of seven river basins.  

The high sensitivity of hydrological processes to climate variability and change increases the demand 

for the accuracy of climate simulations at the regional scale. In an “ideal model world”, assessments 

of climate change impacts on natural resources and processes would be only determined by the 

scenario settings and not by climate and impact models which are needed to translate the scenarios 

into impacts. However, while there is not much disagreement in temperature increases simulated by 

different Global Climate Models (GCMs) under specific scenario conditions, more variability and 

uncertainty exists in projected precipitation trends (IPCC 2013). When analyzing the most recent 

climate scenario data as delivered by the Coupled (climate) Model Intercomparison Project (CMIP5, 

Taylor et al. 2012) for the Representative Concentration Pathway 8.5 (RCP8.5, van Vuuren et al. 

2011), the results show that only in 35.4 % of the land surface area at least 80 % of the precipitation 

projections agree in the trend direction (see Figure 1). Many of the world’s largest river basins are 

located in regions where the precipitation trends do not agree in general or show opposing trends in 

their total catchment area, for example the Nile, the Niger, the Mississippi or the Amazon. 

In this study, we make use of climate and impact data provided in the framework of the Inter-

Sectoral Impact Model Intercomparison Project (ISIMIP, Schellnhuber et al. 2014, Warszawski et al. 

2014). ISIMIP is a community-driven modelling effort bringing together impact modelers across 
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sectors and scales to create consistent and comprehensive projections of the impacts at different 

levels of global warming, based on the RCPs and Shared Socio-Economic Pathways (SSPs) scenarios 

(IPCC 2013). The rationale behind ISIMIP is to use ensembles of impact models to find robust trends 

and to identify the demand for further impact model development. The ISIMIP initiative has boosted 

a series of publications dedicated to multi-model inter-comparison of climate change impacts. While 

a first set of hydrology-related publications described global scale impacts (Schewe et al. 2014, 

Dankers et al. 2014, Prudhomme et al. 2014, Haddeland et al. 2014, Davie et al. 2013, Wada et al. 

2013 and Portmann et al. 2014), a second set of studies focused on impacts on the hydrological cycle, 

water resources, seasonality and extremes at the regional scale (e.g., Eisner et al. 2017, Vetter et al. 

2017, Samaniego et al. 2017, Mishra et al. 2017, Pechlivanidis et al. 2017, Wang et al. 2017, Gelfan et 

al. 2017, Teklesadik et al. 2017 and Su Buda et al. 2017). Cross-scale studies using both, the outcomes 

of global and regional hydrological models, were published in Hattermann et al. (2017) and Gosling 

et al. (2017).  

The total uncertainty in projected water availability has been investigated to some extent in most of 

these studies. Climate impacts on seasonal dynamics and quantification of uncertainties, for 

example, can be found in Eisner et al. (2016). Pechlivanidis et al. (2017) reported that results are 

generally more uncertain in dry basins than in wet ones. This finding is supported by Samaniego et al. 

(2016), who also discovered generally a higher contribution of hydrological model uncertainty to 

total uncertainty in projected droughts (although still being lower than the share of climate model 

uncertainty). Vetter et al. (2017) used ANOVA (ANalysis Of VAriance) to allocate sources of 

uncertainty for trends in river discharge in 12 basins using regional scale hydrological data, finding 

that GCMs contribute the largest uncertainty, but the absolute contribution may vary over the year. 

Other applications of ANOVA in climate impact analysis can be found in Vidal et al. 2016, Giuntoli et 

al. 2015 and Bosshard et al. 2013. 

One main outcome of these studies is that GCMs contribute in most cases the highest share to the 

overall impact uncertainty. This is very crucial when looking at the Paris Agreement under the United 
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Nations Framework Convention on Climate Change (hereinafter referred to as “the Paris 

Agreement”), which demands for aggregated emission pathways consistent with keeping the 

increase in the global average temperature to well below 2 °C above pre-industrial levels and 

pursuing efforts to limit the temperature increase to 1.5 °C. While these seemingly small differences 

in temperature increase will definitely have a strong effect in specific regions and ecosystems (the 

most prominent ones possibly being small islands and coral reefs, cf. Frieler et al. 2013), many 

previous studies have shown that the impact of such small temperature differences is not so clear 

when looking at water resources and hydrological processes (Vetter et al. 2015, Hattermann et al. 

2015, Donnelly et al. 2017). As a result, one may ask whether we have the right tools to quantify 

impacts of such small differences in scenario projections. Therefore, the aim of this study is a) to 

systematically allocate and quantify the main sources of uncertainty in the entire model and scenario 

chain comparing effects of scenarios with small temperature differences and effects of scenarios 

with strong temperature differences, b) to analyze and quantify how significant variations in 

boundary conditions are, c) to look at scale effects caused by the impact models and d) to discuss the 

results in the light of other recent publications and the Paris agreement.  

 

2 Data and models 

In total, daily outputs of up to 9 regional and 4 global hydrological models driven by climate 

simulations from 5 GCMs and for 4 RCP scenarios, for 9 large scale river basins have been used. The 

river basins are shown in Figure 1. For some rivers we consider the upper parts only because these 

are less influenced by human regulation. Table 1 lists the main characteristics of the river basins 

considered and the hydrological models (HMs) applied (not all regional HMs have been applied to all 

river basins).  

All models simulate the full water cycle (evapotranspiration, infiltration, generation of runoff and 

routing of the locally generated runoff along the river network to the outlet), using different spatial 
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disaggregation schemes, with daily precipitation and temperature as main inputs. Global hydrological 

models, as defined in our study, operate at the global scale, using globally available input data and 

their parameters take single values with an assumption that they are applicable everywhere, i.e., 

they are spatially generalized. Regional hydrological models in our study are applied to river basins 

and there has been specific local tuning to get the predictive performance to a high level. While the 

global models consistently simulate hydrological processes and river routing with a spatial resolution 

of 0.5°, different approaches for spatial disaggregation are used by the regional models: regular grids 

(e.g., mHM, VIC and WaterGAP3) and disaggregation schemes with subbasins and hydrological 

response units (SWIM, HBV, HYPE and SWAT). More information on basic processes represented in 

the models and input data can be found in Hattermann et al. (2017) and with a focus on the regional 

models in Krysanova and Hattermann (2017) and their calibration and validation in Huang et al. 

(2017).  

The river basins were chosen in such a way that they represent important climate regimes: two of 

them are located in temperate climates (Upper Mississippi and Rhine), one in subarctic climate 

(Lena), four in monsoonal type of climates (Ganges, Upper Amazon, Upper Niger, Blue Nile) and two 

in continental plateau climate (Upper Yellow and Upper Yangtze). Annual precipitation totals range 

from lower than 400 mm in the Lena to more than 2000 mm in the Upper Amazon, and mean annual 

temperature ranges from -10 °C in the Lena to more than 26 °C in the Upper Niger.  

All hydrological models used in this study have been driven by the same CMIP5 climate scenario data 

as provided by ISIMIP. Results of 5 global climate models (HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-

CHEM, GFDL-ESM2M, NorESM1-M) have been bias corrected by Hempel et al. (2013) against global 

WATCH Forcing Data (WFD, Weedon et al. 2011) using a trend-preserving method. The resulting bias-

corrected scenario data are daily, 0.5 by 0.5 degrees gridded meteorological forcing data covering 

the time period 1958-2099. For more information about the climate scenario simulations for the 

individual river basins including statistics about their projected climate, see Krysanova and 

Hattermann (2017). A comparison of the performance of the hydrological models from both scales 
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under current climate conditions and impacts under climate scenarios is given in Hattermann et al. 

(2017) and Gosling et al. (2017). 

 

Table 1: Characteristics of the case study basins (drainage area, average air temperature and average annual 

precipitation for the period 1971-2000) and an overview of the regional and global HM applications in the 

study (X X indicates application of the same model by two different teams with different model 

parametrization). 

Basin Rhine Niger Blue Nile Ganges Yellow Yangtze Lena Mississippi Amazon 

Gauge Lobith Koulikoro El Deim Farakka Tangnaiha Cuntan Stolb Alton SP Olivenca 

Drainage area 
[km2] 160 800 120 000 238 977 835 000 121 000 804 859 2 460 000 444 185 990 781 

Average T [°C] 8.7 26.5 19.4 21.1 -2 6.8 -10.2 7.3 1.7 

Average P, mm/a 1 038 1 495 1 405 1 173 506 768 384 967 2 122 

Regional models 

        

  

ECOMAG 
      

X 
  

HBV X X X X X X X 
 

X X 

HYMOD X X X 
 

X X X 
  

X X X 

HYPE X 
  

X 
  

X 
  

mHM X X X X X 
  

X X 

SWAT 
 

X X 
  

X 
 

X X 

SWIM X X X X X X X X X 

VIC X X X X X X X X X 

WaterGAP3 X X X X X 
 

X X X 

Global models 
         

H08 X X X X X X X X X 

MPI-HM X X X X X X X X X 

PCR-GLOBWB X X X X X X X X X 

WBM X X X X X X X X X 

 

 

3 Methodology 

3.1 River discharge 
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We use river discharge at the outlet of the basins to investigate impact uncertainty. The locations are 

given in Table 1. Considered are mean flows (Q50, the long-term mean daily flow), high flows (Q10, 

where 10 % of the long-term mean daily flows are above this value) and low flows (Q90, 90 % of the 

long-term mean daily flows are above this value). The changes in discharge analyzed in the ANOVA 

setting are the differences of the monthly or annual mean flows of the years 1971-2000 (reference 

period) and 2070-2099 (scenario period). 

3.2 Total uncertainty of results 

The coefficient of variation (cv) of the projected changes in river discharge, modelled by the 

hydrological models, at the basin outlet is applied as a measure to show the total uncertainty of 

impacts for each basin. When calculating how cv evolves with time, we apply a 30 year moving 

window in order to smooth the huge inter-annual variability. Thus, the number of input data to 

calculate it for each running year is the product of the number of GCMs and HMs applied for each 

basin multiplied by the 30 annual values.  

3.3 ANOVA 

We make use of ANalysis Of VAriance (ANOVA) to allocate the main sources of uncertainty, because 

it allows in addition to quantify the significance of variations in the impact chain. ANOVA is a specific 

form of statistical hypothesis testing for more than two groups. The null hypothesis is that all groups 

are simply random samples of the same population. ANOVA can be applied to decompose the 

observed variance in a particular variable into components, which are attributable to different 

sources of variation (Von Storch and Zwiers 1999). Another main application field is comparing and 

testing whether or not the means of several groups are equal and thereby quantifying the 

significance of any source of variation. The sources of variation are blocked into three groups, which 

are the GCMs, HMs and RCPs (three-way ANOVA). These groups are called factors, and the members 

of each group are called different factor levels. By variation of the factors we get different responses 
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(in our case river discharge) that we use to quantify sources of uncertainty and the significance of 

variation of the factors. 

 

Quantification of sources of uncertainty 

In ANOVA, the total sum of squares (SST, the squared terms being deviations of single values from 

the grand mean) is used to express the total variation that can be attributed to the various factors. 

The three factors used for variance decomposition are the GCMs, HMs and RCPs: 

𝑆𝑆𝑇 = ∑𝑁𝐺𝐶𝑀
𝑖=1

∑𝑁𝐻𝑀
𝑗=1 ∑ (Yijk − Y̅ )2𝑁𝑅𝐶𝑃

𝑘=1
      Equation 1 

where Yijk is the specific value corresponding to the climate model i, hydrological model j and RCP k, 

respectively, and 𝑌̅ is the overall mean. SST can be further split into three main effects (SSGCM, SSHM, 

and SSRCP, the squared deviations of single values from their appropriate factor mean), which are 

effects directly attributable to GCMs, HMs and RCPs, and into four interaction terms (SSGCM*HM, 

SSGCM*RCP, SSHM*RCP, and SSGCM*HM*RCP): 

SST = SSGCM + SSHM + SSRCP + SSGCM*HM + SSGCM*RCP + SSHM*RCP + SSGCM*HM*RCP   Equation 2 

The latter are related to non-additive and/ or nonlinear effects (cf. Vetter et al 2015). The equations 

to calculate main effects, first interaction and second order interaction are given exemplarily in 

Equations A1 - A3 of the Appendix. 

 

Significance of variation 

The F-test is used for determining the significance of any variation in the factors GCMs, HMs and 

RCPs. The null-hypothesis is that all variations in different factors have the same effect. The F-test is 

recommended as a practical test, because of its robustness against many alternative distributions. 

We have analyzed the distributions of the residuals in all cases and have found no notable deviations 

from the normal distribution.  
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In ANOVA, factors can be treated either as being fixed or random. A factor is fixed when the levels 

under study (the specific GCMs, HMs and RCPs) are the only ones of interest, and in this case any 

conclusion applies only to this specific setting and no general assumptions beyond this sample can be 

drawn. A factor can be treated as being random when the levels under study are considered as being 

random samples from a larger population (of GCMs etc.), and in this case, general conclusions about 

the larger population (e.g., of GCMs or HMs) are possible. However, because one concludes from a 

smaller selection to a larger population in the latter case, the discriminative power and thus the 

significance of the outcome is lower. In our study, we apply ANOVA in the fixed factor mode. 

 

4 Results  

The projected total uncertainty in impacts (changes in river discharge) transient until the end of the 

century (2070-2099) compared to the reference period (1971-2000) is shown in Figure 2 (for the 

rivers Rhine, Blue Nile and Ganges) and in Figure A1 in the Appendix (for the rest of the basins), using 

the coefficient of variation (cv) as a relative measure to investigate the development of total 

uncertainty over time for each river basin and separately for RCPs 2.6 and 8.5. The indicators 

considered are mean flows (Q50), high flows (Q10) and low flows (Q90) simulated by the global and 

regional HMs. The results illustrate that the total uncertainty in impacts is increasing under RCP8.5 

scenario conditions in most cases until the end of this century. Under RCP2.6 scenario conditions, the 

uncertainty does not show such a trend in most cases. The strongest increase in impact uncertainty 

under RCP8.5 is visible in Figure 2 for all flows in the Rhine and the Blue Nile with a notable 

exception, viz. Q90 modelled by global HMs.   

There is a tendency that global HMs show higher uncertainty of outputs, but not for the low flows 

(Q90) in the Ganges and the mean (Q50) and high flows (Q10) in the Blue Nile. More exceptions are 

the high flow in the Yangtze (both RCPs) and the high flow (Q50) in the Mississippi (Figure A1).  
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Figure 2: Variability in changes in Q50 (mean flow), Q90 (low flow) and Q10 (high flow) based on all 

simulation results for the scenarios RCPs 2.6 and 8.5, separately for the regional and global hydrological 

models (blue and orange curves) for the Lena, Blue Nile and Ganges in the period 2030 – 2099. 

 

The uncertainty in projected river discharge decomposed into its main sources is shown in Figure 3. 

We further distinguish uncertainty decomposition in the ANOVA setting when considering all RCPs 

(RCP2.6, RCP4.5, RCP6.0 and RCP8.5), when considering only the two moderate scenarios (RCP2.6 

and RCP4.5) having only a small difference in global temperature increase, and when considering 

only the two extreme ones (low end RCP2.6 and high end RCP8.5). The latter one has the strongest 

difference in global temperature increase (for the individual values see Tables A1a-c in the 

Appendix). 
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Figure 3: Uncertainty in changes in long-term average river discharge decomposed into its main sources 

(GCMs, HMs and RCPs) for the high flows (Q10, top), mean flows (Q50, middle) and low flows (Q90, bottom). 

The left triangle shows the results when considering only RCP2.6 and RCP4.5, the middle one when 

considering RCP2.6 and RCP8.5 and the right one when considering all RCPs. The smaller symbols indicate 

individual river basins separately for the global (triangles) and regional hydrological models (diamonds), the 

bigger icons the mean of the respective group.  
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Most values are located in the lower left corner when considering only differences in the moderate 

scenarios RCP2.6 and RCP4.5, but also when accounting for all four RCPs. This indicates the high 

share of GCM driven uncertainty to the entire uncertainty in river discharge when looking at small 

differences in temperature increase, where GCM driven uncertainty dominates over the other 

sources. However, low flows in general and especially in the Lena basin are more sensitive to 

variation in HMs, because low flows are dominated by hydrological processes such as 

evapotranspiration, groundwater discharge and in the case of the Lena also by snow thawing 

processes, which are in different ways implemented in the HMs. The lowest sensitivity to variations 

in HMs is visible in the Rhine basin, the mean and high flows in the Niger and the high flows in the 

Ganges and Amazon (Figure 3 and Tables A1a-c in the Appendix). The middle column in Figure 3 

illustrates that only when looking at larger differences in temperature increases, considering solely 

the low- and high-end scenarios RCP2.6 and RCP8.5, the scenario (RCP) selection has a larger 

contribution to the entire uncertainty. It is in most cases higher than the HM related one and the 

highest in the Rhine basin for the low and mean flows and in the Lena for the high flows. The 

dominant role of GCMs is also illustrated in Figure 4, where the impact uncertainty in the Niger basin 

is compared when only one GCM (GFDL-ESM2M) is used to drive the HMs and when the scenario 

results of all 5 GCMs are applied to drive the impact models: using output of only one GCM gives a 

clear trend to more discharge, while using output of all 5 GCMs results in a highly unclear trend with 

increases and decreases in discharge. 
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Figure 4: Range of impact uncertainty in the Niger basin (change in discharge at gauge Koulikoro comparing 

the long-term monthly values of the reference period 1971-2000 and the scenario period 2070-2099) using all 

GCMs to drive the global and regional HMs (left), and the range of impact uncertainty when the same models 

are only driven by one GCM (GFDL-ESM2M, right).  

  

Figure A2 (Appendix) shows that only for low flows and small differences in global temperature 

increase, HMs contribute a higher share than RCPs. Interesting is also that global and regional HMs 

show a very similar behavior, despite the differences in impact uncertainty (Figure 2), where the 

variation from global models was higher in most cases.  

 

   a) Lena    b) Blue Nile   c) Ganges  
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Figure 5: Sources of uncertainty in projected changes in runoff seasonality for the rivers Lena (gauge Stolb), 

Blue Nile (gauge El Diem) and Ganges (gauge Farakka). The lines give the long-term daily discharge in the 

reference (1971-2000) und scenario periods (2070-2099). Top: only global HMs considered. Bottom: only 

regional HMs considered.  

 

A deeper insight into seasonal pattern of uncertainty contribution is given in Figure 5 considering all 

4 RCPs in the ANOVA setting (for the Lena, Blue Nile and Ganges; for the rest of the basins see Figure 

A3 in the Appendix). The uncertainty in the changes in discharge, decomposed into main sources and 

for the long-term mean values, displays that the uncertainty contributed by the HMs can be 

considerable in times when the hydrological processes largely determine river discharge. This is the 

case during the dry season (months November to June in the Ganges) or when snow and soil freezing 

processes are important. The latter is the case for the Lena River, almost all over the year, but there 

is particularly high HM uncertainty for the spring flood because the HMs control the magnitude of 

the snowpack and the rate of melting (Gelfan et al. 2016). In dry periods, evapotranspiration and 

groundwater processes dominate the river discharge pattern, and the different hydrological models 

use different formulations to reproduce them (see also Hagemann et al 2013). Also notable is the 

high share of the interaction terms to the total uncertainty in part of the seasonal results. It is the 

highest when GCMs are involved (GCM*RCP and GCM*HM in Figures 5 and A3) and when, for 

example, GCM precipitation results are sensitive to scenario conditions (RCPs), but precipitation 

shows divers trends in different GCM simulations from RCP2.6 to RCP8.5 (positive and negative). 
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Table 2: Results of the significance analysis (F-test). The first value gives the ratio of cases (relative to the 

total number), where a variation in the respective boundary condition (GCMs, RCPs, HMs) has a significant 

effect (p-value of the F-test < 0.01) on a flow component of river discharge in the nine river basins. In 

brackets are the number of cases with significant effect on river discharge in the nine basins modeled by 

regional hydrological models (first number in brackets) and by global hydrological models (second number in 

brackets). The fixed ANOVA model is used.  

RCP2.6 & 4.5       

Flow component GCM RCP HM 

low flow (Q90) 100 % (9,9) 77.8 % (6,8) 100 % (9,9) 

mean flow (Q50) 100 % (9,9) 66.7 % (6,6) 94.4 % (9,8) 

high flow (Q10) 100 % (9,9) 72.2 % (6,7) 88.9 % (7,9) 

RCP2.6 & 8.5       

Flow component GCM RCP HM 

low flow (Q90) 100 % (9,9) 83.3 % (7,8) 88.9 % (8,8) 

mean flow (Q50) 100 % (9,9) 83.3 % (8,7) 88.9 % (9,7) 

high flow (Q10) 100 % (9,9) 88.9 % (7,9) 88.9 % (8,8) 

  

The number of river basins, in which variations in the GCM, RCP and HM settings have a significant 

effect on river discharge (p-value of the F-test < 0.01), relative to the total number, is given in Table 

2. The table further distinguishes such cases where the variation in specific boundary conditions is 

significant within the regional hydrological model ensemble (first number in parenthesis) and when it 

is significant within the global model ensemble. The fixed ANOVA model is used, meaning that the 

results of the statistical evaluation apply only to the specific model setting. Notable is that 

differences in GCM input have always a significant impact on all flow components. The second 

highest significance has variation in HMs, while the scenario setting (RCPs) has the smallest effect on 

overall variance in the hydrological impact assessment. When quantifying the influence of small 

differences in scenario settings (e.g., only small global temperature increase as in RCP2.6 and 

RCP4.5), this variation results only in two third of the basins in a significant impact on mean 
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discharge. Basins without a significant effect of small temperature differences on mean river 

discharge are the monsoon driven Upper Niger, Upper Nile and Upper Amazon. Significance modeled 

by regional and global hydrological models shows no systematic difference. 

 

5 Discussion and conclusions 

Our results show that small increases in global temperature can have a statistically significant impact 

on river discharge for all flow components in almost all basins (Table 2), but this effect is often 

obscured by GCM related uncertainty (Figures 3 and 4). This is mostly due to the uncertainty in 

projected precipitation trends (Figure 1). The contribution of GCM related uncertainty is highest in 

periods of the year, and in regions, where precipitation dominates the river flow regime (Figure 5), 

such as in monsoon dominated basins like the Ganges and Blue Nile. HM related uncertainty is higher 

in periods of the year, and regions, where snow melt, soil freezing processes and evapotranspiration 

have a substantial influence on the river regime, for example in the sub-arctic climate of the Lena, 

mountainous basins or during the dry season in the Ganges and the Blue Nile. The latter is in line 

with the results of Samaniego et al. (2016), who found that droughts will increase in magnitude and 

duration in most basins they investigated, with a higher share of HM uncertainty but still lower than 

GCM uncertainty. In addition, Pechlivanidis et al. (2017) reported that GCM as well as HM related 

uncertainty is larger in dry regions. Hagemann et al. (2013) pointed out the important role of 

evapotranspiration in HM related impact uncertainty using a global model ensemble. 

The dominating influence of GCM-driven uncertainty relative to the total uncertainty is also reported 

by e.g., Eisner et al. (2017), Vetter et al. (2017), and Su et al. (2016), all using regional hydrological 

models in their impact assessments, but using other methodologies or without a rigorous 

quantification of the statistical significance of the results. Hirabayashi et al. (2013) showed, using a 

global hydrological model, that the uncertainty in global flood risk under climate change is mainly 

related to the spread of climate models. Results of nine global HMs are analyzed by Dankers et al. 
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(2013), who found that HM related uncertainty can predominate over GCM related uncertainty 

especially in areas with snow melt, while outside the tropics GCM related uncertainty is often not 

much larger than the HM related one. 

We do not see any larger differences in HM related uncertainty in terms of relative changes in 

discharge when it is simulated by regional or global HMs (Figure 3), and the same holds for the 

significance of variations in HMs (Table 2). This supports the results reported in earlier cross-scale 

investigations. Hattermann et al. (2017), for example, found that sensitivity of global and regional 

HMs to climate variability is comparable in most basins under study, but the analysis of differences in 

means, medians and spreads revealed many differences between the two HM ensembles and only in 

two cases of 11 results agreed in all three criteria. Gosling et al. (2017) showed that the ensemble 

median values of changes in runoff with three different magnitudes of global warming (1, 2 and 3 °C 

above pre-industrial levels) are generally similar between the two ensembles (global and regional 

HMs), although the ensemble spread is often larger for the global HM ensemble. However, from the 

sample of HMs included in this study, some differences between the regional and global scale 

applications can be seen. Most prominently, global HMs in many cases tend to have a stronger 

increase in impact uncertainty with time than regional HMs (Figure 2).  

A limitation of our study is that we used only data of 5 GCMs to drive the HMs. Their simulation 

results have been compared against the output of the larger GCM ensemble, and in most cases 

constitute a representative subset (see also Krysanova and Hattermann 2017). Another limitation is 

that we did not consider model parameter related uncertainty, which can be considerable (Eckhardt 

et al. 2003), but should in most cases not change the direction of the trend. 

Summarizing, the results of our study agree with the outcome of previous publications mostly done 

using scenarios with high temperature increase. Moreover, we show that small increases in global 

temperature, such as those underlined in the Paris Agreement, have statistically significant impacts 

on hydrology. However, as GCM uncertainty is so large, a robust trend in water resources and 

extremes is often only visible when more extreme climate scenarios (and global temperature rises) 

Page 19 of 33 AUTHOR SUBMITTED MANUSCRIPT - ERL-103950.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



20 
 

are considered. The uncertain but nevertheless significant impacts on river discharge (high, low and 

average flow) demand for intelligent strategies to adapt water use and management in an uncertain 

future. 

The high GCM-related uncertainty is a serious issue and further research is necessary to better 

understand whether a) this is due to missing or too simplified processes in climate models, e.g., 

connected to precipitation processes (clouds, convective events etc.), b) the climate system is in part 

so complex and uncertainty bounds will remain large, or c) a rigorous model selection process based 

on a list of agreed performance criteria should precede any impact study. 
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Appendix 

Below we show exemplarily the equations to calculate one main effect (Equation A1), one 

first order (Equation A2) and one second order interaction term (Equation A3): 

𝑆𝑆𝐺𝐶𝑀 = 𝑁𝑅𝐶𝑃𝑁𝐻𝑀 ∑ (𝑌̅𝑖𝑜𝑜 − 𝑌̅)2𝑁𝐺𝐶𝑀
𝑖=1      Equation A1 

𝑆𝑆𝐺𝐶𝑀∗𝐻𝑀 = 𝑁𝑅𝐶𝑃 ∑ ∑ (𝑌̅𝑖𝑗𝑜 − 𝑌̅𝑖𝑜𝑜 − 𝑌̅𝑜𝑗𝑜 + 𝑌̅)
2𝑁𝐻𝑀

𝑗=1
𝑁𝐺𝐶𝑀
𝑖=1    Equation A2 

𝑆𝑆𝐺𝐶𝑀∗𝐻𝑀∗𝑅𝐶𝑃 = 𝑆𝑆𝑇 − 𝑆𝑆𝐺𝐶𝑀 − 𝑆𝑆𝐻𝑀 − 𝑆𝑆𝑅𝐶𝑃 − 𝑆𝑆𝐺𝐶𝑀∗𝐻𝑀  Equation A3 

     −𝑆𝑆𝐺𝐶𝑀∗𝑅𝐶𝑃 − 𝑆𝑆𝐻𝑀∗𝑅𝐶𝑃          

While Yijk is the specific value corresponding to the climate model i, hydrological model j and 

RCP k (Equation 1 in the main text), respectively, 𝑌̅𝑖𝑜𝑜 gives the value when averaging over 

the indexes j and k (HMs and RCPs), and the same way 𝑌̅𝑜𝑗𝑜 when averaging over the indexes 

i and k (GCMs and RCPs).  
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Figure A1: Variability in changes in Q50 (mean flow), Q90 (low flow) and Q10 (high flow) based on all simulation results 
for the RCPs 2.6 and 8.5, separately for the regional and global models (blue and orange curves) for the Mississippi, 
Amazon, Upper Niger, Upper Yangtze, Upper Yellow and Lena in the period 2030 - 2100. 
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      a) RCPs 2.6 & 4.5                                               b) RCPs 2.6 & 8.5 

     

Figure A2: Uncertainty in river discharge decomposed into its main sources (GCMs, HMs and RCPs) for the 

mean flows (Q50), high flows (Q10) and low flows (Q90) (g – global, r – regional). The left plot shows the 

results when considering only RCP2.6 and RCP4.5 and the right one when considering RCP2.6 and RCP8.5. 

The error bars give the standard deviation. 
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   a) Rhine    b) Mississippi   c) Amazon 

     

     

   a) Upper Yangtze   b) Upper Yellow  c) Upper Niger 

     

     

                                            

Figure A3: Sources of uncertainty in projected changes in runoff seasonality for the Rhine, Mississippi, 

Amazon, Upper Yangtze, Upper Yellow and Upper Niger. The lines give the long-term daily discharge in the 

reference (1971-2000) und scenario periods (2070-2099). Top: only global HMs considered. Bottom: only 

regional HMs considered. 
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Table A1a: The individual values shown in Figure 3 (considering RCPs 2.6 and 4.5). 

    Global HM   Regional HM   

River Flow GCM RCP HM GCM RCP HM 

Rhine Q90 0.4 0.49 0.11 0.41 0.51 0.07 

Blue Nile Q90 0.54 0.26 0.18 0.45 0.19 0.29 

Niger Q90 0.5 0.14 0.33 0.46 0.13 0.39 

Ganges Q90 0.43 0.14 0.4 0.38 0.2 0.39 

Mississippi Q90 0.45 0.26 0.28 0.52 0.32 0.14 

Amazon Q90 0.54 0.3 0.15 0.63 0.2 0.17 

Yangtze Q90 0.44 0.22 0.29 0.45 0.08 0.44 

Lena Q90 0.18 0.22 0.59 0.27 0.16 0.57 

Yellow Q90 0.38 0.11 0.5 0.35 0.15 0.49 

Rhine Q50 0.43 0.46 0.11 0.41 0.49 0.09 

Blue Nile Q50 0.58 0.31 0.09 0.6 0.23 0.15 

Niger Q50 0.75 0.14 0.1 0.63 0.18 0.18 

Ganges Q50 0.45 0.28 0.26 0.49 0.3 0.19 

Mississippi Q50 0.46 0.3 0.23 0.49 0.28 0.22 

Amazon Q50 0.63 0.23 0.14 0.69 0.18 0.13 

Yangtze Q50 0.31 0.45 0.2 0.6 0.12 0.26 

Lena Q50 0.53 0.28 0.19 0.34 0.27 0.39 

Yellow Q50 0.36 0.2 0.42 0.28 0.21 0.51 

Rhine Q10 0.44 0.28 0.27 0.52 0.26 0.21 

Blue Nile Q10 0.69 0.17 0.13 0.66 0.13 0.2 

Niger Q10 0.67 0.18 0.13 0.66 0.18 0.14 

Ganges Q10 0.61 0.24 0.15 0.65 0.25 0.09 

Mississippi Q10 0.43 0.39 0.16 0.41 0.4 0.18 

Amazon Q10 0.71 0.1 0.17 0.74 0.12 0.1 

Yangtze Q10 0.37 0.36 0.24 0.36 0.22 0.39 

Lena Q10 0.26 0.35 0.38 0.26 0.43 0.3 

Yellow Q10 0.45 0.11 0.43 0.48 0.12 0.39 
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Table A1a: The individual values shown in Figure 3 (considering RCPs 2.6 and 8.5). 

    Global HM   Regional HM   

River Flow GCM RCP HM GCM RCP HM 

Rhine Q90 0.24 0.67 0.09 0.2 0.73 0.06 

Blue Nile Q90 0.48 0.27 0.21 0.46 0.24 0.24 

Niger Q90 0.47 0.29 0.21 0.42 0.23 0.31 

Ganges Q90 0.37 0.25 0.35 0.5 0.12 0.36 

Mississippi Q90 0.3 0.31 0.36 0.34 0.5 0.14 

Amazon Q90 0.36 0.53 0.09 0.57 0.27 0.14 

Yangtze Q90 0.41 0.28 0.28 0.46 0.16 0.37 

Lena Q90 0.13 0.44 0.42 0.2 0.41 0.38 

Yellow Q90 0.34 0.24 0.4 0.28 0.27 0.43 

Rhine Q50 0.28 0.61 0.1 0.24 0.7 0.06 

Blue Nile Q50 0.53 0.36 0.09 0.54 0.31 0.12 

Niger Q50 0.54 0.41 0.04 0.55 0.37 0.08 

Ganges Q50 0.47 0.18 0.32 0.56 0.17 0.25 

Mississippi Q50 0.36 0.37 0.25 0.41 0.35 0.21 

Amazon Q50 0.49 0.4 0.1 0.59 0.31 0.1 

Yangtze Q50 0.31 0.51 0.17 0.56 0.18 0.25 

Lena Q50 0.25 0.57 0.17 0.17 0.53 0.3 

Yellow Q50 0.33 0.35 0.31 0.25 0.27 0.47 

Rhine Q10 0.3 0.39 0.3 0.39 0.39 0.21 

Blue Nile Q10 0.58 0.23 0.17 0.61 0.21 0.16 

Niger Q10 0.54 0.35 0.09 0.53 0.35 0.09 

Ganges Q10 0.54 0.26 0.19 0.64 0.25 0.11 

Mississippi Q10 0.46 0.38 0.15 0.44 0.36 0.17 

Amazon Q10 0.45 0.46 0.08 0.59 0.32 0.08 

Yangtze Q10 0.35 0.36 0.28 0.34 0.3 0.35 

Lena Q10 0.17 0.62 0.19 0.15 0.68 0.16 

Yellow Q10 0.4 0.25 0.35 0.4 0.25 0.34 
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Table A1a: The individual values shown in Figure 3 (considering all RCPs). 

    Global HM   Regional HM   

River Flow GCM RCP HM GCM RCP HM 

Rhine Q90 0.47 0.4 0.12 0.45 0.46 0.08 

Blue Nile Q90 0.64 0.17 0.14 0.57 0.09 0.25 

Niger Q90 0.61 0.11 0.22 0.55 0.08 0.33 

Ganges Q90 0.43 0.12 0.42 0.54 0.1 0.32 

Mississippi Q90 0.39 0.18 0.4 0.49 0.29 0.18 

Amazon Q90 0.54 0.32 0.12 0.74 0.16 0.08 

Yangtze Q90 0.52 0.15 0.29 0.53 0.08 0.37 

Lena Q90 0.14 0.22 0.64 0.24 0.22 0.52 

Yellow Q90 0.47 0.09 0.41 0.36 0.12 0.47 

Rhine Q50 0.49 0.36 0.14 0.46 0.44 0.1 

Blue Nile Q50 0.74 0.19 0.04 0.75 0.15 0.07 

Niger Q50 0.77 0.16 0.05 0.75 0.14 0.09 

Ganges Q50 0.57 0.12 0.29 0.64 0.12 0.22 

Mississippi Q50 0.44 0.22 0.3 0.51 0.21 0.25 

Amazon Q50 0.66 0.23 0.1 0.77 0.13 0.09 

Yangtze Q50 0.45 0.33 0.19 0.64 0.15 0.18 

Lena Q50 0.45 0.31 0.22 0.28 0.28 0.43 

Yellow Q50 0.49 0.12 0.38 0.34 0.11 0.54 

Rhine Q10 0.37 0.21 0.4 0.48 0.22 0.27 

Blue Nile Q10 0.72 0.19 0.07 0.75 0.18 0.06 

Niger Q10 0.73 0.16 0.08 0.72 0.19 0.06 

Ganges Q10 0.72 0.11 0.16 0.83 0.1 0.06 

Mississippi Q10 0.59 0.24 0.15 0.62 0.21 0.14 

Amazon Q10 0.58 0.34 0.07 0.71 0.21 0.06 

Yangtze Q10 0.31 0.41 0.23 0.47 0.17 0.34 

Lena Q10 0.23 0.45 0.28 0.26 0.43 0.3 

Yellow Q10 0.56 0.12 0.31 0.58 0.11 0.3 
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